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Abstract: A wind turbine’s tip speed ratio (TSR) is the linear speed of the blade’s tip, normalized
by the incoming wind speed. For a given blade profile, there is a TSR that maximizes the turbine’s
efficiency. The industry’s current practice is to impose the same TSR that maximizes the efficiency
of a single, isolated wind turbine on every turbine of a wind farm. This article proves that this
strategy is wrong. The article demonstrates that in every wind direction, there is always a subset of
turbines that needs to operate at non-efficient conditions to provide more energy to some of their
downstream counterparts to boost the farm’s overall production. The aerodynamic interactions
between the turbines cause this. The authors employed the well-known Jensen wake model in concert
with Particle Swarm Optimization to demonstrate the effectiveness of this strategy at Lillgrund, a
wind farm in Sweden. The model’s formulation and implementation were validated using large-eddy
simulation results. The AEP of Lillgrund increased by approximately 4% by optimizing and actively
controlling the TSR. This strategy also decreased the farm’s overall TSR, defined as the average TSR
of the turbines, by 8%, leading to several structural and environmental benefits. Note that both these
values are farm-dependent and change from one farm to another; hence, this research serves as a
proof of concept.
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1. Introduction
1.1. The Wake Loss Problem and Its Significance

High-speed undisturbed wind enters front-row wind turbines of a wind farm. The
wind turbine’s large rotating blades extract the wind’s kinetic energy and induce severe
disturbances. Hence, wind leaving the turbine becomes a low-speed, highly turbulent
plume called a “wake” [1]. Downstream turbines that receive an upstream wake at their
inlet produce much less power than their upstream counterparts [2]. Such “wake losses” can
be as large as 70% in wind directions aligned with the column of turbines [3,4]. Wake loss is
the most significant challenge the wind energy science faces and is the major cause of wind’s
low power density, defined as the amount of power generated per unit of Earth’s surface
area occupied by the power plant. A typical wind farm’s power density ranges between
1 and 2 W/m2, below natural gas (~482 W/m2), nuclear (~241 W/m2), oil (~195 W/m2),
coal (~135 W/m2), solar (6–7 W/m2), and even geothermal (2–3 W/m2) [5]. This is one
of the main reasons that wind energy amounts to only about 7% of the world’s electricity
generation after all the progress made in recent decades [6]. Expanding wind farms’ power
density and wind energy’s contribution to global electricity generation requires viable
solutions for reducing wake losses. This paper presents a potential solution to address this
problem partially.

1.2. Existing Solutions: Wind Farm Layout Optimization and Active Control Strategies

The wake loss minimization attempts occur at both the design and operation phases [7].
At the design phase, Wind Farm Layout Optimization aims to place turbines within the
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given perimeter in a way that minimizes the overall exposure of wind turbines to upstream
wakes [8,9]. However, no matter how advanced and effective a wind farm layout optimiza-
tion is, it is impossible to eliminate this exposure, and its consequent losses in a utility-scale
wind farm with dozens of turbines and continuously changing wind directions [10]. Hence,
the wind energy community is constantly investigating active-control strategies to weaken
the upstream wake or steer it away from the downstream turbines to decrease the wake
losses during the operation phase [11].

The most-researched strategy to actively optimize a wind farm operation is yaw
control [12]. The strategy imposes an intentional yaw angle to all or some of the turbines
of a wind farm. Doing so would decrease the energy production of the yawed turbines;
however, it steers their wake away from specific downwind turbines, increasing their
energy production. Research has shown that the gains outweigh the losses. A substantial
majority of the literature focuses on how yaw control affects power production rather
than annual energy production (AEP). Note that the percent increase in AEP and total
power are not the same because calculating a wind farm’s AEP depends on the frequency
and duration that winds blow in each direction. These frequencies and durations are
not distributed uniformly, and power production in some directions contributes more to
the AEP. If those directions benefited less from the active control strategy, the benefit of
AEP would be less than power. However, AEP is what really matters because the plant
owners sell energy (not power) to the consumers. One study that considers the effect of
yaw control on AEP is the field experiment done by Howland et al. [13]. They conducted
a utility-scale field campaign to evaluate the effectiveness of the yaw control strategy
and realized an approximately 0.3% increase in the annual energy production, serving as
a proof of concept for the potential of yaw control to mitigate some of the wake losses.
Another field measurement campaign investigated the impact of a yaw control strategy
on a 9-turbine wind farm and found approximately 1% increase in AEP [14]. In addition
to these field campaigns, a stochastic procedure estimated yaw control could lead to a
3% increase in a 9-turbine wind farm’s AEP. The said procedure combined a generalized
Polynomial Chaos technique and large-eddy simulations [15], while the literature finds
yaw control a viable strategy to increase the energy production of wind farms by a few
percent, some researchers have noted that yawing a rotor might induce additional loads
on the turbine. For instance, Van Dijk et al. [16] found that yaw optimization increased
blades’ mean differential flap-wise and edge-wise moments by approximately 95% and
59%, respectively.

Other active strategies to improve a wind farm’s performance by influencing the
wake include tilt and pitch control. Tilt control can steer the wake away from specific
downstream turbines [17]. For instance, Culter et al. [18] optimized the tilt angle across
Princess Amalia 60-turbine wind farm, assuming that every turbine’s tilt angle remained
fixed for the lifetime of the farm. Then, they considered active tilt control. Optimizing
fixed tilt angles resulted in a 2.77% increase in the AEP, while active tilt control resulted in
a 13.64% increase. Pitch control, on the other hand, affects a wake’s strength and can help
the performance by weakening the wind speed deficit within the wake [19]. Researchers
have also investigated some combinations of these strategies [20].

1.3. The Proposed Solution: TSR Optimization

What is this article’s proposed solution and its rationale? The proposed solution is
to deviate from the TSR that maximizes an individual turbine’s efficiency in the interest of
the entire farm as a whole. Such deviation would decrease the adjusted turbine’s production;
however, it weakens its wake, increasing its downstream counterparts’ output. Figure 1
presents a small sample of the data generated in this research to provide a better demonstra-
tion of the proposed solution. The figure illustrates the solution for a three-turbine section
of a column within a wind farm for one wind direction aligned with the column. Figure 1a
shows the case of maximizing every turbine’s efficiency. The maximum achievable power
coefficient for the studied turbines (SWT-2.3-93) is 0.4454, which one can achieve by setting
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the TSR at 9.2. Turbine manufacturers provide such data. The first turbine produced
77.9 MWh per year in this wind direction. The overall amount of energy reaching the sec-
ond turbine was 69.6 MWh, leading to its production of 69.6 MWh × 0.4454 = 31.0 MWh.
The energy received by the third turbine throughout the year in this wind direction was
49.6 MWh, resulting in the production of 49.6 MWh × 0.4454 = 22.1 MWh. Hence, these
three turbines’ total annual energy production in this one direction was 131 MWh. Figure 1b
shows the production of these turbines after adjusting the TSRs. The efficiency of all three
turbines decreased to 0.3911, 0.3423, and 0.3638, respectively. Hence, the production of
the first turbine decreased to 68.4 MWh. This increased the energy received by the next
two turbines so that their production increased to 33.8 MWh and 32.9 MWh, although
their efficiency had decreased. The total annual energy production in this wind direction
increased to 135.1 MWh, 4.1 MWh (~3.13%) more than the baseline case.

Note that the decrease in the production of turbine #1 is not equal to the increase in
the energy amount that turbine #2 receives. This is intuitive since, to calculate the energy
that turbine #2 receives, one must plug the wind speed that this turbine experiences into
the nonlinear power curve. The wind speed is a nonlinear function of the axial induction
factor, which nonlinearly depends on the thrust coefficient. The thrust coefficient is also
a nonlinear function of TSR. To calculate the amount of energy that turbine #1 loses, on
the other hand, one needs to compute the turbine’s power coefficient (efficiency) for the
new TSR using their nonlinear Equation (curve) and apply that to the energy that turbine
#1 receives. Hence, there is no reason for these two amounts (what turbine #1 losses and
what turbine #2 gains), calculated through two different routes, to be equal or proportional.
From a physical point of view, one can appreciate this by noting that the entrainment of
the undisturbed wind into the wake to recover the deficit is a nonlinear function of the
induction factor.

For any given wind farm, one must identify every turbine’s optimal TSR that maxi-
mizes AEP for every wind direction upfront and form lookup tables to control the farm’s
TSR throughout the operation actively.

What is the novelty and significance of this research? This study proves that opti-
mizing each individual turbine’s efficiency would not maximize the farm’s AEP. The study
demonstrates that a real-time optimization and control of TSR for every turbine and wind
direction can save a significant amount of AEP while reducing the blades’ rotational speed
on average, which offers several environmental and structural improvements, including
reduced noise, bird/bat accidents, and leading-edge erosion. In addition, this solution does
not require any significant additional hardware upgrade and does not add to the load that
blades experience.

What is this article’s approach to examining the effectiveness of TSR optimization?
This research utilized the Jensen wake model and the Particle Swarm Optimization to find
the optimal TSR of the turbines of a utility-scale wind farm for every wind direction with a
5-degree increment. The analysis shows a 4% increase in AEP and an 8% reduction in the
farm’s average TSR. These are both significant improvements. A detailed description of the
investigated wind farm follows this section. Section 3 explains the employed methodologies.
Furthermore, finally, detailed results are presented and discussed in Section 4.
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Figure 1. Solution: (a) optimizing TSR to maximize every individual turbine’s efficiency, leading to
a total energy production of 131 MWh, (b) optimizing TSR to maximize the total AEP, leading to
135.1 MWh.

2. Case Study

The study used Lillgrund, an offshore wind farm in Sweden, to investigate the solution
proposed in Section 1.3. This wind farm includes 48 SWT-2.3-93 wind turbines, with a
rated power of 2.3 MW and a rotor diameter of 93 m. To implement the proposed real-time
TSR optimization, one needs to know the farm’s layout, the power curve, the Ct − TSR
and Cp − TSR curves, and the wind direction and speed distributions. Figure 2 shows
Lillgrund’s layout. Figure 3 illustrates the power curve of SWT-2.3-93 turbine used to
calculate the energy production at every wind speed. The variations of power and thrust
coefficients (Cp and Ct) with TSR are given in Figure 4. Figure 5 presents the wind data
collected at the hub height, i.e., 63 m. The wind speed distribution in every direction
corresponds to Weibull parameters of cw = 9.42 and kw = 2.41.

Figure 2. Lillgrund’s layout.
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Figure 3. Power curve of SWT-2.3-93 turbine [2].

3. Methodology
3.1. Optimizing TSR

Authors employed Particle Swarm Optimization (PSO), a bio-inspired algorithm with
proven accuracy and high convergence speed for continuous optimization [21–25], to
identify optimal TSRs for every turbine in every wind direction. The main idea behind the
PSO method is moving a particle, which represents a candidate solution, around the search
space to find the best possible solution. Employing a swarm of particles rather than one
would accelerate the convergence.

Figure 4. The Cp and Ct curves of SWT-2.3-93 turbine [26].
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Figure 5. Wind data recorded at the hub height level (h = 63 m). Weibull parameters of the illustrated
speed distribution are cw = 9.42 and kw = 2.41 [2].

In the present study, each particle represented an allowable solution in the form of
an input vector (Vinput) into the objective function AEP = f

(
Vinput

)
. This input vector

was an NT-long array of tip speed ratios, with NT being the total number of turbines, i.e.,
Vinput = [TSR1 TSR2 . . . TSR48]. The goal was to find the global maximum of the objective
function by moving the particles within the search space. The said movement of each
particle was controlled by a three-term displacement vector shown as ∆Vinput that defined
the changes applied to every ~Vinput vector at every iteration. This vector was computed as,

∆~Vinput = ~Vinertia + C1~Vpersonal best + C2~Vglobal best (1)

This research defined C1 and C2, respectively, called cognitive and social coefficients,
according to Maurice and Kennedy [27]. The inertia vector ~Vinertia had a random nature to
ensure the particle’s motion toward the optimum solution covered the entire domain of
the solution. The personal best vector included the optimal solution found by the particle
of interest, while the global vector introduced the best solution found by the swarm of
particles in the previous iteration. We updated ~VPersonal Best and ~VGlobal Best in every iteration.
After enough iteration with an adequate number of particles, the algorithm identified a
TSR vector for every wind direction, resulting in a total AEP of 11 GWh (4%) larger than
the baseline.

3.2. The Jensen Model
3.2.1. The Formulation

The authors employed the Jensen model to compute the impact of TSR on wake losses.
This model is possibly the most widely used model [28] and performs reasonably well
regardless of the wind turbine layout or wind direction [4]. Choosing an appropriate wake
loss model is vital in predicting the power production of a wind farm and performing
wind farm optimization. Due to their effective computational performance, analytical wake
loss models are the most common candidates for such applications. A review of these
models by Archer et al. [4] examined the performance of six well-known analytical WLMs,
including Jensen, Larsen, Frandsen, Bastankah and Porté-Agel(BPA), Xie and Archer (XA),
and Geometric Model (GM). This review compared each model’s absolute error and bias
of these models using observational data collected at three major commercial wind farms.
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Two of these wind farms are offshore (Lillgrund and Anholt), and one is inland (andNør-
rekær). One of these wind farms has a closely-spaced layout (Lillgrund), one employs a
moderately-spaced layout (Nørrekær), and the third one is widely-spaced (Anholt). Two of
these test wind farms have a structured layout (Lillgrund and Nørrekær), and the other
is unstructured (Anholt). Hence, this evaluation considered wake loss models’ perfor-
mance over many conditions. Comparing all six models’ predictions against observational
data demonstrated that the Jensen and XA models stood out for their consistently strong
performance. This was a major reason for using the Jensen model in this work [4].

Note that computational fluid dynamics cannot be used in the present study since this
optimization would require so many runs, each of which would require approximately
2000 CPU h.

Suppose one needs to compute the wind speed deficit experienced by turbine i caused
by turbine j. This deficit is shown by δij. If the rotor diameter is D and the turbines are
apart by an axial distance of xij, the Jensen model computes δij as [29]:

δij = (1−
√

1− Ct)(
D

D + 2kwxij
)2 (2)

where kw = 0.04 is the offshore expansion coefficient [30] and Ct is turbine j’s thrust
coefficient. According to the literature [4], one must correct the wind speed deficit as,

δ′ = (
Aoverlap

A
)δ (3)

with A and Aoverlap being the rotor area and the fraction of the downstream rotor area
covered by the wake from the upstream turbine. This corrected deficit needs to be computed
for all upstream turbines that affect the turbine of interest. The inlet wind speed into the
turbine of interest is then calculated as,

Uin = U∞[1− (ΣN
j=1δ′ij

2
)

1
2 ] (4)

with N being the number of turbines upstream of turbine i. Knowing Uin allows for calculat-
ing the turbine’s power production using the power curve provided by the
manufacturer (Figure 3).

3.2.2. The Validation

The authors conducted a validation study to ensure that the Jensen model’s imple-
mentation was correct. The model was applied to a case of two NREL 5-MW wind turbines
with an axial distance of 7D, with D = 126 m being the rotor’s diameter, identical to that
of Gebraad et al. [31]. Ten different cases were made by changing the lateral distance
from −140 m to +140 m. Figure 6 compares the Jensen model’s predictions of the power
production of turbines 1 and 2 and the total power production with those obtained from
large-eddy simulations. Data presented in this figure not only confirms the correct imple-
mentation of the Jensen model but also shows the reasonable accuracy of this simple model.
This performance is not surprising since the literature heavily confirms the Jensen model’s
effectiveness in modeling a broad range of wind farms, from structured and unstructured
layouts and packed to widely-spaced wind placements, both in aligned and non-aligned
wind directions.
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Figure 6. Comparing results obtained from our Jensen implementation and those of CFD [31].

3.3. Modeling the TSR Effect

Once the PSO algorithm described in Section 3.1 updated the input vector of 48 TSR
elements in every iteration, the algorithm employed data presented in Figure 4 to calculate
the Ct and Cp for every new TSR. It inserted the thrust coefficients Ct into Equation (2) to
update the wind speed deficit caused by each turbine. Then, using Equations (3) and (4),
the new wind speed felt by each turbine was calculated and inserted into the power curve to
compute the power produced by every turbine. This calculated power was then corrected
by reducing it via Cp/Cp,max factor. This correction is necessary since this turbine is no
longer operating at its maximum efficiency because its TSR is adjusted. Power was then
converted to AEP using wind direction and speed frequencies presented in Figure 5. The
algorithm fed the results back into the PSO for it to update the input vector within the
next iteration.

4. Results and Discussion
4.1. Annual Energy Production

It would be helpful to define the words “column” and “row” first since this discussion
often uses them to refer to the location of turbines. A “column” refers to a group of turbines
forming a line in the wind direction, while a “row” of turbines forms a line normal to the
wind direction.

Consider the Lillgrund wind farm with 48 × SWT-2.3-93 turbines with a Cp − TSR
curve provided in Figure 4. The industry’s current practice is to keep the TSR of all turbines
at 9.2 all the time and for every wind direction since it maximizes each turbine’s power
coefficient. The strategy presented in Section 1.3 claims that the idea of optimizing the
efficiency of every turbine as a single, isolated unit does not necessarily maximize the total
farm’s power and energy production as a whole since this idea leaves out the dynamic
interactions between turbines. This strategy suggests optimizing the TSR by accounting
for such aerodynamic interactions can enhance the overall energy production. The wind
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farm TSR optimization presented in Section 3 was applied to Lillgrund and revealed that
while lowering front-row turbines’ TSR decreases their production, it grows the power
production of their downstream counterparts. If done intelligently, the gain in the output
of downwind turbines outweighs the upstream turbine’s losses, leading to an overall
production increase.

It is worth first focusing on one wind direction to put the proposed strategy into
perspective. Figure 7 details the TSR optimization in the wind direction of 150◦ from the
north using meteorological convention. In this direction, the algorithm suggested dropping
the front-row turbines’ TSR by approximately 21-23% (Figure 7a). It then decreased the TSR
by an additional 9–15% from the front- to the second-row turbines and kept it approximately
uniform until the last three rows. The algorithm raised the TSR within the last three rows
so that the last-row turbines’ TSR reached the baseline TSR of 9.2. Note that two of the
columns partially deviated from this trend. The farthest left column had only three rows;
hence, while, like for every other column, the algorithm dropped the front-row turbine’s
TSR by approximately 20% and assigned a TSR of 9.2 to the last-row turbine, the adjustment
recommended to the second-row turbine’s TSR was very slight (almost an additional 5%).
The other unique column has a gap between its third- and fourth-row turbines. This gap
was due to the shallow waters at that spot, preventing the developers from installing two of
the Lillgrund turbines. That gap allowed for a better wake recovery; hence, the algorithm
did not find it necessary to drop the other rows’ TSR by too much. Like every other column,
the TSR assigned to the last row was 9.2.

As expected, dropping the front-row turbines’ TSR decreased their power and energy
production. Overall, in this specific direction (150◦), the summation of the power and
energy drop in the eight front-row turbines was 0.75 MW and 62.47 MWh (Figure 7b,c).
However, every other turbine’s power and energy production increased. The power
and energy gain became more significant as the wind moved towards the last row. The
summation of all the power and energy gains appeared to be 5.34 MW and 439.78 MWh for
150◦. Therefore, applying the wind farm TSR optimization in this wind direction led to a net
gain of 4.55 MW and 377.31 MWh in power and energy production, equivalent to a 25.5%
increase. Note that 150◦ is a direction of alignment (wind direction and turbine columns
are aligned). Wake losses are generally much larger in the alignment directions; therefore,
the strategies aimed to address wake losses appear more effective in such wind directions.

The authors applied the TSR optimization in every other wind direction using 5◦

increments. Figure 8 presents the impact of TSR optimization on the AEP for every wind
direction. Given the above discussion on the 150-degree wind direction, the gains in
that wind direction are highlighted to clarify how one needs to read and interpret these
graphs. Summing up the net increase in AEP in every wind direction revealed that the TSR
optimization increased the farm’s AEP by 11 GWh, corresponding to about a 4% increase.

Furthermore, note that this study did not account for any delay in the turbine’s
response to the wind direction changes. The study employed a wind direction resolution
of 5 degrees to offset this to some extent. Optimizing the TSR using a higher resolution,
such as 1 degree, would lead to more significant AEP gains; however, that becomes unreal
since the turbines cannot respond to such fast wind direction changes in real-time. We
assumed that the time it takes for the wind direction to change by 5 degrees is enough for
the turbines to adjust their TSR to a new optimum. Furthermore, note that TSR control
systems are generally fast-responding and can adjust to new wind directions and speeds
pretty quickly [32].
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(a)

(b)

(c)

Figure 7. Optimizing TSR in 150◦: (a) Optimal TSR values, (b) Changes in power production,
(c) Changes in AEP.
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Figure 8. Wind farm’s AEP (GWh) in every wind direction with and without TSR optimization.

It is essential to mention that there are several ways to control a turbine’s TSR. Ad-
justing the pitch angle is one such way; however, that would alter the wake characteristics
in other ways, including the wake direction. The present study aimed to understand the
effectiveness of TSR active control alone and did not mean to test a hybrid TSR-pitch control
strategy. There are alternative approaches to control the TSR that would not influence
the turbine’s wake. For instance, consider a direct-driven synchronous generator. In such
generators, the voltage, passively rectified in a six-pole diode bridge, changes with the
turbine’s rotational speed [33]. Hence, one can control the turbine’s rotational speed simply
by controlling the DC voltage by either a DC/DC converter or by an active insulated-gate
bipolar transistor rectifier [33]. Adjusting the external load applied to the generator is
another option for controlling the TSR without needing any mechanical adjustments.

Appendix A provides optimal TSR of every turbine in every wind direction and its
impact on power and energy production to share all the underlying data of Figure 8.

4.2. Other Advantages

Note that in addition to its significant impact on power and energy production, a real-
time TSR optimization brings several other benefits, making it more exciting and promising.

• First, altering the TSR does not lead to any additional loading on the blades since
the rotor still operates under normal conditions and is not misaligned in any direc-
tion. One only needs to increase the load applied to the generator to make it harder
or easier to rotate. This can be achieved via electronics and does not require any
mechanical modification.

• The proposed strategy appears to decrease the TSR overall. For the case of Lillgrund
investigated in this article, the farm-averaged TSR decreased by more than 8%. A
reduced TSR is equivalent to a slower rotor, and a slower rotor generates less noise
since turbines’ noise is primarily created by the giant blades cutting through the air,
which is a serious environmental issue surrounding the wind energy industry [34,35].
So, an active TSR optimization not only enhances AEP, it reduces noise pollution.
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• Slowing down the rotor helps reduce bird and bat collisions, which is a serious
issue that needs to be addressed. Recently, an energy company was given five-year
probation and ordered to pay approximately $8 million in fines as their wind turbines
caused the death of 150 bald and golden eagles [36]. Decreasing a wind farm’s overall
TSR can help with such accidents.

• The proposed strategy enhances the performance of wind turbines by relaxing the
leading-edge erosion (LEE) phenomenon. LEE is the deterioration of a wind turbine
blade’s leading edge by airborne particles such as sand, dust, rain, and insects [37].
Such erosion decreases the blade’s lifespan and aerodynamic efficiency, which eventu-
ally reduces the farm’s AEP. Slowing down the blades via TSR optimization contributes
to addressing such LEE-induced issues.

5. Conclusions

Wind turbines adversely affect each other via their aerodynamic wake, an expanding,
highly-turbulent, low-speed region behind them created by the rotating blades. The wake’s
significantly adverse effect on the wind farm’s energy production is holding the wind power
industry back from contributing more to the world’s electricity generation. This paper
proposed and investigated the real-time optimization and active control of TSR as a viable
solution to reduce the wake effects. The paper showed that optimizing every individual
turbine’s efficiency would not maximize the farm’s energy production. Instead, a subset of
turbines must operate at a lower efficiency to allow turbines downwind to produce more
power and boost the farm’s production. Applying this strategy to an offshore wind farm
with 48 × 2.3 MW turbines increased the annual energy production by approximately 4%.
Note that it is not too challenging to actively control the TSR since all the hardware required
to execute such a plan is already available at every wind farm. Furthermore, note that TSR
control does not increase loading on the rotor and decreases the farm’s TSR overall by 8%.
Reduced TSR helps with environmental concerns such as noise production and bird/bat
collisions. It also helps with the leading-edge erosion phenomena.
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Appendix A. Detailed Power and Energy Production Data

The data provided in this appendix covers the impact of the proposed TSR opti-
mization on the power and energy production of each turbine for every wind direction.
Figure A1 shows the power production of each wind turbine before and after optimizing
its TSR within the wind farm. Figure A2 reflects each turbine’s annual energy production
in every wind direction. Figure A3 presents each turbine’s optimal TSR in every wind
direction that leads to the power and energy changes provided in Figures A1 and A2.
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Figure A1. Cont.
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Figure A1. Blue line shows each turbine’s relative power production in every wind direction with-
out applying a TSR optimization. Red line shows the relative power production after applying a
TSR optimization.
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Figure A2. Cont.
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Figure A2. Blue line shows each turbine’s AEP in every wind direction in GWh without applying a
TSR optimization. Red line shows the AEP after applying a TSR optimization.
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Figure A3. Cont.
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Figure A3. Optimal values of TSR for each turbine in every wind direction.



Wind 2022, 2 709

References
1. Archer, C.L.; Wu, S.; Vasel-Be-Hagh, A.; Brodie, J.F.; Delgado, R.; Pé, A.S.; Oncley, S.; Semmer, S. The VERTEX field campaign:

observations of near-ground effects of wind turbine wakes. J. Turbul. 2019, 20, 64–92. [CrossRef]
2. Vasel-Be-Hagh, A.; Archer, C.L. Wind farm hub height optimization. Appl. Energy 2017, 195, 905–921. [CrossRef]
3. Barthelmie, R.J.; Pryor, S.; Frandsen, S.T.; Hansen, K.S.; Schepers, J.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.; Neckelmann,

S. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Ocean. Technol. 2010,
27, 1302–1317. [CrossRef]

4. Archer, C.; Vasel-Be-Hagh, A.; Yan, C.; Wu, S.; Pan, Y.; Brodie, J.; Maguire, A. Review and evaluation of wake loss models for
wind energy applications. Appl. Energy 2018, 226, 1187–1207. [CrossRef]

5. van Zalk, J.; Behrens, P. The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of
power densities and their application in the U.S. Energy Policy 2018, 123, 83–91. [CrossRef]

6. IEA. Renewable Energy Market Update 2021. Available online: https://www.iea.org/reports/renewable-energy-market-update-
2021/renewable-electricity (accessed on 17 March 2022).

7. Nouri, R.; Vasel-Be-Hagh, A.; Archer, C.L. The Coriolis force and the direction of rotation of the blades significantly affect the
wake of wind turbines. Appl. Energy 2020, 277, 115511. [CrossRef]

8. Wen, Y.; Song, M.; Wang, J. Wind farm layout optimization with uncertain wind condition. Energy Convers. Manag. 2022,
256, 115347. [CrossRef]

9. Yang, Q.; Li, H.; Li, T.; Zhou, X. Wind farm layout optimization for levelized cost of energy minimization with combined
analytical wake model and hybrid optimization strategy. Energy Convers. Manag. 2021, 248, 114778. [CrossRef]

10. Bai, F.; Ju, X.; Wang, S.; Zhou, W.; Liu, F. Wind farm layout optimization using adaptive evolutionary algorithm with Monte Carlo
Tree Search reinforcement learning. Energy Convers. Manag. 2022, 252, 115047. [CrossRef]

11. Nash, R.; Nouri, R.; Vasel-Be-Hagh, A. Wind turbine wake control strategies: A review and concept proposal. Renew. Energy
Focus 2021, 245, 114581. [CrossRef]

12. Archer, C.L.; Vasel-Be-Hagh, A. Wake steering via yaw control in multi-turbine wind farms: Recommendations based on
large-eddy simulation. Sustain. Energy Technol. Assess. 2019, 33, 34–43. [CrossRef]

13. Howland, M.; Lele, S.; Dabiri, J. Wind farm power optimization through wake steering. Proc. Natl. Acad. Sci. USA 2019,
116, 14495–14500. [CrossRef]

14. Astolfi, D.; Castellani, F.; Natili, F. Wind turbine yaw control optimization and its impact on performance. Machines 2019, 7, 41.
[CrossRef]

15. Ciri, U.; Rotea, M.; Leonardi, S. Increasing wind farm efficiency by yaw control: Beyond ideal studies towards a realistic
assessment. J. Phys. Conf. Ser. 2020, 1618. [CrossRef]

16. van Dijk, M.T.; van Wingerden, J.W.; Ashuri, T.; Li, Y. Wind farm multi-objective wake redirection for optimizing power
production and loads. Energy 2017, 121, 561–569. [CrossRef]

17. Weipao, M.; Chun, L.; Jun, Y.; Yang, Y.; Xiaoyun, X. Numerical Investigation of Wake Control Strategies for Maximizing the
Power Generation of Wind Farm. Sol. Energy Eng. 2016, 138, 034501. [CrossRef]

18. Cutler, J.; Stanley, A.; Thomas, J.; Ning, A. Optimization of turbine tilt in a wind farm. In Proceedings of the AIAA Scitech 2021
Forum, Virtual, 11–15, 19–21 January 2021; pp. 1–10. [CrossRef]

19. Lee, J.; Son, E.; Hwang, B.; Lee, S. Blade pitch angle control for aerodynamic performance optimization of a wind farm. Renew.
Energy 2013, 54, 124–130. [CrossRef]

20. Nakhchi, M.; Win Naung, S.; Rahmati, M. A novel hybrid control strategy of wind turbine wakes in tandem configuration to
improve power production. Energy Convers. Manag. 2022, 260, 115575. [CrossRef]

21. Kennedy, J. Review of Engelbrecht’s fundamentals of computational swarm intelligence. Genet. Program. Evolvable Mach. 2007,
8, 107–109. [CrossRef]

22. Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern.
2009, 39, 1362–1381. [CrossRef]

23. Viet, D.; Phuong, V.V.; Duong, M.; Tran, Q. Models for short-term wind power forecasting based on improved artificial neural
network using particle swarm optimization and genetic algorithms. Energies 2020, 13, 2873. [CrossRef]

24. Du, J.; Sun, H.; Cao, Y.; Liu, Y.; Pan, L.; Liu, Y. Ensemble interpolation of missing wind turbine nacelle wind speed data in wind
farms based on robust particle swarm optimized generalized regression neural network. Int. J. Green Energy 2019, 16, 1210–1219.
[CrossRef]

25. Ma, T.; Wang, C.; Wang, J.; Cheng, J.; Chen, X. Particle-swarm optimization of ensemble neural networks with negative correlation
learning for forecasting short-term wind speed of wind farms in western China. Inf. Sci. 2019, 505, 157–182. [CrossRef]

26. Pedersen, M.; Larsen, G. Integrated wind farm layout and control optimization. Wind. Energy Sci. 2020, 5, 1551–1566. [CrossRef]
27. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans.

Evol. Comput. 2002, 6, 58–73. [CrossRef]
28. Wang, Y.; Wang, L.; Jiang, Y.; Sun, X. A new method for prediction of power coefficient and wake length of a horizontal axis wind

turbine based on energy analysis. Energy Convers. Manag. 2022, 252, 115121. [CrossRef]
29. Jensen, N.O. A Note on Wind Generator Interaction; Tech. Note Risø-M-2411; Risø National Laboratory: Roskilde, Denmark, 1983.

Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/55857682/ris_m_2411.pdf (accessed on 12 September 2022)

http://doi.org/10.1080/14685248.2019.1572161
http://doi.org/10.1016/j.apenergy.2017.03.089
http://doi.org/10.1175/2010JTECHA1398.1
http://doi.org/10.1016/j.apenergy.2018.05.085
http://doi.org/10.1016/j.enpol.2018.08.023
https://www.iea.org/reports/renewable-energy-market-update-2021/renewable-electricity
https://www.iea.org/reports/renewable-energy-market-update-2021/renewable-electricity
http://doi.org/10.1016/j.apenergy.2020.115511
http://doi.org/10.1016/j.enconman.2022.115347
http://doi.org/10.1016/j.enconman.2021.114778
http://doi.org/10.1016/j.enconman.2021.115047
http://doi.org/10.1016/j.enconman.2021.114581
http://doi.org/10.1016/j.seta.2019.03.002
http://doi.org/10.1073/pnas.1903680116
http://doi.org/10.3390/machines7020041
http://doi.org/10.1088/1742-6596/1618/2/022029
http://doi.org/10.1016/j.energy.2017.01.051
http://doi.org/10.1115/1.4033110
http://doi.org/10.2514/6.2021-1180
http://doi.org/10.1016/j.renene.2012.08.048
http://doi.org/10.1016/j.enconman.2022.115575
http://doi.org/10.1007/s10710-006-9020-8
http://doi.org/10.1109/TSMCB.2009.2015956
http://doi.org/10.3390/en13112873
http://doi.org/10.1080/15435075.2019.1671396
http://doi.org/10.1016/j.ins.2019.07.074
http://doi.org/10.5194/wes-5-1551-2020
http://doi.org/10.1109/4235.985692
http://doi.org/10.1016/j.enconman.2021.115121
https://backend.orbit.dtu.dk/ws/portalfiles/portal/55857682/ris_m_2411.pdf


Wind 2022, 2 710

30. Cleve, J.; Greiner, M.; Enevoldsen, P.; Birkemose, B.; Jensen, L. Model-based analysis of wake-flow data in the Nysted offshore
wind farm. Wind Energy 2009, 12, 125–135. [CrossRef]

31. Gebraad, P.; Teeuwisse, F.; Van Wingerden, J.; Fleming, P.; Ruben, S.; Marden, J.; Pao, L. Wind plant power optimization through
yaw control using a parametric model for wake effects—A CFD simulation study. Wind Energy 2016, 19, 95–114. [CrossRef]

32. Yokoyama, H.; Tatsuta, F.; Nishikata, S. Tip speed ratio control of wind turbine generating system connected in series. In
Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), Beijing, China, 20–23 August 2011.
[CrossRef]

33. Eriksson, S.; Kjellin, J.; Bernhoff, H. Tip speed ratio control of a 200 kW VAWT with synchronous generator and variable DC
voltage. Energy Sci. Eng. 2013, 1, 135–143. [CrossRef]

34. Pedersen, E.; Waye, K. Perception and annoyance due to wind turbine noise—A dose–response relationship. J. Acoust. Soc. Am.
2004, 116, 3460–3470. [CrossRef]

35. Oerlemans, S.; Fisher, M.; Maeder, T.; Kögler, K. Reduction of wind turbine noise using optimized airfoils and trailing-eratdge
serions. AIAA J. 2009, 47, 1470–1481. [CrossRef]

36. Medina, E. Wind Energy Company to Pay $8 Million in Killings of 150 Eagles. New York Times, 12 April 2022, p. 17.
37. Law, H.; Koutsos, V. Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on operational wind farms.

Wind. Energy 2020, 23, 1955–1965. [CrossRef]

http://doi.org/10.1002/we.314
http://doi.org/10.1002/we.1822
http://doi.org/DOI: 10.1109/ICEMS.2011.6073595
http://doi.org/10.1002/ese3.23
http://doi.org/10.1121/1.1815091
http://doi.org/10.2514/1.38888
http://doi.org/10.1002/we.2540

	Introduction
	The Wake Loss Problem and Its Significance
	Existing Solutions: Wind Farm Layout Optimization and Active Control Strategies
	 The Proposed Solution: TSR Optimization

	Case Study
	Methodology
	Optimizing TSR
	The Jensen Model
	The Formulation
	The Validation

	Modeling the TSR Effect

	Results and Discussion
	Annual Energy Production
	Other Advantages

	Conclusions
	Appendix A
	References

