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Abstract: In the estimation of future investments in the offshore wind industry, the operation and
maintenance (O&M) phase plays an important role. In the simulation of the O&M figures, the weather
conditions should contain information about the waves’ main characteristics and the wind speed. As
these parameters are correlated, they were simulated by using a multivariate approach, and thus by
generating vectors of measurements. Four different stochastic weather time series generators were
investigated: Markov chains (MC) of first and second order, vector autoregressive (VAR) models, and
long short-term memory (LSTM) neural networks. The models were trained on a 40-year data set
with 1 h resolution. Thereafter, the models simulated 25-year time series, which were analysed based
on several time series metrics and criteria. The MC (especially the one of second order) and the VAR
model were shown to be the ones capturing the characteristics of the original time series the best.
The novelty of this paper lies in the application of LSTM models and multivariate higher-order MCs
to generate offshore weather time series, and to compare their simulations to the ones of VAR models.
Final recommendations for improving these models are provided as conclusion of this paper.

Keywords: offshore weather time series; multivariate time series; stochastic weather generation;
Markov chain; autoregressive model; LSTM neural network; weather simulation

1. Introduction

The revised European renewable energy directive has set the targets to reduce green-
house gas emissions by at least 55% by 2030, and reach climate neutrality by 2050 [1].
Offshore wind energy is one of the most relevant renewable energy sources, covering 16.4%
of the European electricity market in 2020 [2]. However, to achieve the energy and climate
targets and to make a step towards electrification, a significantly accelerated expansion of
wind power capacity is necessary.

The costs for the operation and maintenance (O&M) of offshore wind projects sig-
nificantly influence their levelised costs of electricity (LCOE) [3]. A reliable estimation
of the operational expenditures (OPEX) of the offshore wind farms is the key to support
future investments into new areas of development and the next-generation technologies,
i.e., bigger and more complex systems.

Compared to onshore wind project, the O&M of installations in the offshore environ-
ment is associated with a high degree of uncertainty and risk due to the harsher metocean
conditions. The accessibility to the assets of an offshore wind farm highly depends on
the environmental factors. Therefore, the realistic simulation of the site-specific weather
parameters, based on historical data, is one of the fundamental steps to obtain reliable
OPEX and availability estimates.

Wind 2022, 2, 394-414. https://doi.org/10.3390/wind2020021

https:/ /www.mdpi.com/journal/wind


https://doi.org/10.3390/wind2020021
https://doi.org/10.3390/wind2020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wind
https://www.mdpi.com
https://orcid.org/0000-0002-2706-6662
https://orcid.org/0000-0002-9368-9390
https://orcid.org/0000-0001-6699-0551
https://orcid.org/0000-0001-5139-8918
https://orcid.org/0000-0001-5795-7610
https://doi.org/10.3390/wind2020021
https://www.mdpi.com/journal/wind
https://www.mdpi.com/article/10.3390/wind2020021?type=check_update&version=2

Wind 2022, 2

395

1.1. Background

The wave and wind parameters, simulated in a weather module, are used in O&M
time-based tools for offshore wind projects. The most relevant characteristics are: the
wave height, the peak wave period, and the wind speed at a reference height above sea
level (ASL). The wave parameters affect wind turbine accessibility—especially in the case
of floating offshore wind turbines—and influence decisions about the O&M strategy to
be pursued. Wind speed limits are set to reduce the risk of offshore activities for the
personnel and the assets, e.g., maintenance activities at height and tow-in operations for
floating wind systems. Furthermore, a realistic representation of the wind speed plays a
major role in providing meaningful estimates of the energy production and losses due to
maintenance activities.

These aspects are reflected in an O&M tool, by mimicking the maintenance strategy
and simulating the offshore activities during the operational phase of the wind farm. Thus,
a weather simulator represents an important component of the O&M tool, and different
modelling techniques can have an impact on the final tool’s estimates. Eventually, the OPEX
and the availability evaluations are deployed to realistically assess the expected yield and
the LCOE of offshore wind projects.

1.2. Literature Review

The training of several models for the simulation of these weather time series has
already been extensively investigated in the literature. Their underlying algorithms can
vary from simple probabilistic methods to more advanced stochastic weather generators.
Seyr et al. [4] reviewed and discussed the main approaches applied to O&M decision-
support tools for offshore wind projects. One of the first authors investigating this matter
was Graham [5], who developed a mathematical persistence model to forecast the wave
height and the wind speed for the oil industry’s operational planning. Graham calibrated
their model to the conditions of a site in the North Sea and concluded that the model can
be deployed for the early staged planning and for sites with limited access to metocean
historical data.

Over the years, most of the research for the offshore wind industry has focused on
the simulation of wind time series only, to generate realistic synthetic data for wind power
and load estimation models. Brokish et al. [6] presented the pitfalls of Markov chains
when deployed for microgrid models, and other applications requiring short simulation
time steps. Ailliot and Monbet [7] developed stochastic models for the simulation of
wind time series over different timescales; they suggested the switching between different
autoregressive models via a hidden Markov chain, representing the several weather types.
In [8], Wang et al. provided a comprehensive review of the foremost models for the
forecasting of wind speed and power, based on physical, statistical, and hybrid methods
over different timescales. As a result, they compared the accuracy of these models and
identified the main source of errors and challenges associated with wind power predictions.

For the purpose of modelling the planning of the wind farm maintenance activities,
some authors extended and applied these methods to the generation of the other main
weather parameters. Scheu [9] deployed a first-order Markov chain to simulate the signif-
icant wave height of a site in the North Sea and derived the wind speed from their joint
probability distribution. In [10], Seyr and Muskulus presented a Langevin model to simu-
late the wind speeds and the wave heights independently. Finally, it is worth mentioning
the work of Pandit et al. [11]. These authors compared two data-driven approaches—an
LSTM neural network and a first-order Markov chain—for the prediction of the FINO3 [12]
wind and wave data.

To tackle the holistic generation of offshore weather parameters, the focus shifted
from the simulation of independent variables to their multivariate modelling. Skobiej and
Niemi [13] continued on the work of Niemi and Sill Torres [14] and used the Gaussian
multivariate class from the Copulas Python library [15] to generate random variables of
wind speed and wave heights. Soares and Cunha [16] simulated the significant wave height
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and peak wave period at a site in the Portuguese Atlantic waters, by applying a bivariate
autoregressive model to the stationarised data. Hagen et al. [17] presented a multivariate
approach for a first-order Markov chain to capture the correlations between the wind and
wave parameters at two locations in the North Sea. Multivariate Markov chains of higher
order were not applied to offshore weather time series before, but, e.g., Guo et al. [18]
predicted trajectories of ocean vessels utilising this concept.

1.3. Scope of the Analysis and Overview

The scope of this work is to extend the investigation of the advantages and challenges
of multivariate simulation of offshore weather parameters, for the purpose of offshore wind
projects’ maintenance logistics and planning. This research extends the current scientific
knowledge on the application of Markov chains, autoregressive models, and LSTM models
for the simulation of wind and wave characteristic parameters. More precisely, LSTMs and
multivariate higher-order Markov chains have not been used to simulate offshore weather
time series.

The remainder of the paper is organised as follows: Section 2 provides an introduction
to the data collected and models deployed in this study. The technique applied for the
standardisation of the data is explained in Section 2.2. The information on the algorithms
and their training settings are then described in Sections 2.3-2.5. Furthermore, the criteria
to compare the joint probability density functions are presented in Section 2.6. In Section 3,
the results are presented, at first, in terms of single measurements, and then analysed as
vector-valued simulations. The discussion of these results is supported by the use of several
time series metrics and criteria. The authors’ perspective and engineering judgement on
the models is finally given in Section 4, to then conclude with advice on improvements and
future work in Section 5.

2. Materials and Methods
2.1. Historical Weather Data

The historical weather database employed for the analysis of this paper contained
40 years (1979-2018) of measured meteorological and oceanographic (metocean) data,
in time steps of one hour. Although the measurements were taken over such a long time
period, no trends related to a possible effect of the climate change were observed over the
years. As a consequence, this phenomenon was not considered in this analysis.
The significant wave height H;, the peak wave period Tp, the wind speed at a 10 m reference
height Uy, and the current speed were recorded in this database. For the purpose of this
work, only the wave and wind data were used. Table 1 shows the essential characteristics
of the metocean data set.

Table 1. Main metocean data characteristics.

Parameter Value
Mean annual significant wave height 1.520 m
Mean annual wind speed at 10 m ASL 6.837m/s
Mean annual peak wave period 7.701s

The measurements of the first year (1979) are visualised in Figure 1. It is observed that
the wind speeds are generally higher in the winter months than in the summer, with values
above 15 m/s being an exception. A similar trend can be observed for the wave height,
where more extreme conditions occur regularly during the winter months.



Wind 2022, 2

397

—— Wind speed 10m ASL

20 A

sy
(6,
!

iy
o

Uzo [m/s]

0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1979

16 1 — Significant wave height ——— Peak period [ 16
14
12

10

Hs [m]
(o)} [ee]
Ty [s]

B

2

0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1979

Figure 1. The first year of weather measurements. At the top, the wind speed at reference height
(Uyp). At the bottom, the wave characteristic parameter: the significant height (Hs) and the peak
period (Tp).

2.2. Data Processing

The measured time series contained some seasonal patterns. For instance, the wind
speed varied between summer and winter (see Figure 1) and was also dependent on the
time of day. The simulated data should include these trends. However, the algorithms used
for their simulation cannot deal with this seasonality. To overcome this issue, the training
data for the models were stationarised. As a consequence, the simulated time series of the
models were also stationary and needed to be transformed back to be representative and
deployed in a maintenance planning tool. This procedure is sketched in Figure 2.

seasonal stationary seasonal

back-
transformation transformation

Figure 2. The procedure of simulating time series in this paper.

To address this issue, several authors [9,11,17,19] suggested removing the seasonality
by splitting the data into monthly sets. Besides neglecting the daily trends, this approach
dramatically reduces the amount of training data. Alternatively, Soares and Cunha [16]
applied a transformation based on a Fourier model fitted to the logarithmic time series of
the monthly averages.
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The approach adopted in this paper was similar to the one employed by Hagen et al. [17].
The univariate time series were standardised by using the mean Xju,; and standard
deviation 0joca1+ OVer a selected range of days. This range was taken as 415 days over
the whole length of the time series. Hence, the two parameters Xjoc,1; and Ojocar s Were
estimated using n x 31 values, where # is the length of the historic time series in years.
The formula of this transform, from a time series X; to a stationary time series X, is given
by

> X t— Xlocal,t

X = 1)

&local,t

By using this approach, it is easy to back-transform the data into time series contain-

ing a seasonality. Additionally, this standardisation method should be superior to the

modification of the mean value suggested in [20], because both the mean value and the

variance are under control. Furthermore, it avoids the problem of discontinuities between
several month [17,20].

2.3. Markov Chain

This probabilistic model, named after Andrey Markov, has been widely used by
researchers for several forecasting and simulation tasks [4,9,11,17-20]. The process to
be modelled has to be discrete in time and switching between a finite number of states.
The historic time series used in this analysis met the first requirement, being recorded in
hourly measurements. Concerning the definition of a finite number of states, the approach
followed in this paper was similar to the one in [17].

To derive the states 1,. .., n, the set of observations (Hg x Uy X Tp) was partitioned
in cuboids, which were numbered consecutively. The result was a discrete time series of
scalar values, and thus the same theory as for a scalar-valued simulation was applied. To fit
to different needs, the size of the cuboids can be varied. Therefore, if the behaviour of one
parameter are sketched very roughly, the cuboids can be large along the corresponding
axis. However, the number of states should be chosen carefully, as this highly affects the
memory required.

The information on the states selected for this study are reported in Table 2. The min-
imum and maximum values were chosen as the 2.5th and 97.5th percentile, respectively.
The outlying 5% of the data were neglected to avoid creating states that were not important
in the time series generation as they occurred very seldom.

Table 2. Definition of the states for the Markov chain resulting in n = 15 x 20 x 15 = 4500 states.

H; Ujo Tp
Min value —1.2892 —1.7000 —1.6515
Number of states 15 20 15
Max value 2.5363 2.0940 2.2084

For the purpose of the simulation, it is necessary that the transition probabilities
only depend on the last p time steps of the time series X;, with p indicating the order of
the Markov chain. Given a time t > p and states ay,...,a; € {1,...,n}, the following
equation applies

P(Xt = at|Xt,1 = ay_1,-- .,X] = ﬂl) = ]P(Xt = ﬂt|Xt,1 = ay_1,-- -/Xt—p = at_p). (2)

For p = 1, Equation (2) is called the Markov property. Passing to a second-order Markov
chain, the transition probabilities are abbreviated as follows

Payazas =P(Xp = a3|X;—1 = ap, Xy = a1).
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To summarise these probabilities the transition matrix A is used
P11 P12 --- Piin
P121 P122 --- Pi2n
A = Pl,n,l Pl,n,Z s Pl,n,n c anxn (3)
P211 P212 --- P21n
P221 P222 - P22n
Pnnl Pun2 --- Pnnn

Each row represents one combination of previous states, and its entries are the proba-
bilities for the next time step. Thus, all rows of the transition matrix sum up to 1. The same
scheme can be applied to Markov chains of any order.

The transition matrix is determined by counting the transitions between the states in
the historic time series. In a first step, the number of transitions is set into the corresponding
entry in the matrix. Then, the matrix is made right stochastic

A

i A nmo Aim >0,
Ai,j — 1, if ZZ[=O Ai,m = (0 and ap — ]‘, (4)
0, else.

With states ay, ..., 4, the matrix-row index i is given by

i=an? +aon N tay = (" a4 )n . (5)

mod n=0

Thus, the value of ), can be determined by a, = i mod n.

After extracting the behaviour of the time series in the transition matrix, the Markov
chain can be used to simulate future values. The approach is similar to the one of [9,19,20]:
given p previous time steps, the probability distribution for the next time step can be derived
from the transition matrix. From there, one state is chosen randomly, but proportionally to
its probability. This procedure can be repeated at each time step to simulate a time series of
the desired length.

2.4. Vector Autoregressive Models

Autoregressive models are often used to model scalar-valued time series [4,21-23].
By following the approach of [24,25], it is possible to extend the theory to vector-valued
time series, as has already been done by Soares and Cunha in [16]. A d-dimensional vector
autoregressive time series X; of order p (VAR(p)-process) is defined by

Xt = ®1X; 1+ P Xy 2+ -+ PpXi—p + Zt. (6)

Here, ®; € R¥ fori ¢ {1,...,p} are the coefficient matrices and Z; € R? is a
white noise vector, which is independent for different time steps, with a zero mean and a
covariance matrix Xz.

Given a time series X; and an order p, it is possible to estimate the coefficient matrices
and the covariance matrix of the white noise by using a Yule-Walker estimator as in [25],
Chapter 7.6.1. Alternatively, other approaches are suggested in [24], Chapter 3.

A very important aspect for the training of a VAR model is the appropriate selection
of the order p. A VAR(p + 1)-process is always able to model a VAR(p) time series, but it is
computationally more expensive than its lower-order replacement. Furthermore, there is
a bigger stochastic uncertainty if more parameters need to be estimated. For this reason,
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some criteria are used to find a compromise between the goodness of fit and the value of the
p, based on a penalty for the number of parameters used. In this work, the Hannan—-Quinn
criterion (HQ) from [24], Equation 4.3.8 was used, given by

- 2InInT
HQ(p) = In(det(Sz(p))) + ———pd*, @)
M . —— ——
goodness of fit penalty term

where ¥z (p) is the maximum likelihood estimator of the white noise covariance matrix
Xz, d is the dimension of the time series, and T is the number of training data. Other
criteria are the final prediction error (FPE) [24], Equation 4.3.1 and the Akaike information
criterion (AIC) [24], Equation 4.3.2. Both the AIC and the FPE tend to overestimate the
order p for small time series dimensions (d < 5) [24], Chapter 4.3.2. Another criterion,
similar to the HQ, is the Schwarz criterion, [24], Equation 4.3.9, also known as the Bayesian
information criterion (BIC). In Table 3, the AIC, HQ, and BIC were calculated for models
of different order. For this comparison only one-fourth of the data were used to save on
computational time.

Table 3. VAR order selection based on some of the main criteria for autoregressive models. The mini-
mum of each criterion is marked in green.

Order p AIC BIC HQ
1 —73,961 —73,792 —73,909
2 —159,656 —159,403 —159,579
3 —170,549 —170,211 —170,446
4 —172,847 —172,425 —172,719
5 —173,016 —172,509 —172,861
6 —172,881 —172,290 —172,701
7 —173,919 —173,243 —173,713
8 —174,156 —173,396 —173,924
9 —174,171 —173,326 —173,913
10 —174,185 —173,257 —173,902
11 —174,212 —173,199 —173,903

The procedure around the VAR models is summarised in Figure 3. The flowchart can
be seen as a detailed version of the middle box from Figure 2.

»

Figure 3. Flowchart for the VAR model used in this work.

As for the Markov chain, presented in Section 2.3, the simulation of a time series via
the VAR model follows an iterative approach. Given some starting values and a randomly
generated white noise vector Z;, the first simulated value is derived, from which a second
one can be computed, and so on. Because Z; is regenerated every time, two simulations
will be almost surely different.
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The VAR models presented in this paper were implemented in Python 3 by using the
statsmodels module [26].

2.5. LSTM Neural Networks

The latest of the approaches presented in this paper is the long short-term memory
(LSTM) neural network. This deep learning approach was developed by Hochreiter and
Schmidhuber [27], and it has been widely used in context of time series, e.g., [11,21,23].
The LSTM networks are an enhanced version of recurrent neural networks (RNN) [28],
Chapter 8, which in turn build up on multilayer perceptrons [28], Chapter 4. As indicated
by their name, the advantage of LSTM networks over RNNSs is in the long-term memory.
Therefore, they were more suitable for this paper.

Figure 4 visualises a layer of the LSTM neural network, to help explain the way it
works. For more details on the topic, the reader is referred to [29].

he
A
O N
Ci-1 @ + > G
(TantD
f, it (©) ©
Et ot
o (o) TanH o
ht—1 ~ } } j J J — ht

& J

Xt

Figure 4. Schematic illustration of an LSTM Layer, adapted from [29].

Starting from the outside of Figure 4, there are the input vector x;, the hidden state hy,
which is also the output, and the cell state ¢;, which works as the long-term memory.

Furthermore, there are two activation functions in a LSTM layer: the sigmoid function o
and the hyperbolic tangent TanH. These are applied component-wise to the corresponding
vectors. In the blue box are three gates which perform the same task; they get multiplied to
other vectors using the Hadamard product “®”, i.e., a component-wise multiplication of two
vectors. Each gate is therefore used to control the amount of information that passes the
“©”-multiplication. For this purpose, all three gates have their own weight matrices and
bias vectors. In detail, the

»  Forget gate f; controls how much of the old cell state ¢;_; is forgotten for every compo-
nent;

e Input gate i; determines which information from the current time step is important
and should be added to ¢;;

*  Output gate o; decides which information from ¢; (activated with the TanH) should be
saved in the hidden state h;.

To use this architecture for time series forecasting, the most common approach is to
aim for x;11 ~ h;. This is achieved during a training phase, in which the neural network
uses the training data for several epochs divided into batches. After the forecast for one
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batch, the errors are backpropagated, such that all the matrices and the bias vectors are
updated to fit the LSTM network more and more to the training data.

Prior to the start of the training, some hyperparameter need to be defined. These are
listed in Table 4, together with their values used.

Table 4. Hyperparameter of the LSTM neural network.

Parameter Value
Order 8
Input neurons 3
Neurons in LSTM layer 100
Output neurons 3
Optimiser Adam
Loss function MSE
Epochs 5
Batch size 500

The order of the model is defined as in Section 2.4. It determines how many time
steps the LSTM network uses to train and simulate. An eighth-order model was chosen for
consistency to the VAR(8)-model identified in Table 3. In this way, both approaches held
the same amount of information.

Figure 5 shows the structure of the LSTM network used in this paper. Its implementa-
tion in Python 3 was obtained by using the Keras module [30].

LSTM Layer
Input Layer 2,1 Output Layer
3,1
Input 1,1
2,2
Xt Xt-1  Xt-2 = 12 7
2,3
3 \ / =
2,4

Figure 5. Structure of an LSTM for a three-dimensional time series with four neurons in the
LSTM layer.

The simulation of the time series with LSTM neural networks is received as for the VAR
model. The noise is received from the errors the LSTM model makes on the training data in
a separate run after the training. The distributions of these errors are saved independently
per measurement, by making the assumption that the covariance matrix of the noise is a
diagonal matrix. To simulate, the network is given some starting values based on which it
predicts the next value, and finally adds the randomly generated noise. This procedure can
be repeated to get an arbitrarily long time series.

2.6. Metrics for Joint Probability Density Functions

To compare the joint probability density functions (PDFs) of the different simulations
later on in Section 3, we define several metrics in the following.
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The Bhattacharyya coefficient (BC), introduced in [31], is calculated by

BC(p,q) = Y \/p(x)q(x), 8)

xeX

where x are cuboids partitioning the multidimensional space X, which contains the mea-
surements, while p and g are the relative frequencies of these cuboids. The more similar the
distributions are, the larger the BC(p, 4) becomes, in a range between 0 and 1.

As a second measure of similarity, the Kullback—Leibler divergence (Dky,), introduced
in [32], is defined as

Dw(p.9) = ) P(x>1n<P(x)>- ©)
xeX q (x)

The Dy is zero for identical joint PDFs and it cannot be negative. Therefore, the aim
is to approach a Dkp, close to zero.

The Kullback-Leibler divergence is not symmetric, i.e., Dxp (p,q) # Dxr(q, p), and it
also accounts for the division by zero, which results into an infinite value of Dj..

To cope with the limitations of the Kullback-Leibler divergence, the Jeffrey divergence
Dj was considered as well. This modified definition of the divergence is symmetric and
also superior in other aspects [33]. It is calculated by

Dy(p) = X pin( 2 ) + g ( L2, (10

xeX m

where m(x) = £
Finally, another measure of the similarity of two PDFs is given by the histogram
intersection (HI) [33], which indicates how much overlap there is between two distributions

Hi(p,q) = ) min{p(x),q(x)}. (11)

xeX

() +q(x)
R

3. Results

After the models were trained on the full 40-year data set, we simulated 25 years of
multivariate time series. Different metrics and statistics on these simulations are presented
in this section. Special attention was given to comparing the results across the several
models and investigate how they perform in comparison to the original data set. A first-
and a second-order Markov chain, a VAR model, and an LSTM neural network were
applied as explained in Section 2.

3.1. Preprocessing of the Data

The purpose of the standardisation is the removal of the seasonal influences. Hence,
Figure 6 compares the training data of Hs, Uy, and T}, before (on the left) and after (on the
right) the transformation. These boxplots are based on the whole data set divided into
month, and they mark the median in orange.

A clear seasonal influence is visible in the boxplots of the measured data (on the
left), especially for Hg and Ujg. As it can be observed, on the right-hand side of Figure 6,
the standardisation method is able to remove most of the seasonality effect from the data.
Nevertheless, there are still differences in the distributions; the sizes of the boxes, marking
the 25th and 75th percentiles, and the median are not equal for all months. However,
as the approach only controls the mean value and the variance, these drawbacks were
deemed acceptable.
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Figure 6. Boxplots of the data split up into different months. On the left, the original data, which

have been measured. On the right, the data after the standardisation.

Concerning the interconnection between the data over a large time period, Figure 7
shows how the autocorrelation functions developed over 36 months. This range was
chosen to observe the similarities over multiple years. Although the transformation does
not dramatically change the autocorrelation for any of the measurements, the standardised
results (orange line) come very close to the desired outcome. Overall, the properties of the
historic time series are homogenised across the several months, and it is thus reasonable to
treat the standardised time series as stationary.
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Figure 7. The autocorrelation of the data before and after the standardisation.

3.2. Single Measurements Comparison

In the following, the scalar-valued time series extracted from the vector-valued simu-
lations are considered. Using these, there are several metrics to be evaluated and compared
across the models.

3.2.1. Marginal Distributions and Increments

The marginal distributions of the data, broken down into the different measurements,
are reported in Table 5. This table compares the estimates, in the stationary state, across
the several models and the original time series. The statistics of the 25-year simulations
are provided in terms of the mean value, the standard deviation, and the percentiles of the
different measurements.

Over all measurements, it can be observed that there is almost no correspondence
between the results of the LSTM model and the original time series statistics. In contrast,
the mean value and variance are adequately reproduced by the VAR model, while the
Markov chains have a variance too small compared to that of the real data. Concerning the
percentiles and the extrema, the VAR model generates approximately symmetric distribu-
tions. The Markov chains are instead able to replicate the asymmetry of the original data.
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Table 5. Different statistics on the simulations, taken before the back-transformation.

VAR Model LSTM MC@) MC(2) Original
mean —0.0151 2.8167 —0.0287 —0.0484 —0.0022

std 1.0073 2.4503 0.9036 0.8670 0.9948
min —4.3077 —2.6322 —1.2892 —1.2892 —2.2746
ol 25% —0.6968 0.4199 —0.6867 —0.6854 —0.6652
50% —0.0139 3.3725 —0.2328 —0.2417 —0.2199

75% 0.6671 4.8972 0.4139 0.4037 0.4186

max 3.9227 8.3683 2.5363 2.5361 13.9059
mean —0.0020 0.8251 —0.0132 —0.0239 —0.0006

std 1.0101 1.1068 0.9470 0.9285 0.9980
min —4.5885 —4.0388 —1.7000 —1.7000 —2.6080

:‘)9 25% —0.6838 0.0601 —0.7223 —0.7270 —0.7209
50% 0.0003 0.8593 —0.0763 —0.0781 —0.0656

75% 0.6786 1.5875 0.6315 0.6213 0.6369

max 4.4298 5.8560 2.0940 2.0940 8.7361

mean 0.0018 1.9856 —0.0054 —0.0158 —0.0009

std 0.9976 1.9515 0.9566 0.9287 0.9978

min —4.5479 —5.4943 —1.6515 —1.6514 —3.1213

el 25% —0.6751 0.1651 —0.7291 —0.7356 —0.7221
50% —0.0038 2.4620 —0.1392 —0.1299 —0.1337

75% 0.6734 3.5614 0.6626 0.6380 0.6506

max 4.6768 9.2085 2.2083 2.2084 5.4062

To better discuss the distributions of the simulated values, their quantile-quantile plots
(QQ plots) are shown in Figure 8. If a simulated measurement has the same distribution
as the original one, this is represented as a straight black line in the plots. The closer the
simulations get to this straight line, the more accurate their marginal distributions are,
see [34]. The bottom right plot of Figure 8 shows the distribution of the original data; the
vertical axis is scaled so that the area below the histograms sums up to 1. The QQ plots
confirm the speculations on the goodness of the LSTM model: it is evident that the yellow
line completely differs from the trend wanted. As regards the VAR model, it can be seen
that its lower quantiles reach very small and even negative values. This problem occurs
due to the fact that the model cannot anticipate the natural limits of the measurements.
A similar but slightly better performance is shown by both Markov chains. The difference
in the higher and lower percentiles appears because the outlying values are neglected in
the definition of the states (Section 2.3).

Another aspect to be investigated is the behaviour of the increments, defined as the
differences between the values. The increments are analysed to see how much, and in which
sense the values differ from the preceding ones. Once again, the QQ plots are used for this
purpose (see Figure 9). In terms of increment, the VAR model performs worse than all the
other algorithms. It tends to simulate too little increments across all the measurements.
The increments of the LSTM model are distributed similarly to the ones of the original
data, especially for the wind speed and the peak wave period. The Markov chains perform
better than the VAR model, but worse than the LSTM model. It is worth noticing that the
second-order Markov chain is a little more accurate than its first-order equivalent.
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3.2.2. Earth Mover’s Distance

The earth mover’s distance (EMD) is calculated between two different distributions
p and g. This measure quantifies how different these distributions are according to the
following logic: it is imagined that both distributions are landscapes, and one is transformed
into the other. The EMD assesses the amount of work to be done in terms of earth to be
moved. Because the optimal flow has to be determined at first, this measure is not easy to
derive for high-dimensional distributions. More information on this metric can be found
in [33]. Table 6 summarises the values of the EMDs for both the simulated values and the
increments considered in 3.2.1. The values of the EMD were calculated using a normalised
histogram with 1000 bins.

Table 6. Earth mover’s distances for the simulated values and the increments. The best result is
marked in green.

EMD of the Values x103 EMD of the Increments X103

VAR model 0.3031 0.4160
. LSTM 1.0487 0.4219
T MC(1) 0.0797 0.5396
MC(2) 0.0726 0.5363
VAR model 0.0402 0.2877
< LSTM 0.1580 0.1089
S MC(1) 0.0577 0.1237
MC(2) 0.0612 0.1276
VAR model 0.2255 1.2661
.. LST™M 0.6922 0.8886
= MC@1) 0.2250 0.8730
MC(2) 0.2377 0.8728

Using this metric, the results from Figures 8 and 9 are put into perspective. The EMD
is not too sensitive to the border areas since most of the values are concentrated in the
middle. Therefore, the differences which appear large in the QQ plots can be compensated
by moving a small amount of “earth”. The goodness of the simulations of the Markov
chains does not stand out as in Figures 8 and 9. However, it is worth recalling that these
models are the only ones having no negative outliers, in contrast to the VAR and the LSTM
models. Further weaknesses of the VAR model is in the distribution of the increments of
the Uy and the T, measurements. The big offset in the distribution of the values simulated
by the LSTM model can be noticed again in the EMD.

3.2.3. Autocorrelation

To analyse the interconnection between the time steps of the simulations, the autocor-
relation was calculated as defined in [25], Chapter 3. Figure 10 shows the autocorrelation
functions for the three measurements. For all measurements, the VAR model performs
best. In contrast to the other models, the autocorrelation of the LSTM decreases too slowly.
This is an indication for a strong connection between the corresponding time steps, which
is much weaker in the original time series. The autocorrelation of the first-order Markov
chain is always bigger than the one of the second-order model. This can be related to the
fact that the first-order Markov chain cannot capture the tendencies in the simulated data,
and thus it is prone to stay in the last state with a high probability. This phenomenon is
already known, and it leads to a high autocorrelation [20].
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Figure 10. The autocorrelation of the different simulations in comparison to the autocorrelation of
the original time series.

3.3. Multidimensional Results Comparison

To conclude on the results section, a closer look is given to the interaction between the
estimated measurements and their joint probability distributions.

3.3.1. Cross-Correlation of the Simulations

Similarly to the concept of the autocorrelation, it is possible to estimate a cross-
correlation between two time series as their connection at different time steps. A definition
can be found in [24], Equation 2.1.45. In Figure 11, the cross-correlations between the wave
height and the wind speed are shown. The peak on the left shows that the wave height
reacts to the wind speed, and their correlation reaches a maximum after about two hours.
The VAR model shows accurate results again, nearly identical to the original time series for
the first twelve hours. The LSTM model exhibits the same issues as for the autocorrelations
(cf. Figure 10). The Markov chains’ estimates are closer to those of the original time series,
with a clear advantage of the second-order Markov chain over the first one.
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Figure 11. The cross-correlation of Hs and Uy for the original time series and different simulations.

3.3.2. Joint Probability Density Functions

This section compares the simulated joint probability density functions (joint PDFs) to the
original ones. Because a visualisation of the three-dimensional distributions is not feasible,
several metrics were introduced in Section 2.6. In Table 7, these criteria were used once
again to compare and discuss the different simulation models. The histograms, to calculate
the characteristic criteria of the joint PDFs, were created by using 100 x 100 x 100 cuboids.

Table 7. Comparison of the simulated joint PDFs; the best result is marked in green.

BC Dk Dy HI

VAR model 0.1141 o0 1.2496 0.0594
LSTM 0.1918 o0 1.1545 0.1034
MC(1) 0.4082 o0 0.8840 0.2305
MC(2) 0.4163 o0 0.8735 0.2359

The Kullback-Leibler divergence is infinite for all the models, meaning that there are
cuboids having a positive probability in the historic data, and these do not appear in the
simulations. Across all the other metrics, the second-order Markov chain behaves the best,
closely followed by its first-order equivalent. On the other hand, the VAR model performs
the worst, being even inferior to the LSTM model.

4. Discussion

Starting with the preprocessing of the data, presented in Section 3.1, a standardisation
approach was used to make the simulations independent from the seasonality of the historic
data. Figures 6 and 7 proved the achievement of stationary time series, by maintaining a
similar distribution of the data and attaining a constant autocorrelation. Because of the
switch from monthly based to daily based time frames, this approach can be considered
superior to the procedures generally used in the literature [17,20].

Several data analysis visuals and metrics were deployed to discuss the performance
of the different stochastic weather generators and come to a comprehensive conclusion.
The LSTM model was seen to perform poorly across every stage of the analysis, with the
exception of the increments of Figure 9. In terms of predictions, they have been shown to
outperform the autoregressive models [21,23]. However, this did not seem to hold for the
simulation purpose. This discrepancy might be associated to the approach adopted for the
inclusion of the independent noise, which was integrated to add some randomness to the
simulation process. The VAR model delivered a very accurate mean and standard deviation,
but it was not able to preserve the asymmetric distribution (see Table 5). Additionally, its
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symmetric marginal distribution fell in the negative range after the back-transformation.
To solve this problem a postprocessing of the simulation could be used to fit the marginal
distribution to the one of the historic time series. By contrast, both Markov chains were
able to keep the asymmetry of the historic data and match their marginal distributions
very well.

Concerning the increments, the Markov chains were superior to the VAR model, which
simulated too small increments. The increments of the VAR model were partly consisting of
the noise vector Z;. During the training phase, the model minimised the standard deviation
of the noise to deliver a good fit to the training data. It also might be that the VAR model
fitted the data too well, and therefore the noise had a too small variance. As regards the
correlation functions from Figures 10 and 11, the VAR model outperformed the Markov
chains. This can be explained by the fact that the VAR model is structured into matrices
and takes into account the relation with eight time steps. On the other hand, the Markov
chains consider only the relationship with one to two time steps. The second-order Markov
chain can access a higher level of information from the original data, and thus it showed
better a cross-correlation of wind speed Uy, and significant wave height Hs. Regarding the
joint PDFs, the simulations of the VAR model performed generally worse than the ones of
the Markov chains. This might be related to the presence of negative values in the VAR
simulations, which did not intersect with the histogram of the original data.

5. Conclusions and Future Work

The aim of this paper was to benchmark the goodness of the simulation of vector-
valued time series against different stochastic weather generators. Markov chains were used
to simulate vector-valued time series by following a similar approach to [17]. The novelty of
this approach was to combine the multivariate and second-order Markov chain in the field
of offshore weather time series. The simulation results from this model were judged to be
among the best, especially in terms of their correlation metrics. Among the other statistics
derived, the first-order Markov chain did not differ significantly in its results and is thus
worth being considered to save on computational time. Another type of simulation models
considered in this analysis was the vector autoregressive (VAR), which was implemented
as in [16,22]. The results of the VAR models were shown to be very accurate in obtaining
the time series correlation and standard deviation. In turn, they were assessed to be weaker
than the Markov chains with regards to the probability distributions. Finally, a long short-
term memory (LSTM) neural network was deployed similar to [11]. The novelty was to use
it for offshore weather time series simulations by including a random noise. Despite the
successful training of a LSTM neural network on the historical data, this particular set up
of the model is not recommended for time series simulation, due to the poor results shown
across most of the statistics derived.

Some aspects can be still improved in the setup of these models, as none of them
managed to perfectly reproduce the information held in the original time series. As regards
the use of LSTM networks for time series simulation, the approach might need to be refined.
The training phase does not prepare the network properly for the long-term simulations.
Furthermore, the randomness of the noise can be integrated in several ways, potentially
leading to better results.

The weaknesses of the VAR model concern the representation of the increments.
Additionally, its simulated values fall into the negative sphere due to the approach used in
the generation of the noise vector Z;. If the noise generation is regulated by the simulations,
instead of being modelled independently, unrealistic large or small values can be avoided.
This change can also lead to improvements of the joint probability density functions.
However, it should be avoided that this enhancement is achieved at the cost of the other
time series’ statistics.

The simulations of Markov chains are typically not smooth because they output a
uniformly distributed random number in the simulated bin. This can be regulated by
using a smoothing filter as in [20]. Other approaches that can be used to better represent
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the probabilities involve the increase of the Markov chain order and the number of states.
Both these solutions come at the cost of computational time, and they require a larger
set of training data to approximate the transition probabilities well. Thus, to tackle the
fine-tuning of a Markov chain, the optimal solution should be found by compromising on
all these aspects.
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Abbreviations

The following abbreviations are used in this manuscript:

O&M Operation and maintenance
LCOE Levelised costs of energy
OPEX Operational expenditures
Metocean data  Meteorological and oceanographic data
ASL Above sea level

H; Significant wave height

Uqp Wind speed at 10 m ASL

Tp Peak wave period

MC Markov chain

VAR model Vector autoregressive model
HQ Hannan—Quinn criterion

FPE Final prediction error

AIC Akaike information criterion
BIC Bayesian information criterion
LSTM Long short-term memory
RNN Recurrent neural network
MSE Mean squared error

Adam Adaptive moment estimation
QQ plot Quantile-quantile plot

EMD Earth mover’s distance

BC Bhattacharyya coefficient
Dk, Kullback-Leibler divergence
Dy Jeffrey divergence

HI Histogram intersection

Joint PDF Joint probability density function
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