Next Issue
Volume 3, March
Previous Issue
Volume 2, September
 
 

Wind, Volume 2, Issue 4 (December 2022) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 1317 KiB  
Article
Pre-Charge Pressure Estimation of a Hydraulic Accumulator Using Surface Temperature Measurements
by Magnus F. Asmussen, Jesper Liniger, Nariman Sepehri and Henrik C. Pedersen
Wind 2022, 2(4), 784-800; https://doi.org/10.3390/wind2040041 - 13 Dec 2022
Cited by 1 | Viewed by 2362
Abstract
Pitch systems form an essential part of today’s wind turbines; they are used for power regulation and serve as part of a turbine’s safety system. Hydraulic pitch systems include hydraulic accumulators, which comprise a crucial part of the safety system, as they are [...] Read more.
Pitch systems form an essential part of today’s wind turbines; they are used for power regulation and serve as part of a turbine’s safety system. Hydraulic pitch systems include hydraulic accumulators, which comprise a crucial part of the safety system, as they are used to store energy for emergency shutdowns. However, accumulators may be subject to gas leakage, which is the primary failure mode. Gas leakage affects the performance of the accumulator and, in extreme cases, compromises the safety function of the pitch system. This paper deals with the development and experimental validation of an algorithm to detect gas leakage in piston-type accumulators. The innovation of the algorithm is the ability to generate estimates of the remaining amount of gas while solving the drift problem evidenced in previous research. Additionally, this method enables the ability to isolate gas leakage to a single accumulator out of a bank of accumulators. The approach is based on a State Augmented Extended Kalman Filter (SAEKF), which utilizes an extended thermal model of the accumulator, as well as temperature measurements along the accumulator surface to estimate the remaining gas in the accumulator. The method is experimentally validated and addresses the drift problem in estimating the gas leakage evidenced from previous research. Additionally, the method can identify and isolate gas leakage to a single accumulator from a bank of accumulators. Full article
(This article belongs to the Topic Energy Equipment and Condition Monitoring)
Show Figures

Figure 1

18 pages, 2765 KiB  
Article
Equivalent Static Wind Load for Structures with Inerter-Based Vibration Absorbers
by Ning Su, Shitao Peng, Zhaoqing Chen, Ningning Hong and Yasushi Uematsu
Wind 2022, 2(4), 766-783; https://doi.org/10.3390/wind2040040 - 12 Dec 2022
Viewed by 1360
Abstract
Equivalent Static Wind Loads (ESWL) are desired in structural design to consider peak dynamic wind effects. Conventional ESWLs are for structures without control. For flexible structures with vibration control devices, the investigation of ESWL is required. Inerter-based Vibration Absorbers (IVAs), due to the [...] Read more.
Equivalent Static Wind Loads (ESWL) are desired in structural design to consider peak dynamic wind effects. Conventional ESWLs are for structures without control. For flexible structures with vibration control devices, the investigation of ESWL is required. Inerter-based Vibration Absorbers (IVAs), due to the light weight and high performance, gained much research attention recently. This paper established a generic analytical framework of ESWL for structures with IVAs. The analytical optimal design formulas for IVAs with different configurations and installation locations are provided. Subsequently, the solutions to uncontrolled and controlled wind-induced responses are derived based on the filter approach. Finally, the ESWL for controlled structures are presented with a gust response factor approach. The ESWL estimation for a tall chimney controlled by IVAs is illustrated, and the results revealed a significant ESWL reduction effect of the IVAs, particularly for the cross-wind vortex resonance. In the presented framework, the conventional uncontrolled ESWL can be converted to the controlled one with a control ratio. The closed form solution of the control ratio is provided, which enables a quick estimation of ESWL for controlled structures particularly in the preliminary design stage. The presented approach has the potential to be extended to more complex structures and vibration control devices. Full article
Show Figures

Figure 1

19 pages, 1122 KiB  
Article
Detection, Prognosis and Decision Support Tool for Offshore Wind Turbine Structures
by Sandra Vásquez, Joachim Verhelst, Robert Brijder and Agusmian Partogi Ompusunggu
Wind 2022, 2(4), 747-765; https://doi.org/10.3390/wind2040039 - 24 Nov 2022
Cited by 2 | Viewed by 1595
Abstract
Corrosion is the leading cause of failure for Offshore Wind Turbine (OWT) structures and it is characterized by a low probability of detection. With focus on uniform corrosion, we propose a corrosion detection and prognosis system coupled with a Decision Support Tool (DST) [...] Read more.
Corrosion is the leading cause of failure for Offshore Wind Turbine (OWT) structures and it is characterized by a low probability of detection. With focus on uniform corrosion, we propose a corrosion detection and prognosis system coupled with a Decision Support Tool (DST) and a Graphical User Interface (GUI). By considering wall thickness measurements at different critical points along the wind turbine tower, the proposed corrosion detection and prognosis system—based on Kalman filtering, empirical corrosion models and reliability theory—estimates the Remaining Useful Life of the structure with regard to uniform corrosion. The DST provides a systematic approach for evaluating the results of the prognosis module together with economical information, to assess the different possible actions and their optimal timing. Focus is placed on the optimization of the decommissioning time of OWTs. The case of decommissioning is relevant as corrosion—especially in the splash zone of the tower—makes maintenance difficult and very costly, and corrosion inevitably leads to the end of life of the OWT structure. The proposed algorithms are illustrated with examples. The custom GUI facilitates the interpretation of results of the prognosis module and the economical optimization, and the interaction with the user for setting the different parameters and costs involved. Full article
(This article belongs to the Topic Energy Equipment and Condition Monitoring)
Show Figures

Figure 1

14 pages, 1856 KiB  
Article
Effects of Inflow Parameters and Disk Thickness on an Actuator Disk inside the Neutral Atmospheric Boundary Layer
by Khashayar RahnamayBahambary and Brian A. Fleck
Wind 2022, 2(4), 733-746; https://doi.org/10.3390/wind2040038 - 17 Nov 2022
Cited by 1 | Viewed by 1432
Abstract
An accurate choice of the inflow parameters has been shown to affect the CFD results significantly. In this study, the actuator disk method (AD) is used to investigate the effects of the widely used inflow formulations, the logarithmic and power-law formulations, in the [...] Read more.
An accurate choice of the inflow parameters has been shown to affect the CFD results significantly. In this study, the actuator disk method (AD) is used to investigate the effects of the widely used inflow formulations, the logarithmic and power-law formulations, in the neutral atmospheric boundary layer simulations. Based on the one-dimensional momentum theory, the AD model is a rapid method that replaces the turbine with a permeable disk and is among the most used methods in the literature. The results of the k-ω AD simulation indicated that in spite of the logarithmic method’s widespread use, the power law formulation gives a better description of the velocity field. Furthermore, an actuator disk thickness study also showed that given the effect of actuator disk thickness on the rate of convergence, more attention should be dedicated towards finding a suitable disk thickness value. The combination of an optimized mesh and a suitable choice of AD thickness can help with the rate of convergence which in turn shortens the simulation’s run time. Full article
Show Figures

Figure 1

22 pages, 10941 KiB  
Project Report
Implantation, Operation Data and Performance Assessment of An Urban Area Grid-Connected Small Wind Turbine
by Welson Bassi, Alcantaro Lemes Rodrigues and Ildo Luis Sauer
Wind 2022, 2(4), 711-732; https://doi.org/10.3390/wind2040037 - 10 Nov 2022
Cited by 2 | Viewed by 5939
Abstract
Over the last few decades, and more prominently currently, many countries have launched and reinforced campaigns to reduce CO2 emissions from all human activities and, in the area of energy, promote energy generating technologies from low carbon, renewable sources, especially wind and [...] Read more.
Over the last few decades, and more prominently currently, many countries have launched and reinforced campaigns to reduce CO2 emissions from all human activities and, in the area of energy, promote energy generating technologies from low carbon, renewable sources, especially wind and solar. In recent years, this promotion of renewables can be seen in statistics as well as an extraordinary increase in plants using renewable sources. There is more activity surrounding the use of small devices installed close to consumers, such as small wind turbines (SWT). In cities, the best places to install SWT are tall buildings. The Institute of Energy and Environment (IEE-USP) has installed a 1.8 kW SWT on the University of São Paulo campus in São Paulo, Brazil. Even with low-magnitude winds at the site, the SWT installation was carried out to serve as a didactic apparatus and demonstration initiative of wind energy generation connected directly to the University’s electric grid, which already has other embedded renewable sources installed, namely photovoltaic and biogas plants. The turbine was placed on the roof of the existing High Voltage Laboratory building, leading to an operating height of 35 m. This paper presents previous local wind data measurements using a Lidar system, annual energy yield estimation calculations, and measurements, also bringing all implementation details. It reports and analyzes the operation and energy production data from three full operational years, from 2018 to 2020, discussing and concluding with further improvements of SWT from technical and economic aspects. Full article
(This article belongs to the Special Issue Challenges and Perspectives of Wind Energy Technology)
Show Figures

Figure 1

20 pages, 13335 KiB  
Article
Tip Speed Ratio Optimization: More Energy Production with Reduced Rotor Speed
by Amir Hosseini, Daniel Trevor Cannon and Ahmad Vasel-Be-Hagh
Wind 2022, 2(4), 691-710; https://doi.org/10.3390/wind2040036 - 31 Oct 2022
Cited by 1 | Viewed by 8294
Abstract
A wind turbine’s tip speed ratio (TSR) is the linear speed of the blade’s tip, normalized by the incoming wind speed. For a given blade profile, there is a TSR that maximizes the turbine’s efficiency. The industry’s current practice is to impose the [...] Read more.
A wind turbine’s tip speed ratio (TSR) is the linear speed of the blade’s tip, normalized by the incoming wind speed. For a given blade profile, there is a TSR that maximizes the turbine’s efficiency. The industry’s current practice is to impose the same TSR that maximizes the efficiency of a single, isolated wind turbine on every turbine of a wind farm. This article proves that this strategy is wrong. The article demonstrates that in every wind direction, there is always a subset of turbines that needs to operate at non-efficient conditions to provide more energy to some of their downstream counterparts to boost the farm’s overall production. The aerodynamic interactions between the turbines cause this. The authors employed the well-known Jensen wake model in concert with Particle Swarm Optimization to demonstrate the effectiveness of this strategy at Lillgrund, a wind farm in Sweden. The model’s formulation and implementation were validated using large-eddy simulation results. The AEP of Lillgrund increased by approximately 4% by optimizing and actively controlling the TSR. This strategy also decreased the farm’s overall TSR, defined as the average TSR of the turbines, by 8%, leading to several structural and environmental benefits. Note that both these values are farm-dependent and change from one farm to another; hence, this research serves as a proof of concept. Full article
(This article belongs to the Special Issue Advances in Solid and Fluid Mechanics for Offshore Wind Turbines)
Show Figures

Figure 1

32 pages, 16369 KiB  
Article
Wind Resource Assessment in Building Environment: Benchmarking of Numerical Approaches and Validation with Wind Tunnel Data
by Costa Paula, Cataldo José, Mazaira Leorlen, González Daniel, Costa Alexandre and Simões Teresa
Wind 2022, 2(4), 659-690; https://doi.org/10.3390/wind2040035 - 27 Oct 2022
Cited by 1 | Viewed by 1377
Abstract
In the framework of the wind energy network for distributed generation in urban environments for most South American countries, wind resource assessment studies have been carried out in activities to establish a suitable methodology to assess the wind potential in urban environments. Some [...] Read more.
In the framework of the wind energy network for distributed generation in urban environments for most South American countries, wind resource assessment studies have been carried out in activities to establish a suitable methodology to assess the wind potential in urban environments. Some methodologies are already published in research studies, and the wind tunnel is the most accurate solution to obtain insight into the wind resource when measurements are unavailable, which is the most frequent case. Nevertheless, besides its validity, one cannot disregard the high cost of producing a scaled urban model and access to a wind tunnel. In this sense, this paper compares results from a wind tunnel experiment and different numerical modeling approaches. Two commercial models (WindSim and Wasp Engineering) and one open-source CFD code (OpenFOAM) are used. The results from the modeling simulation concluded that CFD models could achieve lower deviations for the mean wind speed and turbulence intensity when compared with non-CFD models. With such results, CFD modeling is a promising tool for reliably evaluating wind potential in urban environments. Full article
Show Figures

Figure 1

23 pages, 4509 KiB  
Article
Novel Machine-Learning-Based Stall Delay Correction Model for Improving Blade Element Momentum Analysis in Wind Turbine Performance Prediction
by Ijaz Fazil Syed Ahmed Kabir, Mohan Kumar Gajendran, E. Y. K. Ng, Amirfarhang Mehdizadeh and Abdallah S. Berrouk
Wind 2022, 2(4), 636-658; https://doi.org/10.3390/wind2040034 - 06 Oct 2022
Cited by 6 | Viewed by 2154
Abstract
Wind turbine blades experience excessive load due to inaccuracies in the prediction of aerodynamic loads by conventional methods during design, leading to structural failure. The blade element momentum (BEM) method is possibly the oldest and best-known design tool for evaluating the aerodynamic performance [...] Read more.
Wind turbine blades experience excessive load due to inaccuracies in the prediction of aerodynamic loads by conventional methods during design, leading to structural failure. The blade element momentum (BEM) method is possibly the oldest and best-known design tool for evaluating the aerodynamic performance of wind turbine blades due to its simplicity and short processing time. As the turbine rotates, the aerofoil lift coefficient enhances, notably in the rotor’s inboard section, relative to the value predicted by 2D experimentation or computational fluid dynamics (CFD) for the identical angle of attack; this is induced by centrifugal pumping action and the Coriolis force, thus delaying the occurrence of stall. This rotational effect is regarded as having a significant influence on the rotor blade’s aerodynamic performance, which the BEM method does not capture, as it depends on 2D aerofoil characteristics. Correction models derived from the traditional hard computing mathematical method are used in the BEM predictions to take into account stall delay. Unfortunately, it has been observed from the earlier literature that these models either utterly fail or inaccurately predict the enhancement in lift coefficient due to stall delay. Consequently, this paper proposes a novel stall delay correction model based on the soft computing technique known as symbolic regression for high-level precise aerodynamic performance prediction by the BEM process. In complement to the correction model for the lift coefficient, a preliminary correction model for the drag coefficient is also suggested. The model is engendered from the disparity in 3D and 2D aerofoil coefficients over the blade length for different wind speeds for the NREL Phase VI turbine. The proposed model’s accuracy is evaluated by validating the 3D aerofoil coefficients computed from the experimental results of a second wind turbine known as the MEXICO rotor. Full article
(This article belongs to the Topic Advances in Wind Energy Technology)
Show Figures

Figure 1

19 pages, 2585 KiB  
Article
Aquila Optimization Algorithm for Wind Energy Potential Assessment Relying on Weibull Parameters Estimation
by Adel A. Abou El-Ela, Ragab A. El-Sehiemy, Abdullah M. Shaheen and Ayman S. Shalaby
Wind 2022, 2(4), 617-635; https://doi.org/10.3390/wind2040033 - 30 Sep 2022
Cited by 12 | Viewed by 1619
Abstract
Statistical distribution approaches have been developed to describe wind data due to the intermittent and unpredictable nature of wind speed. The Weibull distribution with two parameters is thought to be the most accurate distribution for modeling wind data. This study seeks wind energy [...] Read more.
Statistical distribution approaches have been developed to describe wind data due to the intermittent and unpredictable nature of wind speed. The Weibull distribution with two parameters is thought to be the most accurate distribution for modeling wind data. This study seeks wind energy assessment via searching for the optimal estimation of the Weibull parameters. For this target, analytical and heuristic methods are investigated. The analytical methods involve the maximum likelihood, moment, energy pattern factor, and empirical methods, while the heuristic optimization algorithms include particle warm optimization and the Aquila optimizer (AO). Both analytical and heuristic methods are assessed together to fit the probability density function of wind data. In addition, nine models are submitted to find the most appropriate model to represent wind energy production. The error between actual and estimated wind energy density is computed to the model for each study site which has less error of energy. The fit test is performed with real data for the Zafarana and Shark El-Ouinate sites in Egypt for a year. Additionally, different indicators of fitness properties are assessed, such as the root mean square error, determination coefficient (R2), mean absolute error, and wind production deviation. The simulation results declare that the proposed AO optimization algorithm offers greater accuracy than several optimization algorithms in the literature for estimating the Weibull parameters. Furthermore, statistical analysis of the compared methods demonstrates the high stability of the AO algorithm. Thus, the proposed AO has greater accuracy and more stability in the obtained outcomes for Weibull parameters and wind energy calculations. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop