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Abstract: This paper investigated the development of a hybrid model for wind speed forecast,
ranging from 1 to 46 days, in the northeast of Brazil. The prediction system was linked to the widely
used numerical weather prediction from the ECMWF global ensemble forecast, with neural networks
(NNs) trained using local measurements. The focus of this study was on the post-processing of NNs,
in terms of data structure, dimensionality, architecture, training strategy, and validation. Multilayer
perceptron NNs were constructed using the following inputs: wind components, temperature,
humidity, and atmospheric pressure information from ECMWF, as well as latitude, longitude, sin/cos
of time, and forecast lead time. The main NN output consisted of the residue of wind speed, i.e., the
difference between the arithmetic ensemble mean, derived from ECMWF, and the observations. By
preserving the simplicity and small dimension of the NN model, it was possible to build an ensemble
of NNs (20 members) that significantly improved the forecasts. The original ECMWF bias of −0.3 to
−1.4 m/s has been corrected to values between −0.1 and 0.1 m/s, while also reducing the RMSE
in 10 to 30%. The operational implementation is discussed, and a detailed evaluation shows the
considerable generalization capability and robustness of the forecast system, with low computational
cost.

Keywords: wind speed forecast; neural networks; subseasonal forecasting; ensemble modeling;
renewable energy; tropical meteorology; renewable energy

1. Introduction

Wind forecasts play an important role in environmental prediction, where surface
winds directly respond to atmospheric disturbances while also driving a variety of ocean
effects, including gravity waves, surface currents, and sea level changes. In the renewable
energy sector, the accuracy of such forecasts impacts the estimated energy production,
leading to a series of economic and social consequences both in the short and long terms.
According to the Global Wind Energy Council [1] and the International Renewable Energy
Agency 2021 [2], Brazil holds the eighth position in the global ranking of wind energy,
with 17 GW of installed capacity, coming from more than 750 wind farms and 10.000 wind
turbines. Most of them (89%) are located in the northeast of Brazil, at tropical latitudes
between 15◦ S to 0◦ N. Moreover, as reported by Associação Brasileira de Energia Eólica
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(ABEEólica, [3]), Brazil has a wind power potential to reach 500 GW, which would attend
three times the current country’s energy demand.

Vinhoza and Schaeffer [4] assessed the wind energy potential in Brazil using a spatial
approach, mapping the most economically attractive areas for offshore wind deployment.
Santos et al. [5] and Silva et al. [6] investigated the wind energy utilization in Brazil in
terms of its regulatory framework and national opportunities, describing the existence
of a vast and reliable wind potential for immediate utilization in Brazil. Interestingly,
Filgueiras and Silva [7] and Lima and Mendes [8] discuss that the overall power generation
in Brazil is predominantly hydroelectric, which has led to an increasing vulnerability
under changes in the global and local climate [9], with impacts on the hydrological cycle;
however, considering the seasonal cycle, the country reaches the highest wind speed exactly
when the rate flow of the main rivers is low—raising the strategic importance of wind
energy expansion, combined with high-quality environmental predictions. Therefore, wind
forecasts in the northeast of Brazil have gathered a wide range of applications and demands.

Several high-quality wind forecast systems have been developed in recent years, using
either numerical weather prediction models (NWP) or machine learning models. Jacondino
et al. [10] produced an hourly day-ahead wind speed forecast for two wind farms in
northeast Brazil using the NWP model WRF (Weather Research and Forecasting; [11]),
where sensitivity experiments with different physical options were evaluated. Zucatelli
et al. [12] developed a recurrent neural network to perform 1 h wind forecasts in Brazil,
following a recursive application for the subsequent hours. Samet et al. [13] provided
an evaluation of neural network-based methodologies for wind speed forecasting using
multi-layer perceptron neural networks. Additional examples of artificial intelligence for
wind forecasts worldwide are referred [14–24]. However, all the aforementioned studies
are focused on short-term forecasts, covering time scales of hours to a few days, whereas
the mid-to-long term forecasts beyond 10 days remain uncovered and with a large demand.
Even the recent study [25], for example, which aimed at relative long-term predictions
according to authors, was bounded to a 3 day forecast.

In this context, the present study proposes a new wind forecast system focused on
forecast ranges from 1 to 46 days, with special attention to the subseasonal scale. Our goal
was to combine the traditional NWP global models, where the coarse resolution does not
capture regional features, with multilayer perceptron neural networks (MLP-NN, [26])
trained with local measurements. Such a hybrid approach has been used by Xu et al. [27],
who argued that the current mainstream method for wind speed forecasting involves the
combination of numerical meteorological models with statistical post-processing; neverthe-
less, their system is also restricted to 72 h forecasts, while our present study evolves this
period to 46 days.

This initiative has been conceived for operational applications, i.e., the forecast system
must be reliable, simple to maintain and to fix, with low computational cost, and robust.
This paper starts with a description of the local wind characteristics in the northeast of Brazil
(Section 2.1), then it explains the numerical weather prediction using a global ensemble
forecast and its importance for mid-to-long forecast ranges (Section 2.2), followed by its
evaluation in Section 3. Section 4 describes the neural network model for post-processing.
The results of the hybrid model, combining the NWP model and the NN model, are
presented in Section 5 and discussed in Section 6, including the operational application of
the new prediction system. The conclusions and future plans are described in Section 7.
The research steps followed throughout this paper are summarized in the next Figure 1.

Finally, it is import to highlight that wind, the horizontal component of air velocity, is
a vector quantity that is described as complete with two numbers (scalars), namely velocity
and direction. In order to cover the intensity and direction information, throughout this
entire paper (observations, numerical modeling, and neural network modeling) we use
the wind components u (zonal) and v (meridional). This is how the numerical models are
integrated and how NNs consider the wind information. Circular or cyclic variables cannot
be directly applied in NNs, otherwise similar directions, for example 1◦ and 359◦, would
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be misinterpreted as being very distant to each other. Therefore, working with components
u and v preserve the speed and directional information that can be later obtained, at the
final visualization step, using wind speed as

√
u2 + v2 and the wind direction through the

arc tangent function atan2(u, v).
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As a forecast mostly conceived for practical applications in the energy sector, the focus
of this study was on wind speed, which is the most important input in the wind power
equation:

Pwind =
ρAU3

2
(1)

where ρ is the air density, A is the rotor area of the wind turbine, and U is the wind speed.
Note that the wind power increases with the cube of the wind speed, i.e., doubling the
wind speed gives eight times the wind power. This reinforces the accuracy of wind speed
forecasts as being extremely important for wind energy applications.

2. Data Description

The spatial inland wind speed distribution in the northeast of Brazil was studied
by [28,29] using the WRF model, allowing a long-term analysis of spatial and temporal
variations of the tropical mesoscale winds. Rocha et al. [30] joined the numerical modeling
with statistical modeling, by using Weibull parameters to investigate the wind energy in
the northeast of Brazil. In summary, the winds in the region respond directly to the position
of the Intertropical Convergence Zone (ITCZ) and the trade winds, as well as large scale
tropical disturbances such as the Madden–Julian oscillation (MJO; [31,32]) that propagates
eastward around the global tropics with a cycle on the order of 30–60 days. Hence, the
seasonal displacements of the ITCZ combined with the MJO phases are important drivers
to the wind direction and intensity in the northeast of Brazil. These features of the Brazil-
ian tropical climatology will be confirmed in the measurements (Section 2.1) and in the
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forecast data (Section 2.2), this being the starting point to conceive the neural network
implementation in Section 4.

2.1. Local Wind Characteristics and Data Screening

This study was concentrated in the coastal areas of the states of Maranhão and Piauí,
in Brazil, illustrated by Figure 2. A total of 25 points of atmospheric measurements were
available, containing information of wind, temperature, atmospheric pressure, and relative
humidity. After a rigorous quality control [33], a three-year period from 09/2017 to 08/2020
has been selected with high-quality continuous observations available in 16 stations—which
were finally selected and shown in Figure 2.
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Figure 2. Position of the atmospheric measurements located in the northeast of Brazil. The cold colors
on the left indicate ten stations in the state of Maranhão, while the hot colors on the right indicate six
stations in the state of Piauí. The same color standards will be used throughout this paper.

The wind speed was the target variable, the other environmental variables being
utilized as additional information for the prediction models. A direct plot of wind speed
from all the 16 anemometers is presented in Figure 3, for the three-year period selected. The
seasonal cycle is very clear in the region, with higher intensities from August to November
(dry season) and lower intensities from February to June (wet season). The wind speeds
above 8 m/s from August to November can reach 14 m/s, and during the calm-wind
season it varies between 3 to 8 m/s.
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Figure 3. Wind speed (m/s) measured by 16 anemometers located in the northeast of Brazil (Figure 2)
from September 2017 to August 2020. The observations are relative to 80 m height, the default level
used in this paper for both observations and forecasts.

The region has no historical records of tropical cyclones, so no extreme events with
persistent winds above 15 m/s were found. On the other hand, the continuous trade
winds rarely decrease to values below 3 m/s for a long period of time. Figure 3 shows that
the seasonal cycle and other oscillations embedded in the time-series follow very similar
patterns at all the 16 stations, i.e., despite the local effects, the time-series respond mostly
to large scale meteorological systems that affect similarly both states of Maranhão and
Piauí. Nevertheless, the wind intensities in the state of Piauí (hot colors in Figure 3) are
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generally higher than those in the state of Maranhão (cold colors in Figure 3) due to the
coastal orientation and orographic effect.

For the model assessments and neural network training, it is important to discuss
whether the environmental information at each station will be treated independently or
gathered into clusters. This is an important question because the neural network mapping
benefits from the inclusion of neighboring points [34], as discussed in Section 4, but the
region containing the observations should not be significantly heterogeneous. The K-means
cluster analysis applying the Elbow method [35] was adopted to select the optimum number
of clusters, where the information of wind (u and v components), temperature, humidity,
and pressure was included—see Figure 4a.
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The goal in the Elbow plot is not to select the minimum value but to identify the
“elbow” of the curve, pointing to an improvement in the data clustering while not over-
splitting the dataset. Figure 4 shows that two clusters are ideal. Figure 4b presents the
plot of the wind components (U and V) for each station, maintaining the color standard of
Figure 2 to differentiate the states of Maranhão and Piauí. The separation of two clusters is
clear, which is confirmed by Figure 4c,d, where the correlation matrix (Pearson’s correlation
and Predictive Power Score) also distinguishes the time-series patterns in two clusters,
Maranhão and Piauí. Inside each cluster, the correlations (linear and non-linear) among
stations are very high, confirming that the two regions are very homogeneous.

2.2. Global Atmospheric Ensemble Forecast

At forecasting time-scales from 10 to 46 days, as addressed in this paper, the sole use of
neural networks with datasets restricted to the stations is unlikely to provide accurate esti-
mates. This challenge is a result of multifactor spatio-temporal correlations that completely
change from short-term analysis of a few hours to long-term analysis beyond one month.
Souza et al. [36] argue that fluctuations in wind speed in the short range are dominated
by atmospheric phenomena governed by local or regional meteorological systems, while
fluctuations on long-range time scales are influenced by global weather patterns. The
MJO, described above, is an example of phenomena that significantly influences the 30
to 60 days forecasts [37] and requires a global grid modeling to properly represent its
generation and propagation. Some very recent studies in machine learning applied to
environmental predictions are working on this topic, such as [38–40]. However, there is
no operational artificial intelligence model so far that simulates the global teleconnections
and subseasonal scales with better performance than existing NWP models, for example,
those provided by the National Oceanic and Atmospheric Administration (NOAA) and the
European Centre for Medium-Range Weather Forecasts (ECMWF). Therefore, including an
NWP forecast to build a joint solution of NWP modeling combined with neural networks
would certainly improve the predictability at longer forecast lead times. The ECMWF IFS
numerical model [41] is coupled (atmosphere/ocean), which benefits the forecast skill at
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longer ranges, becoming especially important for the present study. The main forecast from
ECMWF covers a high-resolution deterministic modeling with a range from 0–10 days
and a spatial resolution of 0.1◦. The complete list of ECMWF products can be found at:
https://www.ecmwf.int/en/forecasts/documentation-and-support (accessed on 1 June
2021).

For predictions involving longer forecast ranges, it is well known [42] that using an
ensemble of forecast simulations tends to perform better than single deterministic runs.
A traditional approach to ensemble forecasting is to generate several numerical model
integrations (members) simultaneously starting from perturbed initial conditions that
represent the uncertainties in the initial model state. The straightforward arithmetic mean
of the ensemble members has been proven to outperform deterministic simulations (i.e.,
single control run), as reported and quantified by Campos et al. [43] and Zhou et al. [44].
Kalnay [42] explains that the ensemble members tend to smooth out uncertain components,
which lead to better performance than single deterministic forecasts. Therefore, after
one-week forecast range, the inclusion of ensemble forecasts is of paramount importance.
The drawback of this approach is the computational time dedicated to model simulations,
data transference, management, and storage. These limitations explain why ensemble
predictions have coarser resolutions when compared to deterministic forecasts.

The ECMWF ensemble is produced with range from 0 to 15 days, and a spatial
resolution of 0.2◦ and 50 members on global domain. Twice a week, an extension of this
range is produced [45], covering 46 days of forecast but with a coarser spatial resolution
of 0.4◦, called ENS-Extended. The model’s implementation utilized in this study (Cy47r1)
had its last upgrade on 30 June 2020. More information is described: https://www.ecmwf.
int/en/forecasts/documentation-and-support/changes-ecmwf-model (accessed on 1 June
2021).

3. Assessment of the Numerical Ensemble Forecast Data

An ECMWF archive of three years of ENS-Extended 46 day’s forecasts was selected
for the domain, covering latitudes 40◦ S to 10◦ N and longitudes 60◦ W to 20◦ W, with a
temporal resolution of 3 h. This is the NWP dataset selected for this paper and evaluated in
this section. The ensemble point output for the positions of each of the 16 stations (Figure 2)
were extracted from this data archive, and paired with the observations (Figure 5)—this
allowed a complete assessment of the ensemble followed by the construction of post-
processing neural network models. This ensemble dataset consisted of an array of 16 points
containing three years of forecast cycles (twice a week, on Mondays and Thursdays), each
one with 46 days of forecast lead times. By simply selecting one of these points, and plotting
consecutive forecast cycles (x-axis) with the forecast lead time on the y-axis, it is possible to
build a matrix containing the entire forecast for each point. Figure 5A shows an example for
a station in the state of Maranhão, where the direct difference (model minus measurement)
is plotted in Figure 5B.

The graphics of Figure 5A are very rich, illustrating several features in the same
plot. Firstly, it is possible to confirm the seasonal cycle with strong winds from August to
November and light winds from February to June, proving that ECMWF simulations agree
with observations for this time scale. Secondly, the effect of resolution is seen through the
discontinuity in the wind intensity on the y-axis, where the first 15 days (0.2◦ of spatial
resolution) have stronger winds than the forecast ranges from 16 to 46 days (0.4◦ of spatial
resolution). Figure 5B shows accurate forecast instants in white color, which are typically
found during the first forecast days (lower y-axis values) close to the analysis (nowcast,
y = 0), progressively growing at longer forecast lead time due to the chaotic component of
the atmosphere. However, the “stripe” shape of Figure 5B suggests that specific events of
intensification and attenuation of wind speeds tend to loose predictability, showing poorer
skill, and such lower model performance tends to remain similar towards the forecast time—
i.e., when an oscillation in the wind intensity is not properly modeled, this tends to remain
inaccurate throughout the whole forecast range. Such a characteristic revels two important

https://www.ecmwf.int/en/forecasts/documentation-and-support
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
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points: (1) the numerical model and its resolution cannot properly simulate certain types
of events and (2) the overestimation of winds tends to be followed by underestimation
at scales of 10 to 50 days, and this error is not solved even at short forecast ranges. Lee
et al. [46] and Camp et al. [47] discuss the challenges of subseasonal to seasonal (S2S)
atmospheric forecasts in tropical areas.
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In order to provide a complete assessment of the ECMWF ensemble forecast, four error
metrics were calculated as a function of the forecast lead time at each station. Equations (2)
to (5) describe the metrics, where x are the measurements and y the ECMWF forecast, and
the overbar indicates the arithmetic mean. The systematic and scatter errors of the forecasts
will be extensively discussed in this paper using the bias and scatter index, respectively.
The scatter index can be interpreted as a percentage error when multiplied by 100. Typically,
the pattern of lack of predictability at longer forecast leads is visualized by the increase of
SI and the decrease of CC—the two most difficult metrics to improve. The next Figures 6
and 7 show the results for each cluster, for wind speed and atmospheric pressure at mean
sea level.
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Figure 6. ECMWF forecast error as a function of the forecast time at Maranhão, where thin lines are
the ensemble members, and the solid thick lines are the arithmetic ensemble mean. Plots on the left
(A,D) show the scatter error through the scatter index (SI). Center plots (B,E) show the correlation
coefficient. Plots on the right (C,F) show bias (in m/s and hPa). The top plots present the wind speed
errors while the bottom plots present the atmospheric pressure errors. The same color standards of
Figure 2, for each station, are retained.

Figures 6 and 7 have common features that illustrate the general characteristics of
the atmospheric modeling, such as the rapid increase of SI and decrease of CC in the first
15 forecast days. After this range, from 20 to 46 days, errors tend to be more stable and very
large. Additionally, both clusters show better performances for the arithmetic ensemble
mean (EM) of the ensemble members when compared against the individual members.
This difference is less evident at the analysis (nowcast) but it grows as the forecast lead time
increases, confirming the importance of the ensemble approach at mid- and long-forecast
ranges. Such an effect is found in the SI and CC but not in the bias, where the error of EM
and individual members are very similar. Therefore, the systematic errors are not reduced
by the ensemble approach, which requires post-processing bias-correction tools.

In Maranhão, the SI of wind speed varies from 20 to 28% for the EM and from 24 to
38% for the single members. The CC at the same state varies from 0.83 to 0.65 for the EM
and from 0.75 to 0.50 for the single ensemble members. The results highlight again the
differences between the ensemble forecast and deterministic runs. In Piauí, there is more
dispersion among the stations inside the same state, especially in the first 15 days. The SI
of wind speed varies from 21 to 29% for the EM and from 24 to 34% for the single members.
The CC varies from 0.8 to 0.63 for the EM and from 0.73 to 0.42 for the single ensemble
members.
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Figure 7. ECMWF forecast error as a function of the forecast time at Piauí, where thin lines are the
ensemble members, and the solid thick lines are the arithmetic ensemble mean. Plots on the left
(A,D) show the scatter error through the scatter index (SI). Center plots (B,E) show the correlation
coefficient. Plots on the right (C,F) show bias (in m/s and hPa). The top plots present the wind speed
errors while the bottom plots present the atmospheric pressure errors. The same color standards of
Figure 2, for each station, are retained.

Regarding the systematic errors, note the differences between the two clusters, re-
flected in the bias plots of Figures 6C and 7C. In Maranhão, bias is mostly positive, reaching
2 m/s within the first forecast days—which indicates that ECMWF forecast winds are more
intense than measurements (model overestimation). However, in Piauí, where the winds
have been shown to be more intense than in Maranhão, the bias plot has negative values,
i.e., the observations are more intense than ECMWF forecast winds (model underestima-
tion). This feature suggests that the NWP global simulations from ECMWF ENS-Extended
tend to provide similar wind intensities in both states, while the observations prove they
are significantly different, with Piauí containing stronger winds. Therefore, despite the
quality of the ensemble forecast, the local characteristics and differences of surface winds
in the northeast of Brazil are not properly simulated.

Another important limitation of the extended 46 days ensemble forecast can be found
in the evolution of the error metrics throughout the forecast time, passing from day 15
to 16. The wind errors, in both states, show a very large jump at this boundary after
16 days, which reflects the different resolution of the model, from 0.2◦ to 0.4◦—already
found in Figure 5. The higher resolution in the first 15 days provides stronger winds than
the coarser resolution from days 16 to 46—clearly visualized in the bias plots. By analyzing
the entire forecast range from 0–46 days, this problem becomes more critical, since the
lower wind speed values, due to the model’s resolution, can be interpreted as a light wind
period approaching. Interestingly, such strong discontinuity found in the wind errors is
not present in the atmospheric pressure (hPa) error plots. The CC of pressure, for example,
smoothly decays with increasing forecast days. The bias plots reinforce this feature, where
the errors are nearly constant for the pressure. It is possible to conclude that the ECMWF
ensemble forecast provides quality predictions of surface pressure, which responds to
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large-scale atmospheric phenomena, whereas the surface winds suffer from errors due to
the influence of regional scales that require higher resolution and proper physics.

Therefore, for the post-processing algorithm to be attached to the output of the en-
semble forecast, it must be able to bias correct the ensemble mean of the wind speed by
learning the local characteristics from measurements, while still preserving the proper large
scale prediction coming from the NWP model.

4. Neural Networks for Post-Processing

The neural network (NN) model selected for post-processing the ECMWF ensemble
forecast was a Multilayer Perceptron Neural Network (MLP-NN, [26]), which is a simple
and powerful nonlinear mapper suitable for operational applications. A complete theo-
retical description is provided by Haykin [48] and several applications in environmental
sciences are found in Krasnopolsky [49]. Samet et al. [13] confirm that MLP-NNs are widely
utilized in wind forecasting applications.

The MLP-NN is a feed-forward artificial NN that uses supervised learning, containing
three or more layers: one input layer, one or more hidden layers, and one output layer. The
next equation (6) presents the model, where xi are the inputs, yq the outputs, and a and b
are the model parameters to be optimized. The total number of inputs and outputs are d
and m, respectively. The first summation represents the “neuron” of the network, with the
activation function hyperbolic tangent (tanh), where k is the total the number of neurons.
Among the many activation functions available, tanh have shown very good results while
still preserving the simplicity, as its derivative 1− tanh(x)2.

NN(x1, x2, · · · , xd; a, b) = yq = aq0 +
k

∑
j=1

aqj.tanh

(
bj0 +

d

∑
i=1

bji.xi

)
; q = 1, 2, . . . , m (6)

The optimization of a and b was done with backpropagation training using gradient
decent. In fact, it has been found that the stochastic gradient decent that evolved to the
adaptive moment estimation (ADAM) described by Kingma and Ba [50] provides better
results and thus it was the method selected for this study. ADAM is especially suitable
for sparse gradients and variables with strong noise components, which is the case of
the environmental problem of this paper. Inspired by [34,51], the target variable of the
MLP-NN model is not directly the wind speed but the residual, i.e., the difference between
the ECMWF forecast and the observations—illustrated by Figure 8. Therefore, the NWP
modeling from ECMWF provided the ensemble mean as the first outcome that was directly
compared and subtracted from the local measurements to build the residue signal. When
the hybrid model is running, the ECMWF provides the EM that is added to the residue
forecasted by the NN, to finally compose the forecast of wind speed. Due to the chaotic
process of the atmosphere and lack of high-frequency predictability after two weeks of
forecast [52], the daily average was used in the hybrid model—which avoids the excess of
noise that contaminates the model.

At this stage, it is important to discuss the construction of input and output dataset for
training. The data structure is represented by D, described below, containing d variables
coming from the ECMWF forecast (wind, temperature, humidity, and pressure) and n
records (or quality-control measurements selected). In fact, the decision of D is more
complex due to the two additional dimensions associated with the forecast lead time and
several stations (positions) inside each cluster.

D =


| X1 . . . Xd

x1
...

xn

∣∣∣∣∣∣∣
x11 . . . x1d

...
. . .

...
xn1 . . . xnd

 , xi = (xi1, xi2, . . . , xid) ∈ Rd , Xj =
(
x1j, x2j, . . . , xnj

)T ∈ Rn (7)
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The NN prediction for each forecast lead time can be done independently, building
one NN per forecast time, which would preserve the space Rd,n but it would increase
the number of NNs—leading to a cumbersome operational system. On the other hand, a
new variable Xj containing the information of forecast horizons (1 to 46 days, once daily
averages have been used) can be added to the NN, concatenating the forecast dataset into a
new column X and increasing n, related to the number of lines of D. Hence, the new space
becomes Rd+1,n×46, where all the forecast times are appended into the NN and, therefore,
one single NN model can predict different forecast leads—which has been the approach
selected for this study.

Wind 2022, 2, FOR PEER REVIEW 11 
 

 

 
Figure 8. Schematic of the hybrid model implemented. The ECMWF ensemble forecast (green) pro-
vides the arithmetic ensemble mean of the members that is added to the NN forecast (red, the resi-
due). If the observations had no uncertainties and errors, one could describe that the NN predicts 
the error of the ECMWF ensemble forecast, which is added to the original prediction to compose 
the final forecast product, being the wind speed the final target variable. 

At this stage, it is important to discuss the construction of input and output dataset 
for training. The data structure is represented by 𝐃, described below, containing 𝑑 vari-
ables coming from the ECMWF forecast (wind, temperature, humidity, and pressure) and 𝑛 records (or quality-control measurements selected). In fact, the decision of 𝐃 is more 
complex due to the two additional dimensions associated with the forecast lead time and 
several stations (positions) inside each cluster. 

𝐃 = | 𝛸  … 𝑋𝙭⋮𝙭 𝑥 … 𝑥⋮ ⋱ ⋮𝑥 … 𝑥   ,   𝙭 = (𝑥 , 𝑥 , … , 𝑥 ) ∊ ℝ   ,   𝑋 = 𝑥 , 𝑥 , … , 𝑥 ∊ ℝ  (7)

The NN prediction for each forecast lead time can be done independently, building 
one NN per forecast time, which would preserve the space ℝ ,  but it would increase the 
number of NNs—leading to a cumbersome operational system. On the other hand, a new 
variable 𝛸  containing the information of forecast horizons (1 to 46 days, once daily aver-
ages have been used) can be added to the NN, concatenating the forecast dataset into a 
new column 𝛸 and increasing 𝑛, related to the number of lines of 𝐃. Hence, the new 
space becomes ℝ ,   , where all the forecast times are appended into the NN and, 
therefore, one single NN model can predict different forecast leads—which has been the 
approach selected for this study. 

Similarly, the spatial modeling for each cluster (Maranhão and Piauí) leads to three 
options in the NN: 
(i) Build one NN for each station, independently. Therefore, the datasets of neighboring 

stations are not included into the NN training and modeling, i.e., the inputs (ECMWF 
forecast) and outputs (residue of wind) are restricted to that specific station. 

(ii) Build a large NN where inputs are the information from all the stations inside the 
cluster (10 for Maranhão and 6 for Piauí) and the outputs are the residues of wind 
speed for the same stations. In this way, the dataset 𝐃 is expanded in 𝛸 , where 𝛸  
corresponds to the environmental variables at each station. The data space for this 
approach, for example at Maranhão with 10 stations, would be ℝ   , .  

(iii) Build one NN where inputs and outputs are variables for each station, which are one 
by one appended to generate a new dataset, where two new variables’ latitude and 
longitude are included to distinguish the stations. In this case, the training consists 
of an NN model passing through each station inside the cluster during the process. 
Note that the training data is constructed by appending the dataset of each station 
consecutively, so that the NN minimizes the error at the whole group of stations. 
Following the same example at Maranhão with 10 stations, the new space becomes ℝ , . It is important to highlight that in (ii), the number of input variables and 

Figure 8. Schematic of the hybrid model implemented. The ECMWF ensemble forecast (green)
provides the arithmetic ensemble mean of the members that is added to the NN forecast (red, the
residue). If the observations had no uncertainties and errors, one could describe that the NN predicts
the error of the ECMWF ensemble forecast, which is added to the original prediction to compose the
final forecast product, being the wind speed the final target variable.

Similarly, the spatial modeling for each cluster (Maranhão and Piauí) leads to three
options in the NN:

(i) Build one NN for each station, independently. Therefore, the datasets of neighboring
stations are not included into the NN training and modeling, i.e., the inputs (ECMWF
forecast) and outputs (residue of wind) are restricted to that specific station.

(ii) Build a large NN where inputs are the information from all the stations inside the
cluster (10 for Maranhão and 6 for Piauí) and the outputs are the residues of wind
speed for the same stations. In this way, the dataset D is expanded in Xj, where Xj
corresponds to the environmental variables at each station. The data space for this
approach, for example at Maranhão with 10 stations, would be Rd×10,n.

(iii) Build one NN where inputs and outputs are variables for each station, which are one
by one appended to generate a new dataset, where two new variables’ latitude and
longitude are included to distinguish the stations. In this case, the training consists
of an NN model passing through each station inside the cluster during the process.
Note that the training data is constructed by appending the dataset of each station
consecutively, so that the NN minimizes the error at the whole group of stations.
Following the same example at Maranhão with 10 stations, the new space becomes
Rd+2,n×10. It is important to highlight that in (ii), the number of input variables
and dimension d is significantly augmented (10 times in Maranhão), whereas in
(iii), the number of variables is just d + 2, while the number of records is significantly
expanded—following a similar approach of space/time trade proposed by the regional
frequency analysis [53].

There are pros and cons in each option described above. The first option (i) is the worst
strategy because it ignores the neighboring data that could help improve the optimization,
wasting the opportunity to increase the training dataset. The second option (ii) has the
benefit of joining all the information inside the cluster. However, by appending the columns
with several stations (increasing Xj), if one station has missing data, it compromises
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the entire record i, which means that only instants when all the stations have quality
measurements could be used as training records. It is well-known that observations often
suffer from outliers and wrong data that are excluded in the quality control process, as
well as the initial/final dates of data collection can differ from one station to the other, thus
limiting the final number of days used for training. Moreover, higher dimensions d usually
require larger networks with more neurons, as described by Krasnopolsky [49], which also
demand more data for training. Therefore, expanding d while maintaining n is actually
the opposite of what a good strategy should consider. Additionally, the NN structure of
(ii) only allows the model to make predictions for the specific stations utilized for training,
i.e., if one new station is included in the future, the model must be re-trained, and the new
point can only be included when gathering enough duration to time-match with other
stations and provide a sufficient coincident period of time for training.

The third approach (iii) combines several advantages and thus has been selected for
the NN model implementation. The first and most important is the option of including
all the stations for NN training no matter the duration of measurements or data gaps. By
training the NN model at different stations with information of latitude and longitude,
the NN performs a spatial mapping (position becomes a new dimension), so whenever
new points are included in the future, the existing model can directly generate forecasts
for these new positions. Furthermore, the new points with recent and short data collection
can also be included in the NN re-training without having to modify the data structure or
number of input/output variables. Therefore, each station bringing its measurements to
the NN training contributes to the regional modeling by inputting short-scale information
and improving the resolution at the region. Another important advantage of (iii) is that the
NN preserves a small dimension (d + 2) while increasing the data records n for training
during the process of appending all the stations into a single dataset. In summary, latitude
and longitude are two dimensions for spatial modeling, and time and forecast lead time are
two additional dimensions as well. This data structure and training strategy was conceived
by Dr. Vladimir Krasnopolsky in [34], which allowed the successful construction of a global
NN model in [51].

In practical terms, two separated NNs were built and trained for each cluster (Maranhão
and Piauí) and, due to the effect of predictability profile and model resolution on the wind
forecast and intensity, it was decided to separate the 46 days of range into two slices of
1–15 days and 16–46 days. Therefore, four NNs were developed to cover two forecast ranges
and two clusters. The last step was to include the methodology proposed by Krasnopolsky
and Lin [54], who argues that an ensemble of NNs outperforms single NN models alone.
The NN ensemble construction can be easily implemented by managing the random initial-
ization of a and b through the “seeds”. It is possible to generate several l-independent NNs
with different random initial conditions and, as proven by [15,54], the arithmetic mean of
results provides better prediction than using a single NN alone. Additionally, the spread of
those l predictions provide information of uncertainty in the forecast, similar to what is
traditionally evaluated in NWP models. Moreover, by generating a large number of NNs,
it is possible to exclude the networks with poorer performance and pick only the networks
with the best results. This methodology has been implemented for the NN modeling so, in
terms of outputs, the schematic of Figure 8 can be expressed as:

NEM = EM + NNl(p1, p2, · · · , pr) (8)

where EM is the ECMWF ensemble mean and NNl is the arithmetic mean of l networks
with r parameters p. The result of the hybrid system, NEM, is the final wind forecast.

Expanding the discussion of dimensionality of the NN model and training data,
but now focused on the input variables with meteorological information, it is crucial
to investigate how the ECMWF outputs will feed the NNs. Being an ensemble with
51 members (50 perturbed members plus the control) and considering the variables wind
(u and v components), pressure, temperature, and humidity, the number of environmental
inputs for the NN reached 255. Zaki and Meira [55] reinforce the challenges and possible
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problems involving high dimension, which is especially critical in operational applications
that require reliable and robust models. Thus, a feature selection was conducted to: (i) an-
alyze the importance of each component of meteorological information (wind, pressure,
temperature, and humidity) and how this inclusion/exclusion affects the performance
of the model, first in the input and then in the output;(ii) analyze if the 51 members are
necessary as inputs or if it is viable to replace them by their probabilistic moments (mean,
variance, skewness, and kurtosis), such as applied in [34,51]. It was found that including all
the 51 members significantly increases the number of inputs which demands larger NNs,
which lead to training difficulties. In practical terms, the performance in the training set
was satisfactory while in the test set it was compromised. Consequently, it was safer to
move forward with the probabilistic moments, since these captured the characteristics of
the 51 members while reducing the number of variables.

The next Figure 9 illustrates part of the feature selection process, where the importance
of each probabilistic moment from each meteorological variable relates to the target variable
(residue of wind speed, in black in the figure). The feature analysis takes into account the
Pearson’s Correlation and the Predictive Power Score. Besides the straightforward proba-
bilistic moments, the L-moments [56] were included, due to being less affected by outliers
in the time-series. Figure 9 shows a nearly equal importance of temperature, humidity, and
pressure into the outputs. Regarding the inputs, the first moment (mean) shows a greater
importance of humidity and temperature, and lower importance of atmospheric pressure.
This pattern completely changes for the second moment (variance), where humidity loses
its relevance. Moving to higher moments, the impact of variables drops significantly but
the zonal (u) component of the wind remains important. Nonetheless, when the skewness
of the ensemble members is different than zero (asymmetry), it can provide valuable in-
formation, once it directly affects the ensemble mean—a common effect at longer forecast
leads. Figure 9 and later results indicate that L-moments do not contribute to the NN
modeling when compared to the standard probabilistic moments.

The feature selection algorithm initially applied a methodology inspired by [57,58],
followed by the analysis of all the combinations of input and output variables, evaluated in
both clusters and through the 46 days of forecast range, considering the performance in the
training and test/validation sets. The best combination of variables gathered for inputs
was the ensemble mean (temperature, humidity, wind speed), variance (temperature, and
u and v wind components), and skewness (humidity, and u and v wind components). For
outputs, this was the wind speed, accompanied by the meridional component of the wind
only. This gave 10 environmental variables for the inputs, which also included the forecast
time, sine and cosine of time (to properly identify the time of the year and differentiate
seasons), and latitude and longitude—a total of 15 inputs. The number of outputs was two.

The NN training as well as other tests involving feature selection, optimization of the
number of layers and neurons (next section), and evaluation of final results were carefully
conducted with a proper data division into training set, test set, and validation set. The
most basic requisite was to train the NN model using records that were not selected for
testing. The leave-one-out cross validation method with three cycles (Figure 10A) was
implemented, where two thirds of the dataset was used for training and one third for
testing the network—with intercalated indexes that can be joined to reconstruct a test
time-series with the exact same time as the original one. However, such a method carries
a limitation of building training and test sets within the same time interval, i.e., both sets
correspond to the same atmospheric conditions inside an ergodic system.

It is extremely important to evaluate the NN considering a different time interval
and atmospheric conditions, in order to evaluate the extrapolation and generalization of
the model—which is critical for operational implementation. Therefore, a validation set
was built (Figure 10B), where the NN was trained and tested using two years of data, and
validated using a separated year. This strategy allowed for the simulation of a real forecast
in operation, for when the NN cannot be constantly trained. In reality, the validation set
evaluates the extreme scenario of not re-training the NN model for an entire year—which
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is not necessarily the real case with the NN being re-trained at least twice a year. The
total number of records in this three-year period was 46,656, which were used for the
model optimization and evaluation as explained. Therefore, the total input dimension was
46,656 × 15 and the output dimension was 46,656 × 2.
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5. Results

The NN methodology described in the last Section 4 proposed a relatively small
network with 15 inputs and 2 outputs, using a simple model such as the MLP. This is a key
strategy to allow training many NNs for each cluster, in order to build a final ensemble of
NNs. If a large and complex model had been developed, the ensemble approach would
not be viable under the computational infrastructure available. The remaining questions
are how many neurons at the intermediate layers are optimal and how to select the best
networks to compose the ensemble.
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5.1. Neural Network Architecture and Ensemble

A combination of different numbers of neurons (k) have been tested within one and
two intermediate layers: [5, 0], [10, 0], [20, 0], [50, 0], [100, 0], [150, 0], [5, 5], [10, 10],
[20, 20], [50, 50], [100, 100], [150, 150], where the two numbers inside brackets are related
to layers. Therefore, 12 different NNs were tested, each result being the average of 5 NNs
with different random initial conditions, composing a total of 60 NNs. All networks, even
the simplest ones, showed to be successful in reducing the systematic errors, with bias
close to zero—as expected. The differences between NN models were more evident when
SI and CC were analyzed. The next Figure 11 shows the effect of different numbers of
neurons into the two metrics, for the training and test sets, using one intermediate layer
initially. The results point to the optimum number of 20 neurons, the region between 20 to
60 neurons having the best performances. Above 60 neurons, the scatter error increases and
the correlation decreases, i.e., more complex NNs do not necessarily improve predictions.
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Figure 11. Analysis of the error as a function of the number of neurons at the intermediate layer.
Despite the curve indicating the best number equal to 20, the differences among tests are small, as
shown in the y-axis of the plots.

Increasing the number of neurons through the second layer severely compromised the
test and validation sets. Figure 12 is a good example of the impact of the NN’s complexity
on different sets. The figure shows scattered plots integrating the whole range of forecasts,
for the three-year period. Ideally, a perfect result should follow the principal diagonal with
the least spread as possible. When the most complex model with two layers containing
150 neurons was compared with the optimum model with one layer containing 20 neurons,
for the training set solely, one could conclude that the larger NN performed better. However,
when the scatter plot of validation set was included, it is clear that the lack of generalization
and poor extrapolation severely deteriorated the NN simulations. The simpler NN with
20 neurons, on the other hand, preserved very similar results in both sets—which ensures
better forecasts under operational use. It is important to remember that the goal of the
NN model is to either improve or to preserve the ECMWF forecast performance. A post-
processing NN model that adds error to the existing NWP forecast would be detrimental
and therefore unacceptable.

The small number of NN inputs and outputs combined with the optimum number
of neurons equal to 20 allowed the allocation of hundreds of NNs for training. Moreover,
having spare computational resources gave the opportunity to include additional exper-
iments related to the seasonality. As described in Section 2.1, the northeast of Brazil has
two very distinct seasons: a dry season with strong winds and a wet season with calm
winds. Considering that NNs perform better within homogeneous datasets under minor
extrapolations, the new tests consisted of training NNs for specific seasons. Therefore,
instead of one NN for the entire period, three NNs were used: one for the strong-wind
season (SWind, from August to December), one for the light-wind season (LWind, from
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February to July), and the last one preserving the original NN for the whole period (all-year,
AY). Such an inclusion made the initial four NNs (Maranhão/Piauí, for the forecast ranges
from 1–15 and 16–46) become 12 NNs, with the addition of seasonal tests; evaluated in
Figure 13.
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Figure 12. Scatter plots of NN simulations of wind speed (m/s) versus observations, comparing
different numbers of neurons, in the training set (left) and validation set (right). The top-left box of
each plot shows the number of neurons at one or two layers.

A total of 201 different seeds initialized the networks, for each of the 12 experiments,
which led to 2412 NNs being trained and evaluated. Figure 13 shows the results of the
three-year period, where the error metrics were calculated for each month of the year to
compare the NNs and the performances throughout the seasons. The ensemble mean from
ECMWF is included as reference, to highlight the NN models that are better/worse than
the ECMWF ensemble. The NNs trained for specific seasons were run for the whole year,
on purpose, to evaluate the NN application under completely different environmental
conditions used for training. As expected, the quality of the seasonal NNs was good
only when applied for the season it had been trained for. However, the characteristics of
deterioration of these NNs are very important to be investigated. As shown in the figure,
the error largely grows followed by the increase of the spread of the 201 NNs. On the
other hand, when the NN is performing well, the spread among NNs is very small and the
simulations are very similar. This result suggests that the NN architecture, when developed,
combined with the ensemble approach, will indicate future loss of predictability when
applied operationally in real time, which is a strategic advantage of great value.
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Figure 13. Wind speed (m/s) Bias (top) and RMSE (bottom) of the ensemble of NNs calculated for
each month of the year (x-axis). NN_AY is the all-year approach (blue); NN_SWind refers to NNs
trained during the strong wind season; NN_LWind refers to NNs trained during the light wind
season; EM is the ECMWF ensemble mean (red) used as reference.

Surprisingly, the seasonal NNs operating for the same months they were trained
did not over-perform the all-year NNs. One explanation is the amount of data selected
for training. When seasonal NNs are trained, the total dataset is subsampled to fit into
that time range, which reduces the number of records. As NNs depend on large datasets
for proper training, the NNs using the whole three-year period took advantage of the
larger amount of data. Moreover, the NN input variable containing the time information
allows the network to identify the meteorological patterns at each month of the year and,
combined with all available measurements for training, produced the best results. Figure 13
shows that all-year NNs have very low errors in every month, being always lower than the
ECMWF reference. The general error profile indicates the lowest values of RMSE during
the strong-wind season in Maranhão, and between May to August in Piauí. The variation
of monthly errors is more pronounced in Piauí than in Maranhão.

Based on previous results, it was decided to choose the all-year NN strategy, in blue at
Figure 13. However, the plot still shows 201 NNs per cluster, a high number of networks
that is not necessary for the ensemble composition, and which could add computational
time plus data management difficulties during the operational application. Therefore, a
20-member NN ensemble was proposed. A new algorithm was designed to source 20 NNs
out of the 201 networks available, based on a ranking composition using the error metrics
(Equations (2)–(5)) together with additional exclusion criteria. Since bias is a metric that
nearly all the NNs are very effective in reducing, it was used as an excluding criteria and
not selected for the ranking composition; otherwise, a small difference of for example 0.0001
m/s would exclude certain networks, while the scatter error, correlation coefficient, and
robustness throughout the months are more important criteria. The ensemble composition
algorithm does not consider the assessment in the training set, only over the test and
validation sets, through the weighted average (2Dtest + Dval)/3. The algorithm follows the
steps:

1. The NNs with normalized bias above 10% are excluded, including the mean value
(through forecast range) as well for each forecast lead time.
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2. The NNs with bias or RMSE worse than the ECMWF ensemble forecast are excluded,
i.e., no NN model can risk deteriorating the original ECMWF prediction.

3. Additionally, the algorithm analyzes each month of the year, excluding NNs with bias
and RMSE worse than ECMWF.

4. The algorithm runs the error metrics through the forecast lead time (1 to 46 days)
excluding the worst NN at each forecast lead (day), which prioritize networks more
consistent over the months.

5. The last monthly swap is done at this stage, excluding the single worst network at
each month.

6. After the exclusions of steps one to five, the algorithm takes the remaining networks
and builds two ranks with the best SI and CC, calculating the intersection of the two
lists. The top 20 networks are finally selected to compose the ensemble of NNs.

This methodology was conceived to be applied to other applications and NN ensem-
bles, not only to the wind forecast of this paper. The results of the modeling are composed
of the arithmetic ensemble mean of the 20 NN members, for each state (Maranhão/Piauí)
and forecast range (1–15 and 16–46 days).

5.2. Evaluation of Results

The results were assessed using the error metrics of Equations (2)–(5), applied to
the training, test, and validation sets. The original ensemble mean of ECMWF was also
evaluated for the same dataset, in order to provide a direct comparison of forecasts before
and after the post-processing using the NN models constructed. The analyses integrated
the model performances at all the stations inside each cluster. Figure 14 presents the results
for short to mid-range forecasts from 1 to 15 days, and Figure 15 for long-range forecasts
from 16 to 46 days. Plots are shown with bias in the left plots, where results close to zero
are the most accurate; RMSE is at the center, where lower values are better; CC is in the
right plots, where values close to one are those with the best predictions.
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Figure 14. Assessment results of the ensemble of NNs when compared to the initial ECMWF forecast,
for the forecast range from 1 to 15 days. Wind speed (m/s) Bias (lest), RMSE (center), and correlation
coefficient (CC; right) are presented. Colors refer to: NN training set in dashed blue, NN test set in
dashed-dotted cyan; NN validation set in green; the ECMWF forecast in red.
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Figure 15. Assessment results of the ensemble of NNs when compared to the initial ECMWF forecast,
for the forecast range from 16 to 46 days. Wind speed (m/s) Bias (lest), RMSE (center), and correlation
coefficient (CC; right) are presented. Colors refer to: NN training set in dashed blue, NN test set in
dashed-dotted cyan; NN validation set in green; the ECMWF forecast in red.

Initially, it can be seen the success of the NN models in removing bias. In both
states and forecast ranges, the NNs have very small bias, between −0.1 and 0.1 m/s. The
difference of NN results to the original ECMWF ensemble mean is impressive, especially
in Piauí—the state where ECMWF has the largest underestimation, around 1.3 m/s. The
RMSE that usually starts with low values in the nowcast and naturally grows towards the
longer leads (Figure 14) also highlights the improved performance of the NN simulations.
In Maranhão, the RMSE from 1.3 to 1.6 m/s was reduced to 0.9 to 1.4 m/s, a 10 to 30%
improvement. In Piauí, the RMSE values from 1.7 to 1.9 m/s were reduced to 0.9 to 1.3 m/s,
a more significant improvement of 30 to 50%.

Figure 14 also shows the expected decay of correlations with time, and the NNs
once again enhanced the predictability when compared to the original ECMWF ensemble
forecast, especially in the state of Maranhão. For this cluster, the CC from 0.89 to 0.80
was raised to 0.94 to 0.85. In the state of Piauí, Figure 14 shows a smaller improvement
in correlation coefficient, indicating the difficulty of gaining performance in this cluster.
Nonetheless, there is no lead time or error metrics where the NN modeling does not present
better results than the original ECMWF forecast.

The analysis at longer forecast ranges is considerably different than at short and mid
ranges. Lorenz [52] and Kalnay [42] explain in detail the chaotic process of the atmosphere
and the accumulation and propagation of prediction errors towards forecasting days,
which is clear in the first two weeks. Beyond this horizon, Robertson et al. [59] discuss the
challenges of subseasonal forecasts with large uncertainties. Thus, from 16 to 46 days, the
forecast errors are already high and reasonably similar in magnitude. Figure 15 confirms
this pattern, where the RMSE and CC have small variations in the forecast range. The NNs,
once again, are very effective in removing the systematic error, with resulting bias close to
zero in both clusters. The RMSE of ECMWF in Maranhão, around 1.5 m/s, was reduced to
1.3 m/s in the NN validation set and 1.2 m/s in the NN test set. In the state of Piauí, the
large RMSE between 1.7 and 1.8 m/s was reduced to 1.2 m/s in the NN validation set and
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1.1 m/s in the NN test set—a better improvement than in Maranhão. The CC, in contrast,
presents a more significant increase in Maranhão than in Piauí, especially the NN test set.

Joining the analyses from Figures 14 and 15, it is possible to confirm that the ensembles
of NNs were able to nearly remove the bias and sustain this accuracy throughout the whole
forecast range, from 1 to 46 days. Similarly, the NN modeling could reduce the RMSE to
values around 1 m/s, and below 1.4 m/s for all the forecast leads in both states. There
were no drawbacks or cost associated with the NN implementation when compared to the
original ECMWF ensemble, which was confirmed across all the metrics, months of the year,
forecast times, and clusters.

6. Final Discussion

Results of Figures 13–15 summarize a NN forecast product developed through mul-
tiple steps, including the initial quality control and clustering of stations, construction of
a dataset for training, dimensional analysis, development of a proper NN architecture
and training strategy, and development of an ensemble of NNs. In fact, the final forecast
consisted of a hybrid product (Figure 8 and Equation (8)), joining the NWP from ECMWF
and the post-processing NN model. This part is important to be emphasized because the
large-scale and mid-to-long range atmospheric modeling is mostly performed by the global
ensemble forecast of ECMWF, with the NN in charge of bias-correction and regionalization
of this initial prediction. The NN model construction could preserve the simplicity of the
MLP-NN, developed by Rumelhart et al. [26], with a theoretical description by Haykin [48],
and environmental application at Krasnopolsky [49], which has been fundamental to the
success of the tests involving the NN architecture and data structure [55], and the NN
ensemble [54].

One of the most critical problems in the EMCWF prediction, discussed in this paper, is
the severe underestimation of wind speeds in the state of Piauí. This problem was solved
with the NN ensemble, with improved predictions for the whole forecast range from 1
to 46 days. Besides Figures 14 and 15 showing the bias, Figure 16 presents a real-case
simulation (reforecast) for a station in the state of Piauí, comparing the initial ECMWF
forecast with the results from the post-processing NN. The underestimated ECMWF winds
between August to December are visualized with yellow colors in the Figure (winds
around 9 m/s), while the bias-corrected winds from the NNs are seen with orange colors
(winds around 11 m/s). As a non-linear mapper, the NNs do not uplift the wind events
equally or with constant rate, so the model captures the local weather patterns in the
given environmental input variables, to properly bias-correct the ECMWF forecast when
necessary.

The success of the NN post-processing model goes beyond the bias correction, as
pointed out by Figures 14 and 15. The RMSE could be reduced and CC increased, with the
performance of test and validation sets ensuring the good generalization and robustness
of the NN ensemble. The state of Maranhão had the best increase of CC while the state
of Piauí had the best RMSE decrease—which reflects the small differences in the local
climate in both states. The state of Piauí has less influence of the coastal orientation,
orography, and consequently, the regional effects—having a more direct response to large-
scale meteorological events, modeled by the global ECMWF ensemble. Such a prediction,
as presented, has systematic errors that could be properly corrected by the NN model;
however, the oscillation patterns, which influence the correlation coefficient, are mostly
affected by these large-scale global phenomena as well, and so the NN as a local model
could not map this part of the signal. A larger space-time machine learning model, covering
a broad domain, could potentially capture this part of the forecast in Piauí. In Maranhão,
however, the regional influence is more pronounced, so the CC could be better improved
by the NN model; the bias, however, is not as high as in Piauí, so the contribution from
the NN is relatively low. Since RMSE is a composition of scatter and systematic errors [60],
the percentage of decrease of RMSE in Maranhão is also lower than the same in Piauí.
Nevertheless, the NN results in Maranhão for the 15-day forecast have the same RMSE as
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the ECMWF forecast for 8 days, i.e., the NN post-processing represents a gain of one week
in predictability.
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Considering the absolute differences of error metrics between the NN results and
ECMWF forecasts, the mostly improved forecast would be the longer range from 16 to
46 days. Nevertheless, even using the hybrid modeling proposed in this paper, this range
remains a great challenge. This can be visualized through the differences between the
NN test set and validation set. While in the range of 1–15 days, both sets have very
similar values; the results completely change for the 16–46 days range, where the test set
shows better values than the validation set. Such a difference suggests that the NN lacks
generalization in the long-range when compared to the short-range forecast. This feature is
more pronounced in the CC and RMSE, and not in the bias plots, so the NN model remains
a good bias-correction tool with proper generalization even in the long-range. The impact
seen in the CC and RMSE for long ranges reflects the general lack of predictability and
accumulated chaos in the atmosphere that has been a meteorological challenge, especially
in tropical regions.

Although a direct comparison of forecasting performances with previous studies is not
possible, due to different locations and forecast ranges, it is still important to contextualize
our results and method with other references and algorithms. For the short-range segment
shown in Figure 14, the RMSE in the present study varied from 0.8 to 1.0 m/s and bias
was between −0.1 and 0.1 m/s. The wind forecast obtained directly using the numerical
model WRF described in [10] resulted in an RMSE between 1.5 and 2.1 m/s within the 48 h
range. Using wavelet decomposition and recurrent neural network, [12] we obtained an
RMSE from 0.76 to 2.03 m/s. At very short-term forecasts using 10 and 5 min wind sample
intervals, [13] this produced an RMSE from 0.03 to 0.76 m/s, with the best performance
obtained with wavelet transformation of MLP models using two training algorithms,
Levenberg–Marquardt and Bayesian Regularization. Authors in [14] have shown RMSE
values from 0.07 to 1.56 m/s with the best results from a new hybrid decomposition
technique (HDT) combined with an ensemble empirical mode decomposition adaptive
noise (CEEMDAN) and empirical wavelet transform (EWT). Authors in [15] have reached
RMSE values from 0.52 to 0.89 m/s and the best performance with a wavelet analysis
technique combined with negative correlation learning neural network and an ensemble
structure optimized using particle-swarm optimization WAT-NCL-PSO. Authors in [16]
obtained RMSE from 0.33 to 1.15 m/s using an NN model integrated with a modified
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firefly algorithm and particle swarm optimization. Authors in [17] obtained RMSE from
0.014 to 1.32 m/s and reported the best results using a wavelet packet decomposition,
density-based spatial clustering of applications with noise, and the Elman neural network
(WPD-DBSCAN-ENN), and [18] obtained RMSE from 0.26 to 0.89 m/s with the best results
using singular spectrum analysis and general regression neural network with CG-BA (SSA-
CG-BA-GRNN), where CG-BA is a modified bat algorithm (BA) with the conjugate gradient
(CG) method developed to optimize the initial weights. These studies suggest that there is a
wide range of algorithms with great potential to further improve our wind forecast, moving
to more complex models and signal decomposition. Furthermore, instead of searching for
one single method, [20] successfully combined a data preprocessing technique with a linear
combination of multiple prediction models to produce their forecast—which is a promising
multi-model ensemble approach to be implemented in the next steps of this present study.

7. Conclusions

This paper has investigated the development of a neural network (NN) post-processing
model attached to a traditional global forecast (ECMWF) for bias-correction and regionaliza-
tion of wind speed forecasts (daily means) with range from 1 to 46 days. The hybrid model
uses a methodology where NNs simulate the residual signal that is added to the ECMWF
forecast to compose a final wind prediction. The development of a 20-member ensemble of
MLP-NNs, for two clusters (Maranhão and Piauí), and two forecast slices (1–15 days and
16–46 days), proved to be very efficient in reducing the bias in both states while covering the
whole forecast range—where the analysis of training, test, and validation sets confirmed the
proper generalization and robustness of the model. The dimension and architecture of the
NN consist of a strategic part of the work, which was balanced with the computational cost,
and allowed the construction of an ensemble of NNs without compromising the feasibility
of its operational implementation. In this sense, there are two key achievements of the
hybrid model developed: (1) first is the ability of providing very accurate local forecasts
with great generalization at mid-to-long forecast ranges; (2) the successful operational
implementation of such a model for daily forecasts, preserving the simplicity and low
computational cost, represents a good example of a Research-to-Operation framework
that will benefit the northeast of Brazil and the wind energy sector. We conclude that
the ensemble of MLP-NNs described in this paper is a powerful tool to improve global
NWP forecasts when multi-year and high-quality local observations are available. The
methodology is currently being expanded to include options of signal decomposition [61]
and wavelet transform [62,63] combined with recurrent and convolutional neural network
models.
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