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Abstract: Equivalent Static Wind Loads (ESWL) are desired in structural design to consider peak
dynamic wind effects. Conventional ESWLs are for structures without control. For flexible struc-
tures with vibration control devices, the investigation of ESWL is required. Inerter-based Vibration
Absorbers (IVAs), due to the light weight and high performance, gained much research attention
recently. This paper established a generic analytical framework of ESWL for structures with IVAs. The
analytical optimal design formulas for IVAs with different configurations and installation locations
are provided. Subsequently, the solutions to uncontrolled and controlled wind-induced responses
are derived based on the filter approach. Finally, the ESWL for controlled structures are presented
with a gust response factor approach. The ESWL estimation for a tall chimney controlled by IVAs is
illustrated, and the results revealed a significant ESWL reduction effect of the IVAs, particularly for
the cross-wind vortex resonance. In the presented framework, the conventional uncontrolled ESWL
can be converted to the controlled one with a control ratio. The closed form solution of the control
ratio is provided, which enables a quick estimation of ESWL for controlled structures particularly
in the preliminary design stage. The presented approach has the potential to be extended to more
complex structures and vibration control devices.

Keywords: equivalent static wind load; dynamic vibration absorber; gust response factor; wind-induced
response; vibration control; inerter

1. Introduction

The Equivalent Static Wind Load (ESWL) is an important concept in structural wind
resistance designs. It provides a simplified procedure to estimate the peak dynamic wind
effect on structures, which can be combined with other load effects in structural design.
The basic framework of ESWL was proposed as gust loading factors by Davenport [1]. The
ESWL concept and method have been extensively developed and extended considering
more complex situations [2–15]. These studies provide a basis for international codes
for wind loading [16,17]. However, these ESWL approaches are for structures without
vibration control.

The development on material and construction technologies enables structures to be-
come more flexible. Vibration control devices are commonly applied to modern structures.
Tuned Mass Damper (TMD) is one of the most classical Dynamic Vibration Absorbers
(DVAs) for reducing the vibration responses of flexible structures. The vibration control
performances are strongly dependent on the tuning parameters. Den Hartog [18] proposed
a theoretic framework to obtain the optimal parameters analytically, which aims at minimiz-
ing the norms of the dynamic amplification functions. Based on the theory, the analytical
optimal parameters of TMD for harmonic and white-noised excitations are derived [19].
According to this criterion, the control performance of the TMD is highly dependent on the
tuning mass ratio. Achieving a lightweight design of the DVA is a challenging task.

Wind 2022, 2, 766–783. https://doi.org/10.3390/wind2040040 https://www.mdpi.com/journal/wind

https://doi.org/10.3390/wind2040040
https://doi.org/10.3390/wind2040040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wind
https://www.mdpi.com
https://orcid.org/0000-0002-9368-6309
https://doi.org/10.3390/wind2040040
https://www.mdpi.com/journal/wind
https://www.mdpi.com/article/10.3390/wind2040040?type=check_update&version=1


Wind 2022, 2 767

In order to further enhance the vibration control performance, many investigations
were performed. The inerter device was invented for both mechanical and civil engineering
fields [20,21]. It can produce a control force in proportion to the relative acceleration at its
two ends implemented by proper mechanical configurations, such as a rack-pinon-flywheel,
screw-ball systems, etc. [22]. Thus, an inertial effect of thousands of times its physical mass
can be provided by an inerter. The Inerter-based Vibration Absorbers (IVAs) have the
potential to achieve lightweight and high performance vibration control, which has recently
attracted much attention in research.

The first IVA realized in practical civil engineering structures is the Tuned Mass
Viscous Damper (TVMD) [21], which is installed on a tall building located in Sendai, Japan.
Replacing the dashpot of the TMD with TVMD, a Rotational inertia double-tuned mass
damper (RIDTMD) [23] was proposed, which significantly reduces the mass of the DVA [24].
Other than TVMD, many other IVA configurations are proposed and investigated. The
Tuned Mass Damper Inerter (TMDI) was proposed by adding an inerter between the mass
block of the TMD and the ground [25], which is beneficial in base-isolation system [26,27].
Considering the practical installation, the connection of the inerter of TMDI was moved
from the ground to the structure body [28,29] to form an inter-layer device, or adjacent
buildings, forming a damped link [30,31]. Replacing the mass of the TMD with an inerter,
Tuned Inerter Dampers (TIDs) were implemented and investigated [32,33]. A variant
design of the above mentioned DVA was achieved to enhance the control performance by
connecting the dashpot to the other side. Such as a variant design of TMD (VTMD, [34,35]),
a variant design of TMDI (VTMDI, [28,36]) is similar. It is interesting to find that the
TVMD and TID forms a variant design pair, and they are extensively compared with each
other in the literature [37–39]. More recently, the above DVAs are investigated considering
nonlinearity effects, such as [40,41].

Although both the IVAs and ESWLs are extensively addressed, they are investigated
separately. Because the practical application of IVAs becomes common, it is hoped to
develop the corresponding ESWLs for controlled structures. In order to address this gap,
the present paper aims at establishing a generic analytical framework of ESWL for structures
with IVAs. The analytical optimal design formulas for IVAs with different configurations
and installation locations are provided. Subsequently, the solutions to uncontrolled and
controlled wind-induced responses are derived based on the filter approach [42]. Finally,
the ESWLs for controlled structures are presented with a gust response factor approach. As
an example of the application, the ESWL estimation for a tall chimney controlled by IVAs is
performed at the end of the paper.

2. Inerter-Based Vibration Absorbers

The equivalent static wind load (ESWL) is based on the wind-induced peak response.
For the structures coupling with inerter-based vibration absorbers (IVAs), the wind-induced
responses are controlled. Moreover, the control performance of the IVA is highly dependent
on the tuning parameters. Therefore, it is the basic task to establish the equations of motion,
and determine the optimal parameters and performances of IVA. In this section, a variety
of IVAs are formulated generically. The optimal parameters are analytically obtained with
the Fixed-point approach.

2.1. Generic Equations of Motion

In order to simplify the derivation, the primary structure is assumed to be a general-
ized single-degree-of-freedom (SDOF) structure. Assuming that the fundamental mode
dominates a slender structure as an example, the equation of motion is described with
the generalized mass, stiffness, and damping, denoted as M, K, and C, respectively. It is
dynamically characterized by the natural circular frequency ωn =

√
K/M, and damping

ratio ζn = C/2
√

KM. As shown in Figure 1, the displacement response time–history u(z, t)
can be decoupled as a spatial variant normalized modal function Φ(z), with respect to the
generalized coordinate (height) z (0 ≤ z ≤ H, Φ(H) = 1), and a time dependent generalized
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displacement response x(t), i.e., u(z, t) = Φ(z)·x(t). Note that x(t) is exactly equalled to the
top displacement, x(t) = u(H, t).
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Figure 1. A generalized SDOF system coupling with an IVA of various configurations. 
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For an uncontrolled primary structure subjected to wind load p(z,t), the vibration is
governed by Equation (1). In the equation, F(t) =

∫ H
0 p(z, t)Φ(z)dz is the generalized wind

load. The wind load is composed of static and dynamic components, statistically denoted
by the mean value F and standard deviation value σF. The normalized transfer function H(s)
based on the Laplace transform of Equation (1) is written as Equation (2), with s being the
complex frequency, and X(s) and F(s) being the Laplace transform of the output response
x(t) and the input excitation F(t), respectively. When s takes the pure imaginary frequency
iω, H(iω) is the normalized frequency response function. V(s) =(s/ωn)

2 + 2ζns/ωn + 1
is the inverse of H(s). Here, i =

√
−1 is an imaginary unit. Consequently, the static and

dynamic wind-induced responses, denoted by the mean and standard deviation values, x
and σx, are shown in Equation (3). The peak response x̂ is obtained from the peak factor
approach, as shown in Equation (3). According to Davenport’s statistical approach [1], the
peak factor g is approximated with

√
2 ln n0T + γ√

2 ln n0T , where T is the time duration, n0 is
the mean up-crossing rate that can be approximated by ωn/2π, and γ is the Euler constant
taken as 0.5772.

M
..
x + C

.
x + Kx = F(t) (1)

H(s) =
X(s)

F(s)/K
=

K
Ms2 + Cs + K

=
1

(s/ωn)
2 + 2ζns/ωn + 1

=
1

V(s)
(2)


x = H(0) · F/K

σx = σF
K

√∫ ∞
0 SF(ω)|H(iω)|2dω

x̂ = x + gσx

(3)

In this paper, two major configurations of IVAs, TMDI, and VTMDI are considered,
as shown in Figure 1. It is also noted that TMD and TID can be expressed as TMDI with
an absent of mass. Likewise, VTMD and TVMD can be VTMDI with an absent of mass.
Therefore, these configurations are the major IVAs with similar components and different
configurations. They can be formulated and modeled generically. Although the IVAs
are discussed in several papers [37–39], the ESWL of structures with these IVAs is not
fully addressed.

For a primary structure controlled by an IVA installed between coordinates z0 and
z1, as shown in Figure 1, the Ritz-Galerkin method is adopted, as referred to [29,39,43,44],
assuming that u(z, t) = Φ(z)·x(t). According to the principle of visual work, the equations
of motion are rewritten as Equation (4). In the equation, ϕ0 = Φ(z0) and ϕ1 = Φ(z1) are
the location parameters of the IVA. f 0 and f 1 are the control force generated by the IVA
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at installation locations z0 and z1, respectively. y represents the absolute displacement
of the IVA. {

M
..
x + C

.
x + Kx− (ϕ0 f0 + ϕ1 f1) = F(t)

m
..
y + f0 + f1 = 0

(4)

Considering a Tuned Mass Damper Inerter (TMDI) with mass m, stiffness k, damping
c, and inertance coefficients b as an example, f 0 and f 1 are written in Equation (5). Note
that when b = 0, it become a Tuned Mass Damper (TMD). Whereas, when the mass can be
ignored (m = 0), it has a similar configuration with a Tuned Inerter Damper (TID). Thus,
Equation (5) is applicable for all of the above-mentioned situations. If the dashpot of
the TMDI is connected to the inerter side, a variant design of TMDI is formed, namely
VTMDI. In this case, f 0 and f 1 are expressed as Equation (6). When the inerter is absent, it
forms a variant design of TMD (VTMD). When the mass becomes absent, it has a similar
configuration with the Tuned Viscous Mass Damper (TVMD [21]), which is also denoted as
TID2 in [37]. Equation (6) is applicable for these variants. Also note that, when ϕ1 = 0, the
IVAs are connected to the ground, known as grounded IVAs. Conventional IVAs usually
takes ϕ0 = 1 and ϕ1 = 0 regardless of the installation locations. They are assumed to be
connected between the tip of the building and the ground.{

f0 = k(y− ϕ0x) + c(
.
y− ϕ0

.
x)

f1 = b(
..
y− ϕ1

..
x)

(5)

{
f0 = k(y− ϕ0x)
f1 = b(

..
y− ϕ1

..
x) + c(

.
y− ϕ1

.
x)

(6)

Substituting Equation (5) or Equation (6) into Equation (4), we can obtain the normal-
ized transfer function H(s). H(s) can be formatted as a rational expression, as Equation (7).

The denominator polynomial Γ(s) =
4
∑

j=0
γj(s/ωn)

j is quartic, with dimensionless coeffi-

cients γj (j = 0, 1, 2, 3, 4). The numerator polynomial Θ(s) =
2
∑

j=0
θj(s/ωn)

j is quadratic,

with dimensionless coefficients θj (j = 0, 1, 2).

H(s) =
X(s)

F(s)/K
=

Θ(s)
Γ(s)

=

2
∑

j=0
θj(s/ωn)

j

4
∑

j=0
γj(s/ωn)

j
(7)

In order to express the equations in a dimensionless form, the tuning parameters of
the IVA are defined, as shown in Table 1.

Table 1. Definitions of the tuning parameters of the IVA.

Tuning Parameter Symbol Definition

Tuning mass ratio µ m/M
Tuning inertance ratio β b/M

Nominal frequency ωd
√

k/(m + b)
Nominal damping ratio ν c/2

√
k(m + b)

Tuning frequency ratio ζd ωd/ωn

For TMDI and VTMDI, the coefficients are expressed, as shown in Table 2. Conse-
quently, the controlled wind-induced responses can be calculated by Equation (3), merely
adopting the normalized transfer function H(s) as Equation (7).
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Table 2. Dimensionless coefficients of the normalized transfer function H(s) for TMDI and VTMDI.

Coefficient TMDI VTMDI

γ0 ν2 ν2

γ1 2ζnν2 + 2ζdν 2ζnν2 + 2ζdν
[
1 + ν2(µ + β)(ϕ0 − ϕ1)

2
]

γ2 1 + 4ζnζdν + ν2
[
1 + µϕ2

0 + β(ϕ0 − ϕ1)
2
]

1 + 4ζnζdν + ν2
[
1 + µϕ2

0 + β(ϕ0 − ϕ1)
2
]

γ3 2ζn + 2ζdν
[
1 + µϕ2

0 + β(ϕ0 − ϕ1)
2
]

2ζn + 2ζdν(1 + µϕ2
1)

γ4 1 + µ
µ+β βϕ2

1 1 + µ
µ+β βϕ2

1

γ̃1 2ν 2ν
[
1 + ν2(µ + β)(ϕ0 − ϕ1)

2
]

γ̃2 1 + ν2
[
1 + µϕ2

0 + β(ϕ0 − ϕ1)
2
]

1 + ν2
[
1 + µϕ2

0 + β(ϕ0 − ϕ1)
2
]

γ̃3 2ν
[
1 + µϕ2

0 + β(ϕ0 − ϕ1)
2
]

2ν(1 + µϕ2
1)

θ0 ν2 ν2

θ1 2ζdν 2ζdν
θ2 1 1
θ̃1 2ν 2ν

2.2. Analytical Optimal Design Based on Fixed-Point Approach

The next step is to determine the appropriate parameters of the IVA. Basically, the
optimal design is to determine the optimal tuning parameters {νopt, ζdopt} with respect to
the input parameters {µ, β, ϕ0, ϕ1}. The optimization can be performed based on different
performance targets, e.g., the maximum (infinity norm) or 2nd norm of the dynamic
amplification function (H∞, H2 optimization). Among them, the most basic optimal design
method is the Fixed-point approach (FPA), which can lead to analytical results.

According to Den Hartog [18], the dynamic amplification function (DAF) D(λ) is
defined as the modulus of H(iω), particularly ignoring ζn, as shown in Equation (8), where
λ = ω/ωn is the normalized frequency. The polynomials A1(λ), A2(λ), B1(λ), and B2(λ) are
determined by substituting Equation (7) into Equation (8), as shown in Equation (9). In

the Equation, γ̃1 =
γ1|ζn=0

ζd
, γ̃2 = γ2|ζn=0, γ̃3 =

γ3|ζn=0
ζd

, θ̃1 = θ1/ζd. For TMDI and VTMDI,
the coefficients are shown in Table 2.

D(λ) = |H(iω)|ζn=0 =

√
A2

1(λ) + B2
1(λ)ζ

2
d

A2
2(λ) + B2

2(λ)ζ
2
d

(8)


A1(λ) = −θ2λ2 + θ0
A2(λ) = γ4λ4 − γ̃2λ2 + γ0

B1(λ) = θ̃1λ
B2(λ) = (−γ̃3λ2 + γ̃1)λ

(9)

Based on the FPA, for a determined tuning frequency ratio ν, D(λ) always passes
through two fixed points, as shown in Figure 2a. The horizontal coordinates of the fixed
points λ1,2 can be solved by letting ζd be 0 and infinity, i.e., A1(λ)

A2(λ)
= ± B1(λ)

B2(λ)
. At the

optimal tuning frequency ratio ν∞, the DAF values of the two fixed points are equal,
i.e., D(λ1) = D(λ2) = Dopt. Consequently, we obtain the following equation:

A1(λ1)

A2(λ1)
=

B1(λ1)

B2(λ1)
= −B1(λ2)

B2(λ2)
(10)
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Figure 2. The DAF curves D(λ) with different ν and ζd. (a) D(λ) with different ν; the fixed points are 
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By substituting Equation (9) into Equation (10), ν∞ can be obtained by solving
Equation (11) analytically. The coordinates of the optimal fixed points (λ1, 2, Dopt) are
given by Equation (12).

γ̃3(γ̃3θ0 + γ̃1θ2 + γ̃2θ̃1)− 2γ̃1(γ̃3θ2 + γ4θ̃1) = 0 (11)
Dopt = θ̃1

√
γ̃3θ2+γ4 θ̃1

γ̃2
1(γ̃3θ2+γ4 θ̃1)−γ̃2

3(γ̃1θ0+γ0 θ̃1)

λ1,2 =

√
γ̃1±θ̃1/Dopt

γ̃3

(12)

According to FPA, the optimal tuning damping ratio ζd∞ can be determined by

assigning the fixed points to the peaks of the DAF, i.e.,
dD2

ζd=ζd∞
(λ1,2)

dλ = 0, as shown in
Figure 2b. Based on the quotient rule of derivation, the following equation may be obtained:

dA2
1(λ1,2)
dλ +

dB2
1(λ1,2)
dλ ζ2

d∞
dA2

2(λ1,2)
dλ +

dB2
2(λ1,2)
dλ ζ2

d∞

=
A2

1(λ1,2) + B2
1(λ1,2)ζ

2
d∞

A2
2(λ1,2) + B2

2(λ1,2)ζ
2
d∞

= D2
opt (13)

Thus, the optimal tuning damping ratio ζd∞1,2, corresponding to the fixed points at λ1
and λ2, are given by Equation (14).

ζd∞1,2 =

√√√√√D2
opt

dA2
2(λ1,2)
dλ − dA2

1(λ1,2)
dλ

dB2
1(λ1,2)
dλ − D2

opt
dB2

2(λ1,2)
dλ

(14)

Considering the two fixed points, the optimal tuning damping ratio ζd∞ is taken

as ζd∞ =

√
ζ2

d∞1+ζ2
d∞2

2 . Substituting Equations (9) and (12) into Equation (14), ζd∞ is
analytically obtained, as shown in Equation (15).

ζd∞ =

√√√√ θ̃2
1θ2(2γ̃1γ4 − γ̃2γ̃3)− γ̃3θ0θ̃1(γ̃3θ2 + 2γ4θ̃1)− D2

optγ̃1(2γ̃1γ4 − γ̃2γ̃3)(γ̃1θ2 − γ̃3θ0)

γ̃2
3 θ̃1(θ̃

2
1 − γ̃2

1D2
opt)

(15)

The flow chart for determining the analytical optimal parameters via FPA is summa-
rized in Figure 3. Based on the procedure, the analytical solutions to the optimal parameters
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{ν∞, ζd∞} for various IVAs are obtained, as shown in Table 3. As the solution of a general
VTMDI is complex, it is given in Appendix A.
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Table 3. Analytical solutions to the optimal parameters {ν∞, ζd∞} of various IVAs obtained based
on FPA.

IVA Parameter ν∞ ζd∞

TMD [18,19] β = 0, ϕ0 = 1, ϕ1 = 0 1
1+µ

√
3µ

8(1+µ)

TMDI [28,39] Arbitrary {µ, β, ϕ0, ϕ1}
√

1+ µ
µ+β βϕ2

1

1+µϕ2
0+β(ϕ0−ϕ1)

2

√
3
8

µϕ2
0+β(ϕ0−ϕ1)

2− µ
µ+β βϕ2

1

1+µϕ2
0+β(ϕ0−ϕ1)

2

TMDI µϕ1 = 0 (TID [32,33], or
grounded TMDI [25–27])

1
1+µeq

√
3µeq

8(1+µeq)

VTMD [34,35] β = 0, ϕ0 = 1, ϕ1 = 0
√

1
1−µ

√
3µ

4(2−µ)

VTMDI [28,39] Arbitrary {µ, β, ϕ0, ϕ1} Equation (A1) Equation (A2)
VTMDI ϕ1 = 0 (grounded VTMDI [36])

√
1

1−(µ+β)ϕ2
0

√
3(µ+β)ϕ2

0
4[2−(µ+β)ϕ2

0]

VTMDI µ = 0 (TVMD [21], TID2 [37],
or VTID [39])

√
1

1−β(ϕ0−ϕ1)
2

√
3β(ϕ0−ϕ1)

2

4[2−β(ϕ0−ϕ1)
2]

VTMDI µϕ1 = 0
√

1
1−µeq

√
3µeq

4(2−µeq)

It is noted that there are many optimization goals of the DVAs, such as the H∞
optimization, which aims at minimizing the maximum of the DAF. The H2 optimization
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is targeted for minimizing the frequency domain integration, which corresponds to the
variance of the response based on the stochastic vibration theory. In the presented paper,
we adopted the FPA for an H∞ optimal solution considering the two reasons. Firstly,
the optimal results of the H∞ and H2 optimization are similar for stationary stochastic
vibration responses according to previous studies [29,39]. Secondly, based on the fixed-
point approach, the closed form solution can be derived, providing a feasible formula for
practical design.

Notice that, in the proposed analytical derivation with FPA, the results for the optimal
parameters (ν∞ and ζd∞) of Equations (11), (12) and (15) are only based on the coefficients of
the transfer function. No extra assumption is introduced. Therefore, the derivation can be
applied for DVAs that follows a transfer function with a quadratic numerator polynomial
and a quartic denominator polynomial. A linear DVA with a single DOF usually follows
this characteristic. The abovementioned equations can be applied to such DVAs other than
the IVAs investigated in this paper.

It is indicated that when µϕ1 = 0 (i.e., absent mass µ = 0 or grounded IVA ϕ1 = 0), the
optimal parameters of the TMDI (or VTMDI) can be formulated with an equivalent mass
ratio µeq compared to the corresponding conventional TMD (or VTMD). The equivalent
mass ratio µeq is formulated in Equation (16), revealing the influence of installation locations.
This equivalent mass ratio approach can be extended to IVAs for approximating the optimal
parameters neglecting the higher order items, as displayed in Equations (17) and (18).

µeq = µϕ2
0 + β(ϕ0 − ϕ1)

2 (16)

νTMDI
opt =

1
1 + µeq

; ζTMDI
dopt =

√
3µeq

8(1 + µeq)
(17)

νVTMDI
opt =

√
1

1− µeq
; ζVTMDI

dopt =

√
3µeq

4(2− µeq)
(18)

3. Wind-Induced Response Estimation

With the determined IVA parameters, the estimation method of the controlled wind-
induced response based on the filter approach is presented in this section, which provides
a basis to the formulation of ESWL.

3.1. Filter-Based Wind Load Spectrum

As an excitation input, the wind load spectrum is important for estimating the wind-
induced responses. In order to obtain a closed form solution, a filter-based model is adopted
to the estimation of the wind load spectrum. It is described as an analog filter applied on
white-noise. The normalized generalized wind load spectrum is written as Equation (19).
In the equation, ∆(s) is a filter polynomial for wind load, and δ is a normalization factor,

determined by δ =
[∫ ∞

0 |∆(iω)|−2dω
]−1

.

SF(ω)

σ2
F

=
δ

|∆(iω)|2
(19)

For the along-wind excitation characterized by a broad-banded spectrum, the filter
polynomial is modeled by a linear function. The filter polynomial and the corresponding
normalization factor are given by Equation (20). The subscript “a” stands for “along-wind”.
In the model, ωa = argmax

[
ωSFa(ω)/σ2

Fa
]

is the characteristic frequency of the along-
wind load. The model agrees well with the experimental data for tall buildings or slender
structures with different configurations in literatures, as shown in Figure 4a.

∆a(s) = s/ωa + 1; δa =
2

πωa
(20)
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Figure 4. Comparison between the spectral model and experimental data reported in relevant liter-
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Figure 4. Comparison between the spectral model and experimental data reported in relevant
literatures [45–55]. (a) along-wind; (b) cross-wind.

The cross-wind excitation usually has a narrow-banded spectral characteristic, due
to the vortex-induced turbulence. A quadratic polynomial is adopted to the model of
the cross-wind spectrum, provided by Equation (21), with the subscript “c” denoting a
“cross-wind”. In the equation, ωc = argmax

[
ωSFc(ω)/σ2

Fc
]

is a characteristic frequency

of the cross-wind load, related with the vortex frequency. λc =
1

ωc

√∫ ∞
0

ω2SF(ω)

σ2
F

dω is the

bandwidth parameter ranging from 1 to infinity. ρc =
√
(λ2

c + 1)2 − 4 is a dissipation
parameter. Note that, as the bandwidth becomes increasingly narrow, λc approaches 1.
Otherwise, as λc tends to infinity, the result converges to the along-wind spectrum. This
model agrees well with the experimental data for various slender structures reported in the
literatures, as shown in Figure 4b.

∆c(s) = (s/ωc)
2 + ρcs/ωc + λ2

c ; δc =
2

πωc
ρcλ2

c (21)

There are many advantages for adopting the filter approach for the wind load spec-
tra [29,42,55]. In addition to the well goodness of fit with experimental data, the major
advantage of the filter approach is its simplicity in describing the physical meaning of the
spectral characteristics of wind load. Moreover, it also leads to a closed form solution to
the wind-induced responses, which significantly enhanced the calculation efficiency and
simplicity for the analytical derivation.

3.2. Closed Form Solutions to Wind-Induced Responses Based on Filter Approach

With the filter-based wind load spectra, the dynamic wind-induced responses can
be calculated through the frequency domain integral, as shown in Equation (3). With the
filter approach, the frequency domain integration formatted with Equation (21) can be
analytically solved [51]. In this format, the filter polynomial to the nth order is provided by

Λ(s) =
n
∑

j=0
χj(s/ωn)

j, with χj (j = 0, 1, 2, . . . , n) being the dimensionless filter coefficients.

The numerator polynomial of the even degree is less than the 2(n–1)th order, written as,

Ξ(ω2) =
n−1
∑

j=0
ξ j(ω/ωn)

2j, with ξj (j = 0, 1, 2, . . . , n–1) being the dimensionless numerator

coefficients.

I =
∫ ∞

0

Ξ(ω2)

|Λ(iω)|2
dω =

πωn

2χn
· N

D
(22)
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The solution to the integration I is expressed as two determinants of the nth order,
D and N. They are calculated by Equations (A5) and (A6) (see Appendix B), respectively.
D is the denominator determinant composed of filter coefficients χj. Whereas, N is the
numerator determinant, similar to D, merely replacing the first row with the numerator
coefficients ξj. With this approach, the closed form solutions are obtained in this section.

3.2.1. Uncontrolled Response

Substituting uncontrolled H(s) (Equation (2)), and the filter-based wind load spec-
tral model (Equation (19)) into Equation (3), the dimensionless response (with subscript
“0” representing uncontrolled) βd0 = σx0

σF/K is obtained by Equation (23). The factor
βd0 denotes the ratio between the dynamic response and quasi-static (also known as
“background”) response.

βd0 =
σx0

σF/K
=

√
δ ·
∫ ∞

0

1

|∆(iω) ·V(iω)|2
dω =

√
κ0 ·

N0

D0
(23)

For computing the uncontrolled along-wind and cross-wind responses,
Equations (20) and (21) are substituted into Equation (23). The filter polynomial
Λ(s) = ∆(s) ·V(s) is cubic for along-wind response; meanwhile, it is quartic for the cross-
wind situation. The numerator polynomial is constant, i.e., Ξ(ω2) ≡ 1. The dimensionless
filter coefficients and the integral factor κ0 = πδωn

2χn
are summarized in Table 4, with

Ωa,c = ωn/ωa,c being the frequency ratio. The determinants N0 and D0 are calculated
through Equations (A5) and (A6), as shown in Equation (24). In the equation, coefficients
ψ1, ψ2, and ψ12 for along-wind and cross-wind (denoted by superscripts “a” and “c”) are
given by Equations (25) and (26), respectively. Note that, for cross-wind response, the
aerodynamic damping ratio ζa should be considered. Consequently, the dimensionless
responses are obtained and generically described in Equation (24).{

N0 = ψ2
D0 = ψ1ψ2 − ψ2

12
(24)


ψa

1 = 1 + 2ζn/Ωa
ψa

12 = 1
ψa

2 = 1 + 2ζnΩa

(25)


ψc

1 = ρcλ2
c

Ωc

[
1 + 2(ζn + ζa)

λ2
c

ρcΩc

]
ψc

12 = 1 + 2(ζn + ζa)Ωc/ρc

ψc
2 = Ωc

ρcλ2
c

{
1 + 2(ζn + ζa)

Ω2
c

λ2
c
·
[
2(ζn + ζa) +

Ωc
ρc

+ ρc
Ωc

]} (26)

Table 4. Dimensionless filter coefficients for the uncontrolled wind-induced responses.

Coefficient Along-Wind Cross-Wind

χ0 1 λ2
c

χ1 Ωa + 2ζn ρcΩc + 2(ζn + ζa)λ2
c

χ2 2ζnΩa + 1 Ω2
c + 2(ζn + ζa)ρcΩc + λ2

c
χ3 Ωa 2(ζn + ζa)Ω2

c + ρcΩc
χ4 — Ω2

c
ξ0 1 1
κ0 1 ρcλ2

c /Ωc
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3.2.2. Controlled Response

Similarly, the controlled responses (without the subscript “0”) are calculated by
Equation (27), substituting the controlled H(s) (Equation (7)) and the filter-based spec-
tra Equation (19) into Equation (22).

βd =
σx

σF/K
=

√√√√δ ·
∫ ∞

0

|Θ(iω)|2

|∆(iω) · Γ(iω)|2
dω =

√
κ · N

D
(27)

The order of the filter polynomial Λ(s) = ∆(s) · Γ(s) is n = 5 for the along-wind
response and n = 6 for the cross-wind response. The numerator polynomial in Equation (22)
is to the 4th order, i.e., Ξ(ω2) = |Θ(iω)|2. The dimensionless coefficients and integral factor
κ = πδωn

2χn
are summarized in Table 5. Comparing with Table 4 for uncontrolled responses,

it is indicated that, κ = γ4κ0 for controlled responses. The dimensionless responses are
obtained with the filter approach in Equation (22). The determinants N and D are calculated
from Equation (A5) and (A6). Moreover, the aerodynamic damping ratio ζa should be
considered in the cross-wind situation.

Table 5. Dimensionless filter coefficients for the controlled wind-induced responses.

Coefficient Along-Wind Cross-Wind

χ0 γ0 γ0λ2
c

χ1 γ0Ωa + γ1 γ0ρcΩc + γ1λ2
c

χ2 γ1Ωa + γ2 γ0Ω2
c + γ1ρcΩc + γ2λ2

c
χ3 γ2Ωa + γ3 γ1Ω2

c + γ2ρcΩc + γ3λ2
c

χ4 γ3Ωa + γ4 γ2Ω2
c + γ3ρcΩc + γ4λ2

c
χ5 γ4Ωa γ3Ω2

c + γ4ρcΩc
χ6 — γ4Ω2

c
ξ0 θ2

0 θ2
0

ξ1 θ2
1 − 2θ0θ2 θ2

1 − 2θ0θ2
ξ2 θ2

2 θ2
2

κ γ4 γ4ρcλ2
c /Ωc

4. Equivalent Static Wind Load

The structural design requires ESWL to estimate the peak wind-induced responses,
which may be combined with the other load effects. The basic equivalent and generalized
wind force Feq targeting the top displacement of the building is formulated in Equation (28).

Feq = Kx̂ = K(x + gσx) = F + gβdσF (28)

4.1. Gust Response Factor for Along-Wind ESWL

For along-wind ESWL, in light of the basic idea of the Davenport’s Gust Loading
Factor approach [1], adopting the quasi-steady assumption that σF/F = 2rIu(with Iu being
the turbulence intensity, and r being a modification factor), the gust response factor G may
be provided by Equation (29). Furthermore, the equivalent static wind pressure peq(z) may
be provided by Equation (30), where p(z) is the time-averaged wind pressure of p(z, t).

G = Feq/F = 1 + gβd
σF

F
= 1 + 2rgIuβd (29)

peq(z) = G · p(z) (30)

In Equation (29), βd is a factor that considers the dynamic effect. For an uncontrolled
structure, it is taken as βd0 in Equation (23). While controlled with IVA, it should be
calculated by Equation (27). In order to make this process explicit, a control factor is defined
as the ratio between controlled βd and uncontrolled βd0, as calculated by Equation (31). In
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this manner, the relationship between the controlled G and the uncontrolled G0 is provided
by Equation (32).

J =
βd
βd0

=

√
γ4ND0

N0D
(31)

G = 1 + 2rgIuβd0 J = 1 + J(G0 − 1) (32)

4.2. Cross-Wind ESWL

For the cross-wind response, the static response can be neglected. The wind-induced
response is dominated by the dynamic component. Moreover, the quasi-steady approach
is not applicable. Ignoring the mean component in Equation (28), it is obtained that
Feq = gβdσF. There are two approaches to estimate the ESWL.

The first one is the extended gust response factor G’, as referred to in [6], in which
the mean along-wind load Fa is used, as shown in Equation (33). The subscript “a” and
“c” represent “along-wind” and “cross-wind”, respectively. Consequently, the equivalent
static wind pressure in the cross-wind direction, peq,c(z), may be given by Equation (34) in
proportion to the mean along-wind load pa(z).

G′ =
Feq,c

Fa
= gβd

σFc

Fa
(33)

peq,c(z) = G′ · pa(z) (34)

Alternatively, another approach directly adopts the inertial load of the fundamental
mode, which is expressed by Equation (35). The equivalent static wind pressure in the
cross-wind direction, peq,c(z), is in proportion to the modal function Φ(z).

peq,c(z) = gKσxΦ(z) = gβdσFcΦ(z) (35)

In either method, the cross-wind ESWL is in proportion to βd. The relationship be-
tween the controlled load peq,c and the uncontrolled load peq,c0 is provided by Equation (36).
The control ratio J is estimated from Equation (32) using the cross-wind spectrum.

peq,c = J · peq,c0 (36)

It is noticed that, with the proposed framework, the ESWL of the uncontrolled structure
can be converted to the controlled ESWL using the control ratio J. The ratio J is dependent
on the spectral parameters of the wind load and the tuning parameters of the IVA. Note that
the control ratios for along-wind and cross-wind responses should be calculated separately.
With this approach, it is also convenient to convert the codified ESWL for uncontrolled
structures to that for the controlled structures.

5. Case Study

In this section, a numerical case study on the wind-induced vibration control and
ESWL estimation of a tall chimney with IVA is performed to demonstrate the application
of the proposed procedure.

The chimney is made of reinforced concrete, with a height of H = 270 m. It is assumed
to be constructed in an open terrain (Type C, ASCE). The sectional dimensions along
the height are listed in Table 6. The averaged outer diameter of the chimney is 25.4 m.
The finite element of the chimney is established with a beam-type element. Through a
modal analysis, the fundamental frequency of the chimney is calculated as ωn = 2.48 rad/s.
The corresponding modal function Φ(z) is also presented in Table 6. The modal mass is
M = 4588 t. The critical wind velocity of the chimney is determined as UCr = 50.2 m/s. The
critical damping ratio of the chimney is ζn = 1.5%. According to the wind tunnel tests on
an aeroelastic model [43], the aerodynamic damping ratio at UCr is ζa = –0.96%. In the
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numerical case, the most unfavorable case is considered, as the design wind velocity is
equal to the critical wind velocity.

Table 6. Geometric profile and modal function of the chimney.

Height (m) Outer Diameter (m) Thickness (m) Modal Function Φ(z)

270 16.9 0.45 1.000
260 17.3 0.45 0.933
250 17.7 0.45 0.866
240 18.1 0.50 0.799
230 18.5 0.50 0.733
220 18.9 0.50 0.668
210 19.3 0.50 0.605
200 19.7 0.55 0.543
180 20.5 0.55 0.429
160 22.1 0.60 0.328
140 23.7 0.65 0.240
120 25.3 0.65 0.168
100 26.9 0.70 0.110
80 28.9 0.80 0.066
40 33.7 0.90 0.015
0 38.5 1.00 0.000

For the IVA, it is assumed that the mass ratio is µ = 1.0%, and the inertance ratio is
β = 20%. The IVA is installed between z0 = 260 m (ϕ0 = 0.933) and z1 = 210 m (ϕ1 = 0.605).
Using Equations (16)–(18), the optimal parameters of the IVAs are calculated, as shown in
Table 7. Here, the TMDI and VTMDI cases are considered. The modulus of the frequency
response functions |X(iω)/F(iω)| of uncontrolled and controlled chimney cases are shown
in Figure 5. The theoretical curves (using the optimal parameters in Table 3) and the
proposed ones (obtained with parameters in Table 7, obtained by Equations (17) and (18))
are compared in the figures. The results have demonstrated good agreements between
the proposed formulas and the theoretical curves on the chimney case, indicating the
effectiveness of the proposed optimal design method.

Table 7. Determined IVA parameters for the chimney case.

Parameter TMDI VTMDI

µeq (%) 3.15 3.15
νopt 0.969 1.016

ζdopt (%) 10.71 10.96
m (ton) 45.88 45.88

c (kN·s/m) 496 532
k (kN/m) 5569 6119

b (kN·s2/m) 917.6 917.6

Based on the wind tunnel data [47,48], the wind-induced responses of the uncontrolled
and controlled cases are calculated with time-history analysis. The time-history of the
wind-induced top displacement responses are shown in Figure 6. The statistical results
of the peak wind-induced responses are summarized in Table 8. The resulting control
ratios and gust response factors obtained from the proposed ESWL framework are also
shown in this table. A good agreement can be observed between the time domain method
and the proposed method. The proposed method may overestimate the GRFs within a
maximum relative error of 3.9% in the numerical cases, which is an acceptable error in
practical engineering. Therefore, the effectiveness of the analytical framework regarding
the optimal design and control performance estimation for the ESWL of structures with
IVAs in this paper are illustrated.
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Table 8. Peak wind-induced responses, control ratios, and gust response factors for the cases.

Direction Parameter Uncontrolled TMDI VTMDI

Along-wind

Top displacement (m) 0.245 0.207 0.206
Base shear force (MN) 17.72 15.50 15.46

Base bending moment (GN·m) 2.793 2.388 2.381
Control ratio J (time domain method) — 0.676 0.670

Gust Response Factor G (time domain method) 1.93 1.63 1.62
Control ratio J (proposed method) — 0.692 0.680

Gust Response Factor G (proposed method) 1.95 1.66 1.64

Cross-wind

Top displacement (m) 0.422 0.197 0.194
Base shear force (MN) 19.36 9.14 8.95

Base bending moment (GN·m) 4.033 1.901 1.868
Control ratio J (time domain method) — 0.467 0.461

Gust Response Factor G’ (time domain method) 3.32 1.55 1.53
Control ratio J (proposed method) — 0.476 0.469

Gust Response Factor G’ (proposed method) 3.38 1.61 1.59

Moreover, it can be also concluded from the wind-induced vibration control analysis
results that the control ratio for VTMDI is slightly lower than that for TMDI, indicating a
better control performance. However, it requires a larger stiffness and damping to maintain
an optimal design state. Therefore, the designers can make a choice according to the con-
clusions and methods proposed in this paper. Moreover, the control ratios for cross-wind
responses are lower than those for along-wind responses. This is because the cross-wind
response is subjected to a more significant dynamic effect due to the vortex-induced reso-
nance. Generally, according to the time domain analysis, with the IVA, the ESWL denoted
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by the gust response factors for the along-wind was reduced by approximately 15%. It re-
duced up to 53% for the cross-wind ESWL. The IVAs appear to be more effective to suppress
the vortex-induced resonant vibration of the structures with low damping. When controlled
by IVAs, the ESWL of vortex resonance become less significant, which is reduced to the
along-wind ESWL, leading to an economic design for practical engineering structures.

6. Conclusions

In this paper, an analytical framework of the Equivalent Static Wind Load (ESWL) for
structures with Inerter-based Vibration Absorbers (IVAs) was established. This framework
includes analytical parametric optimization formulas based on the Fixed-point approach
(FPA), closed form solutions for the controlled wind-induced responses based on the filter
approach, and ESWL for the controlled structures based on the gust response factors.

The core of the proposed ESWL for controlled structures is based on a control ratio.
It is dependent on the spectral parameters of wind load and the tuning parameters of
the IVAs. A closed form solution of the control ratio is presented. With the control ratio,
the original uncontrolled ESWL can be easily converted to the controlled one, which will
provide a quick estimation at the preliminary design stage.

The current investigation is applicable to structures dynamically dominated by a
single mode. It can be extended to more complex structures in future studies. Moreover,
the presented analytical approach for IVAs is based on a general mathematical model of a
transfer function with a quartic filter polynomial; it can also be applied to other DVAs with
similar features, such as negative-stiffness-based DVAs, and so on.
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Appendix A. Analytical Solutions of {ν∞, ζd∞} for VTMDI

In Table 3, the analytical solutions to the optimal parameters {ν∞, ζd∞} of VTMDI
based on FPA are shown in Equations (A1) and (A2), where the polynomials Ψ1 and Ψ2 are
shown in Equations (A3) and (A4).

ν∞ =

√√√√√ 1 + µ
µ+β βϕ2

1

1 + µϕ0 ϕ1(3 + µϕ2
0)−

[
µϕ2

0 + β(1 + µϕ2
1)(ϕ0 − ϕ1)

2
] (A1)

ζd∞ = 2ν∞(1 + µϕ2
1)

√√√√√ (µ + β)
[
2 + ν2

∞(µ + β)(ϕ0 − ϕ1)
2
]

ν4
∞(µ + β)(ϕ0 − ϕ1)

2Ψ1 + ν2
∞Ψ2 + 6(µ + β + µβϕ2

1)
(A2)

Ψ1 = 5β2(ϕ0 − ϕ1)
2(1 + ϕ2

1µ
)
+ µ3 ϕ0 ϕ2

1(ϕ0 − 2ϕ1) + 2µ2βϕ2
1
(
3ϕ2

0 − 5ϕ0 ϕ1 + ϕ2
1
)
+

µ2 ϕ0 (5ϕ0 − 8ϕ1) + 2µβ
(
5ϕ2

0 − 9ϕ0 ϕ1 + 2ϕ2
1
)
− 2(µ + β)

(A3)
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Ψ2 = 11β2(ϕ0 − ϕ1)
2(1 + ϕ2

1µ
)
+ µ3 ϕ0 ϕ2

1(ϕ0 − 4ϕ1) + µϕ0(ϕ0 − 2ϕ1) [11(µ + 2β) +
12µβϕ2

1
]
+ 2µϕ2

1
(
µ + 5β + 3µβϕ2

1
)
− 6(µ + β)

(A4)

Appendix B. The Determinants of D and N for Filter Approach

In Equation (22), the determinants of D and N are shown in Equations (A5) and (A6),
respectively.

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χn−1 −χn−3 χn−5 −χn−7 · · · · · ·
−χn χn−2 −χn−4 χn−6 · · · · · ·
· −χn−1 χn−3 −χn−5 χn−7 · · · · ·
· χn −χn−2 χn−4 −χn−6 · · · · ·
· · χn−1 −χn−3 χn−5 −χn−7 · · · ·

· · . . . ·
· · · · · · χ1 ·
· · · · · · −χ2 χ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A5)

N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn−1 ξn−2 · · · · · · ξ0
−χn χn−2 −χn−4 χn−6 · · · · · ·
· −χn−1 χn−3 −χn−5 χn−7 · · · · ·
· χn −χn−2 χn−4 −χn−6 · · · · ·
· · χn−1 −χn−3 χn−5 −χn−7 · · · ·

· · . . . ·
· · · · · · χ1 ·
· · · · · · −χ2 χ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A6)

References
1. Davenport, A.G. Gust Loading Factors. J. Struct. Div. ASCE 1967, 93, 11–34. [CrossRef]
2. Simiu, E. Equivalent static wind loads for tall building design. J. Struct. Div. ASCE 1976, 102, 719–737. [CrossRef]
3. Solari, G. Equivalent wind spectrum technique: Theory and applications. J. Struct. Eng. ASC 1988, 114, 1303–1323. [CrossRef]
4. Kasperski, M. Extreme wind load distributions for linear and nonlinear design. Eng. Struct. 1992, 14, 27–34. [CrossRef]
5. Uematsu, Y.; Yamada, M.; Karasu, A. Design wind loads for structural frames of flat long-span roofs: Gust loading factor for a

structurally integrated type. J. Wind. Eng. Ind. Aerodyn. 1997, 66, 155–168. [CrossRef]
6. Piccardo, G.; Solari, G. Closed form prediction of 3-D wind-excited response of slender structures. J. Wind. Eng. Ind. Aerodyn.

1998, 74–76, 697–708. [CrossRef]
7. Holmes, J.D. Effective static load distributions in wind engineering. J. Wind. Eng. Ind. Aerodyn. 2002, 90, 91–109. [CrossRef]
8. Kareem, A.; Zhou, Y. Gust loading factor—Past, present and future. J. Wind. Eng. Ind. Aerodyn. 2003, 91, 1301–1328. [CrossRef]
9. Chen, X.Z.; Kareem, A. Equivalent static wind loads on buildings: New model. J. Struct. Eng. ASCE 2004, 130, 1425–1435.

[CrossRef]
10. Katsumura, A.; Tamura, Y.; Nakamura, O. Universal wind load distribution simultaneously reproducing largest load effects in all

subject members on large-span cantilevered roof. J. Wind. Eng. Ind. Aerodyn. 2007, 95, 1145–1165. [CrossRef]
11. Blaise, N.; Denoel, V. Principal static wind loads. J. Wind. Eng. Ind. Aerodyn. 2013, 113, 29–39. [CrossRef]
12. Yang, Q.S.; Chen, B.; Wu, Y.; Tamura, Y. Wind-induced response and equivalent static wind load of long-span roof structures by

combined Ritz-Proper Orthogonal Decomposition method. J. Struct. Eng. ASCE 2013, 139, 997–1008. [CrossRef]
13. Patruno, L.; Ricci, M.; Miranda, S.D.; Ubertini, F. An efficient approach to the determination of equivalent static wind loads. J.

Fluids Struct. 2017, 68, 1–14. [CrossRef]
14. Su, N.; Peng, S.T.; Hong, N.N. Analyzing the background and resonant effects of wind-induced responses on large-span roofs. J.

Wind. Eng. Ind. Aerodyn. 2018, 183, 114–126. [CrossRef]
15. Chen, Z.Q.; Wei, C.; Li, Z.M.; Zeng, C.; Zhao, J.B.; Hong, N.N.; Su, N. Wind-induced response characteristics and equivalent static

wind-resistant design method of spherical inflatable membrane structures. Buildings 2022, 12, 1611. [CrossRef]
16. Kwon, D.K.; Kareem, A. Comparative study of major international wind codes and standards for wind effects on tall buildings.

Eng. Struct. 2013, 51, 23–35. [CrossRef]
17. Tamura, Y.; Kareem, A.; Solari, G.; Kwok, K.C.S.; Holmes, J.D.; Melbourne, W.H. Aspects of the dynamic wind-induced response

of structures and codification. Wind Struct. 2005, 8, 251–268. [CrossRef]
18. Den Hartog, J.P. Mechanical Vibrations, 4th ed.; Dover Publications, Inc.: McGraw-Hill, NY, USA, 1956; pp. 87–104.

http://doi.org/10.1061/JSDEAG.0001692
http://doi.org/10.1061/JSDEAG.0004313
http://doi.org/10.1061/(ASCE)0733-9445(1988)114:6(1303)
http://doi.org/10.1016/0141-0296(92)90005-B
http://doi.org/10.1016/S0167-6105(97)00008-1
http://doi.org/10.1016/S0167-6105(98)00063-4
http://doi.org/10.1016/S0167-6105(01)00164-7
http://doi.org/10.1016/j.jweia.2003.09.003
http://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1425)
http://doi.org/10.1016/j.jweia.2007.01.020
http://doi.org/10.1016/j.jweia.2012.12.009
http://doi.org/10.1061/(ASCE)ST.1943-541X.0000715
http://doi.org/10.1016/j.jfluidstructs.2016.10.003
http://doi.org/10.1016/j.jweia.2018.10.021
http://doi.org/10.3390/buildings12101611
http://doi.org/10.1016/j.engstruct.2013.01.008
http://doi.org/10.12989/was.2005.8.4.251


Wind 2022, 2 782

19. Asami, T.; Nishihara, O.; Baz, A.M. Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to
damped linear systems. J. Vib. Acoust. 2002, 124, 284–295. [CrossRef]

20. Smith, M.C. Synthesis of mechanical networks: The Inerter. IEEE Trans. Automat. Contr. 2002, 47, 1648–1662. [CrossRef]
21. Ikago, K.; Saito, K.; Inoue, N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthq.

Eng. Struct. Dyn. 2012, 41, 453–474. [CrossRef]
22. Ma, R.S.; Bi, K.M.; Hao, H. Inerter-based structural vibration control: A state-of-the-art review. Eng. Struct. 2021, 243, 112655.

[CrossRef]
23. Garrido, H.; Curadelli, O.; Ambrosini, D. Improvement of tuned mass damper by using rotational inertia through tuned viscous

mass damper. Eng. Struct. 2013, 56, 2149–2153. [CrossRef]
24. Su, N.; Peng, S.T.; Hong, N.N.; Xia, Y. Wind-induced vibration absorption using inerter-based double tuned mass dampers on

slender structures. J. Build. Eng. 2022, 58, 104993. [CrossRef]
25. Pietrosanti, D.; De Angelis, M.; Basili, M. Optimal design and performance evaluation of systems with tuned mass damper inerter

(TMDI). Earthq. Eng. Struct. Dyn. 2017, 46, 1367–1388. [CrossRef]
26. Di Matteo, A.; Masnata, C.; Pirrotta, A. Simplified analytical solution for the optimal design of Tuned Mass Damper Inerter for

base isolated structures. Mech. Syst. Signal Process. 2019, 134, 106337. [CrossRef]
27. Bian, J.; Zhou, X.H.; Ke, K.; Michael, C.H.Y.; Wang, Y.H. Seismic resilient steel substation with BI-TMDI: A theoretical model for

optimal design. J. Constr. Steel Res. 2022, 192, 107233. [CrossRef]
28. Marian, L.; Giaralis, A. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for

stochastically support-excited structural systems. Probabilist. Eng. Mech. 2014, 38, 156–164. [CrossRef]
29. Su, N.; Xia, Y.; Peng, S.T. Filter-based inerter location dependence analysis approach of Tuned mass damper inerter (TMDI) and

optimal design. Eng. Struct. 2022, 250, 113459. [CrossRef]
30. Zhu, Z.W.; Lei, W.; Wang, Q.H.; Tiwari, N.D.; Hazra, B. Study on wind-induced vibration control of linked high-rise buildings by

using TMDI. J. Wind. Eng. Ind. Aerodyn. 2020, 205, 104306. [CrossRef]
31. Djerouni, S.; Elias, S.; Abdeddaim, M.; Rupakhety, R. Optimal design and performance assessment of multiple tuned mass

damper inerters to mitigate seismic pounding of adjacent buildings. J. Build. Eng. 2022, 48, 103994. [CrossRef]
32. Lazar, I.F.; Neild, S.A.; Wagg, D.J. Using an inerter-based device for structural vibration suppression. Earthq. Eng. Struct. Dyn.

2014, 43, 1129–1147. [CrossRef]
33. Shen, W.; Niyitangamahoro, A.; Feng, Z.; Zhu, H. Tuned inerter dampers for civil structures subjected to earthquake ground

motions: Optimum design and seismic performance. Eng. Struct. 2019, 198, 109470. [CrossRef]
34. Ren, M.Z. A variant design of the dynamic vibration absorber. J. Sound Vib. 2001, 245, 762–770. [CrossRef]
35. Cheung, Y.L.; Wong, W.O. H2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures

under random force excitation. J. Sound Vib. 2011, 330, 1039–1044. [CrossRef]
36. Masnata, C.; Matteo, A.D.; Adam, C.; Pirrotta, A. Smart structures through nontraditional design of Tuned Mass Damper Inerter

for higher control of base isolated systems. Mech. Res. Commun. 2020, 105, 103513. [CrossRef]
37. Alotta, G.; Failla, G. Improved inerter-based vibration absorbers. Int. J. Mech. Sci. 2021, 192, 106087. [CrossRef]
38. Zhang, R.F.; Zhao, Z.P.; Pan, C.; Ikago, K.; Xue, S.T. Damping enhancement principle of inerter system. Struct. Control Health

Monit. 2020, 27, e2523. [CrossRef]
39. Su, N.; Bian, J.; Peng, S.T.; Xia, Y. Generic optimal design approach for inerter-based tuned mass systems. Int. J. Mech. Sci. 2022,

233, 113459. [CrossRef]
40. Zhang, M.J.; Xu, F.Y. Tuned mass damper for self-excited vibration control: Optimization involving nonlinear aeroelastic effect. J.

Wind. Eng. Ind. Aerodyn. 2022, 220, 104836. [CrossRef]
41. Yu, H.Y.; Zhang, M.J.; Hu, G. Effect of inerter locations on the vibration control performance of nonlinear energy sink inerter. Eng.

Struct. 2022, 273, 115121. [CrossRef]
42. Spanos, P.D.; Sun, Y.; Su, N. Advantages of filter approaches for the determination of wind-induced response of large-span roof

structures. J. Eng. Mech. ASCE 2017, 143, 04017066. [CrossRef]
43. Wang, Z.; Giaralis, A. Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping.

Struct. Control Health Monit. 2021, 28, e2756. [CrossRef]
44. Su, N.; Bian, J.; Peng, S.T.; Xia, Y. Impulsive resistant optimization design of tuned viscous mass damper (TVMD) based on

stability maximization. Int. J. Mech. Sci. 2023, 239, 107876. [CrossRef]
45. Lin, N.; Letchford, C.; Tamura, Y.; Liang, B.; Nakamura, O. Characteristics of wind forces acting on tall buildings. J. Wind. Eng.

Ind. Aerodyn. 2005, 93, 217–242. [CrossRef]
46. Kim, Y.C.; Kanda, J. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations. J. Wind.

Eng. Ind. Aerodyn. 2010, 98, 449–465. [CrossRef]
47. Sun, Y.; Li, Z.Y.; Sun, X.Y.; Su, N.; Peng, S.T. Interference effects between two tall chimneys on wind loads and dynamic responses.

J. Wind. Eng. Ind. Aerodyn. 2020, 206, 104227. [CrossRef]
48. Su, N.; Li, Z.Y.; Peng, S.T.; Uematsu, Y. Interference effects on aeroelastic responses and design wind loads of twin high-rise

reinforced concrete chimneys. Eng. Struct. 2021, 233, 111925. [CrossRef]
49. Sun, X.Y.; Liu, H.; Su, N.; Wu, Y. Investigation on Wind Tunnel Tests of the Kilometer Skyscraper. Eng. Struct. 2021, 148, 340–356.

[CrossRef]

http://doi.org/10.1115/1.1456458
http://doi.org/10.1109/TAC.2002.803532
http://doi.org/10.1002/eqe.1138
http://doi.org/10.1016/j.engstruct.2021.112655
http://doi.org/10.1016/j.engstruct.2013.08.044
http://doi.org/10.1016/j.jobe.2022.104993
http://doi.org/10.1002/eqe.2861
http://doi.org/10.1016/j.ymssp.2019.106337
http://doi.org/10.1016/j.jcsr.2022.107233
http://doi.org/10.1016/j.probengmech.2014.03.007
http://doi.org/10.1016/j.engstruct.2021.113459
http://doi.org/10.1016/j.jweia.2020.104306
http://doi.org/10.1016/j.jobe.2022.103994
http://doi.org/10.1002/eqe.2390
http://doi.org/10.1016/j.engstruct.2019.109470
http://doi.org/10.1006/jsvi.2001.3564
http://doi.org/10.1016/j.jsv.2010.10.031
http://doi.org/10.1016/j.mechrescom.2020.103513
http://doi.org/10.1016/j.ijmecsci.2020.106087
http://doi.org/10.1002/stc.2523
http://doi.org/10.1016/j.ijmecsci.2022.107654
http://doi.org/10.1016/j.jweia.2021.104836
http://doi.org/10.1016/j.engstruct.2022.115121
http://doi.org/10.1061/(ASCE)EM.1943-7889.0001261
http://doi.org/10.1002/stc.2756
http://doi.org/10.1016/j.ijmecsci.2022.107876
http://doi.org/10.1016/j.jweia.2004.12.001
http://doi.org/10.1016/j.jweia.2010.02.004
http://doi.org/10.1016/j.jweia.2020.104227
http://doi.org/10.1016/j.engstruct.2021.111925
http://doi.org/10.1016/j.engstruct.2017.06.052


Wind 2022, 2 783

50. Choi, H.; Kanda, J. Semi-empirical formulae for dynamic alongwind force estimation. J. Struct. Constr. Eng. (Trans. AIJ) 1994, 463,
9–18. [CrossRef]

51. Tanaka, H.; Tamura, Y.; Ohtake, K.; Nakai, M.; Kim, Y.C. Experimental investigation of aerodynamic forces and wind pressures
acting on tall buildings with various unconventional configurations. J. Wind. Eng. Ind. Aerodyn. 2012, 107–108, 179–191. [CrossRef]

52. Bandi, E.K.; Tamura, Y.; Yoshida, A.; Kim, Y.C.; Yang, Q. Experimental investigation on aerodynamic characteristics of various
triangular-section high-rise buildings. J. Wind. Eng. Ind. Aerodyn. 2013, 122, 60–68. [CrossRef]

53. Vickery, B.J.; Basu, R. Simplified approaches to the evaluation of the across-wind response of chimneys. J. Wind. Eng. Ind. Aerodyn.
1983, 14, 153–166. [CrossRef]

54. Choi, H.; Kanda, J. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders.
J. Wind. Eng. Ind. Aerodyn. 1993, 46–47, 507–516. [CrossRef]

55. Su, N.; Peng, S.T.; Hong, N.N. Universal simplified spectral models and closed form solutions to the wind-induced responses for
high-rise structures. Results Eng. 2021, 10, 100230. [CrossRef]

http://doi.org/10.3130/aijs.59.9
http://doi.org/10.1016/j.jweia.2012.04.014
http://doi.org/10.1016/j.jweia.2013.07.002
http://doi.org/10.1016/0167-6105(83)90019-3
http://doi.org/10.1016/0167-6105(93)90318-I
http://doi.org/10.1016/j.rineng.2021.100230

	Introduction 
	Inerter-Based Vibration Absorbers 
	Generic Equations of Motion 
	Analytical Optimal Design Based on Fixed-Point Approach 

	Wind-Induced Response Estimation 
	Filter-Based Wind Load Spectrum 
	Closed Form Solutions to Wind-Induced Responses Based on Filter Approach 
	Uncontrolled Response 
	Controlled Response 


	Equivalent Static Wind Load 
	Gust Response Factor for Along-Wind ESWL 
	Cross-Wind ESWL 

	Case Study 
	Conclusions 
	Appendix A
	Appendix B
	References

