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Abstract: Wind-induced loss modeling plays a key role in insurance risk management. Hence, a
flexible vulnerability framework is to be developed for residential and commercial buildings. This
model predicts the losses induced by hurricane wind pressure, wind-borne debris and wind-driven
rain. Twenty-five different key variables of the buildings and environment are used as attributes
for the simulations. Model results are validated using the Florida Public Hurricane Loss Models
(FPHLM) and HAZUS wind vulnerability functions. New contributions include (1) a Markovian
roof-aging model to address decreases in roof performance due to aging, and (2) occupancy-specific
interior value models based on FEMA Normative quantities for the systematic evaluation of interior
value applicable to archetype buildings. A simple wind debris impact model and wind-driven
rain intrusion model is also introduced. The influence of the number of stories, roof aging, and
window vulnerability resulting in damage are investigated in this article to ensure consistency of the
results. The proposed framework enables insurance loss modelers to make judicious choices of input
variables based on partial or detailed knowledge about the building to model losses. Future research
should focus on validation and calibration using good-quality insurance claims data.

Keywords: wind vulnerability functions; hurricane; damage ratio; catastrophe risk; hurricane
insurance loss

1. Introduction

Every year the United States faces threats from hurricane events. Researchers empha-
size the increased risk due to climate change and constant exposure growth along the coast
of the United States [1–3]. Dollar losses in the year 2020 related to hurricanes were close
to $20 billion, and totaled $92 billion in 2017 [4]. Recently, severe storms such as Hurri-
canes Ida, Irma, Maria, Michael and Matthew have caused extensive damage to insured
properties [5–7]. Post-damage surveys [5–10] consistently report roof damage [7–10] to
buildings. Hence, it is important to understand the various factors that influence losses
during hurricane events.

Risk management of the built environment is a challenging problem from an engi-
neering perspective [11–17], since it involves several uncertain parameters [18–21]. These
are mainly: actual loads acting on the structure [22–39], building damage due to impacts
from flying debris [40–50], responses of roof-to-wall connections [51–55], increased internal
pressure and wind loads [24–26,37], subsequent water intrusion [11–17,56–62], amplified
financial loss [19–21] and even construction deficiencies causing water intrusion losses [56].
Researchers have relied on fragility-based approaches [11–17] to propagate parameter un-
certainties to eventual dollar loss. The insurance industry relies on proprietary catastrophe
models which provide a vulnerability module as a black box. Popular public loss predic-
tion models available for researchers are HAZUS and FPHLPM [11–17]. The vulnerability
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modules in these models rely on the fragility of components and damage states to obtain a
probabilistic damage ratio (DR, which is the ratio of dollar loss to the value of the building).
Our model presented in this article addresses all factors discussed above, by using component
vulnerability and without modeling the fragility or damage states of the building.

While the loss models provide a sound framework, it is important to study individual
factors which affect the performance of components of the buildings under hurricane forces.
This will improve the accuracy of loss models, increase knowledge on retrofit and improve
return on investment. Insurance claims data studies indicate an increase in losses with
the age of the building [14,19]. In addition, there is research on roof aging [63–65], roof-
condition data collected from in-use buildings [63–65] and roof performance [66–71], there
is limited research on integrating this knowledge in hurricane loss models. Results adopted
from experimental studies [51–55] and statistical models [67,71] are used in loss studies
without addressing aging or otherwise treating aging in an abstract sense. Markovian
chain-based aging models [72–75] are popular in civil engineering. We can integrate aging
models with data obtained from in-use roofs [63–65] to capture uncertainties due to aging
in hurricane losses.

Catastrophe models [11–17] use damage ratio values to evaluate risk. Damage ratios
in turn are obtained by dividing dollar loss with the actual or insured value of the building.
Discrepancy in the actual value of the building may result in erroneous damage ratio
calculation or insurance premium calculations [14,16]. Buildings have a wide variety of
construction features—partition walls, floor finishes, wall finishes and HVAC to name a
few [76,77]. It is difficult to model the interior value of all the buildings accurately without
close inspection. However, loss modeling studies will need better estimates of the interior
value of the building, if the information available is limited—for example, occupancy type
and footprint. A research study reported in the FEMA P58 methodology [76,77] provides
extensive research and data on normative quantities based on a survey of thousands of
buildings of each occupancy type. Normative quantities provide the percentile quantity
values of major items in the building. It is presented for the unit area or unit volume of the
building. In addition, RSMeans data [78] provide the unit rates for different components.
Combining information from such sources will improve the prediction of the interior value
of the building.

Conventional models such as FPHLM and HAZUS rely on the fragility of components
and damage states to arrive at dollar losses in buildings. Our framework presents a new
approach by modeling component vulnerability to produce damage ratio functions or
vulnerability functions for archetype buildings. Since the roof is an important defense
mechanism and there is limited research on roof aging, we study the effects of roof aging
on hurricane vulnerability. A new contribution is made to address deterioration of the roof
and capacity reduction using a Markov chain model. In addition, FEMA P58 methodology
is used to model the interior value of archetype buildings. A simplified debris impact
model and rain intrusion model are implemented. The framework is executed in the high-
performance computing facility, the Palmetto Cluster, at Clemson University using the
Matlab platform. The results of vulnerability models for the buildings from this study are
validated using public models such as HAZUS and the Florida Public Loss Model. Future
work will involve validation and calibration using good-quality claims data, which can
provide the necessary engineering properties of the buildings that are required as inputs.

2. Materials and Methods

The damage ratio of a building can be represented as a function of wind speed, material
properties, debris environment and properties of rainfall as shown below.

DR = f (M, W, R, C) (1)

Here, M represents the material properties which includes wind uplift performance,
debris impact resistance and resistance to rain intrusion. W represents the wind load acting
on the components, which is a function of the wind speed, terrain and geometry of the
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building. R represents the properties of the rain, which is critical for determining the
amount of rainwater intrusion and interior loss; C represents the cost of installation of
individual components of the building used to determine the value of the building and
repair cost. The framework and variables for the catastrophe model should be able to
accommodate the variety of categories and sub-categories of elements of the building. The
proposed framework runs as a five-step process as shown below in Figure 1. The five
important steps [11–17] are: 1. Building Model 2. Demand Model 3. Damage Evaluation 4.
Consequence Evaluation and 5. Damage Ratio evaluation. The main variables used in the
models are listed in Table 1.
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Table 1. Description of variables.

Variable Description Units

DR Damage Ratio -
P0 Estimated mean capacity of the component psf
ϕ Factor of Safety of a component -
P Nominal load on the component determined based on ASCE 7 psf or lb
RFage Reduction factor for age of the component -
Cn Normalized Condition for age -
σ Standard deviation of capacity psf
q Wind pressure psf
kz Topographic factor from ASCE 7 -
w Wind speed mph
GCpe External pressure coefficient -
GCpi Internal pressure coefficient -
z Height to the location where wind speed is calculated ft
zg Nominal Height to the atmospheric boundary layer ft
α Power law exponent based on ASCE 7 -
K Tachikawa number -
ρ Air density lb/ft3

g Acceleration due to gravity ft/s2

hm Thickness of the debris ft
ρm Density of the debris lb/ft3

x∗ Dimensionless horizontal displacement -
x Debris flight distance -
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Table 1. Cont.

Variable Description Units

wd Speed of debris ft/s
C Coefficient based on shape of debris -
RAF Rain Admittance Factor -
Vi Volume of rain water ft3

IR Intensity of rain -
Afw Area of failed window ft2

di Deficiency in window -
Fij Factor for rain water calculation -
θ Angle of attack of wind deg.
Arc Actual failed area of roof cover ft2

Ars Actual failed area of roof sheathing ft2

Apfrc Area of failed roof cover projected in the vertical plane ft2

Apfrs Area of failed roof sheathing projected in the vertical plane ft2

Rrc Factor to address secondary rainwater penetration for roof -
Di Quantity of Damage to the ith component ft2 or number
Qi Quantity of the ith component in the building ft2 or number
Ci Cost of repair of the ith component in the building Dollar
Nc Total number of components in the building -

This model primarily serves the purpose of insurance loss modeling, and the building
description in the insurance portfolio may be detailed or abstract. Hence, the framework
should be able to model buildings with limited descriptions and those with detailed
descriptions. Monte Carlo (MC) simulation forms the core of the framework. The final
results will carry the latent uncertainties in each of the variables described. The final
products are obtained as functions of wind speed; these are equivalent to the peak gust for
a given hurricane wind event at a location. An overview of the MC simulation to determine
the losses is given in Figure 2.

2.1. Building Model

This section describes the main components of the building and their properties that
are included in the model.

2.1.1. Variables in the Building Model

The main items of the building model are the dimensions of the building, the roof,
window and wall components, discretization of the components and their resistance ca-
pacities. These values are basically derived from the key variables used as input to the
building model. These key variables are: 1. Occupancy 2. Year of construction 3. Number
of stories and 4. Construction type. These properties are also known as primary modifiers
in the insurance industry’s terminology. These properties are chosen because they play
important roles in determining the resistance of the building components, the dollar value
of the building and repair cost after damage.

Other important variables are design wind speed, roof construction type, window
protection, wall cladding, percentage area of windows, age of the roof, roof maintenance
and debris environment. Multiple factors influence the loss; however, the scope of the
study is currently limited to the above-mentioned variables. The quantity and capacity of
the components are determined based on the variables. The roof components—roof cover
and roof deck (or roof sheathing in case of residential wood construction)—are discretized
as rectangular elements.
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Mean Resistance Capacity for Wind Uplift

To develop a general capacity model, the best estimate of capacity recommended
by the structural designer for construction is estimated. For a given year of construction,
the design load on a particular component is determined using the ASCE 7 specification
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that was relevant to that year (say for a year of construction of 2011, we use ASCE 7-
2010). Furthermore, it would be a reasonable assumption to assign a mean capacity to the
component based on the capacity of the component prescribed by its manufacturer (P0).
This mean capcity can be related to nominal load using the following approach. Let us say
P is the prescribed nominal load obtained from the relevant ASCE 7 using the design wind
speed at the location of the building Then, factor ϕ, which will be referred to as Factor of
Safety (in general, ϕ is the ratio of load factor to resistance factor), can be used to determine
P0. The estimated mean capacity is

P0 = ϕP (2)

For each component (roof cover, roof sheathing (roof deck) etc.) we can determine
the nominal load P from the relevant ASCE 7, and ϕ based on engineering judgement.
Components that cover a large area will be discretized into elements. While the roof and
wall components are assumed to be discretized, a window or door are assumed to be one
unit each and each window or door will have its own capacity value. A glazed window or
door should be assigned a pressure capacity. The discretized elements of any component
will be assigned a capacity randomly sampled from a distribution with P0 as the mean
capacity. This approach is rational in general; however, we should also note that residen-
tial constructions may not adhere to all the requirements in specifications and observed
capacities tend to deviate from those observed in commercial occupancy constructions,
suggesting lower values of ϕ for residential compared to commercial buildings.

Roof Aging and Condition

Roof aging and maintenance influences the performance of the commercial roof in
protecting from water entry through the roof during hurricane events. Markov chain-based
aging prediction models are popular in civil engineering [72–75]. Research focusing on
aging of commercial roofs is available in [63–65]. Based on these studies, a Markovian roof
condition change model is proposed to determine the average condition of the commercial
roof with respect to age. We determine the reduction factor for the roof using a proposed
logistic model (as shown in Equation (2), obtained using framework described in Figure 3
with respect to age.

Research on roof aging [63–65] reports roof conditions as ordinal data from extensive
condition assessment surveys of commercial roofs. Based on the data, researchers also
report state transition probabilities of the condition (on a scale of 1 to 7, where 7 is excellent)
of in-use commercial roofs. These probabilities specify the likelihood that the roof will
remain or change its state in unit time. We use these probabilities to model the performance
degradation with time. A Markovian approach is adopted by determining the state transi-
tion probability based on data collected on roofs of in-use buildings [64]. Firstly, a Monte
Carlo (MC) simulation was carried out using the state transition probabilities for a roof
with a service life of 50 years. Simulation results for the 50-year-old roof match well with
the values provided in [64] as shown in Figure 4a (compare Coffelt et al., 2008, and the
50-year simulation result). In order to determine the state transition probabilities for other
roof lifespans, such as 20, 30 and 40 years, a linear model was implemented to update the
probabilities. Repeating the MC simulation for all the service lifespan cases (20, 30 and
40 years), we obtain the results shown in Figure 4a.



Wind 2022, 2 93

Wind 2022, 2, 6 93 
 

 

proposed logistic model (as shown in Equation (2), obtained using framework described 
in Figure 3 with respect to age. 

 
Figure 3. Algorithm to obtain the time-dependent condition [63–65] of roof using state probabilities 
and maximum service life of roof. 

Research on roof aging [63–65] reports roof conditions as ordinal data from extensive 
condition assessment surveys of commercial roofs. Based on the data, researchers also 
report state transition probabilities of the condition (on a scale of 1 to 7, where 7 is excel-
lent) of in-use commercial roofs. These probabilities specify the likelihood that the roof 
will remain or change its state in unit time. We use these probabilities to model the per-
formance degradation with time. A Markovian approach is adopted by determining the 
state transition probability based on data collected on roofs of in-use buildings [64]. 
Firstly, a Monte Carlo (MC) simulation was carried out using the state transition proba-
bilities for a roof with a service life of 50 years. Simulation results for the 50-year-old roof 
match well with the values provided in [64] as shown in Figure 4a (compare Coffelt et al., 
2008, and the 50-year simulation result). In order to determine the state transition proba-
bilities for other roof lifespans, such as 20, 30 and 40 years, a linear model was imple-
mented to update the probabilities. Repeating the MC simulation for all the service 
lifespan cases (20, 30 and 40 years), we obtain the results shown in Figure 4a. 

Figure 3. Algorithm to obtain the time-dependent condition [63–65] of roof using state probabilities
and maximum service life of roof.



Wind 2022, 2 94
Wind 2022, 2, 6 94 
 

 

  
(a) (b) 

Figure 4. (a) Mean roof condition for various service life durations. Fifty-year model compared with 
Coffelt et al. 2008 model (b) capacity reduction factor from the condition state obtained using the 
proposed model. 

Since we need to model the wind-resistance capacity of the roof and there are limited 
age-based uplift resistance data available, we have to model the capacity from the condi-
tion of the roof. Hence, the results from Figure 4a will have to be modified using a suitable 
model. A factor for capacity reduction is required to adjust the capacity of the roof for 
different state conditions (which are usually ordinal data in roof condition assessment 
surveys). Logistic models have been extensively used by researchers to model aging in 
materials (concrete, polymers and metals) in civil engineering [74,75]. Therefore, based on 
a literature review and engineering judgement, a logistic model was adopted to model a 
continuous capacity reduction factor starting from one at age zero for roofs of different 
lifespans as shown below in Equation (3). Here, Cn is the normalized condition factor of 
the roof. For example, for a roof with a lifespan of 50 years, after 10 years of use (please 
refer Figure 4a), Cn will be 3.3/7 = 0.47. 

1 4.35 / (1 exp(10 ))age nRF C= − +  (3)

Based on the literature review [66–71], the relative measures of target capacities are 
met by the model results. The capacity obtained by the proposed model will be in the 
interval of 50% and 70% of the pristine capacity when the age of the roof reaches half of 
its lifespan. The residual capacity at the end of its lifespan will be close to 20% of its orig-
inal capacity. The proposed model meets this expectation for all cases except for the 20-
year service life, where it is over-predicted by 18% after 10 years. Results are shown in 
Figure 4b. 
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Figure 4. (a) Mean roof condition for various service life durations. Fifty-year model compared with
Coffelt et al. 2008 model (b) capacity reduction factor from the condition state obtained using the
proposed model.

Since we need to model the wind-resistance capacity of the roof and there are limited
age-based uplift resistance data available, we have to model the capacity from the condition
of the roof. Hence, the results from Figure 4a will have to be modified using a suitable
model. A factor for capacity reduction is required to adjust the capacity of the roof for
different state conditions (which are usually ordinal data in roof condition assessment
surveys). Logistic models have been extensively used by researchers to model aging in
materials (concrete, polymers and metals) in civil engineering [74,75]. Therefore, based on
a literature review and engineering judgement, a logistic model was adopted to model a
continuous capacity reduction factor starting from one at age zero for roofs of different
lifespans as shown below in Equation (3). Here, Cn is the normalized condition factor of
the roof. For example, for a roof with a lifespan of 50 years, after 10 years of use (please
refer Figure 4a), Cn will be 3.3/7 = 0.47.

RFage = 1− 4.35/(1 + exp(10Cn)) (3)

Based on the literature review [66–71], the relative measures of target capacities are
met by the model results. The capacity obtained by the proposed model will be in the
interval of 50% and 70% of the pristine capacity when the age of the roof reaches half of its
lifespan. The residual capacity at the end of its lifespan will be close to 20% of its original
capacity. The proposed model meets this expectation for all cases except for the 20-year
service life, where it is over-predicted by 18% after 10 years. Results are shown in Figure 4b.

Furthermore, the uncertainty across the mean is addressed by modeling the uncertainty
as a function of condition. While detailed data are not directly available, several studies
on the capacity of roof components are [66–71]. Henceforth, a judicious choice of 25%
for the maximum value of Coefficient of Variation (COV) is employed for distribution of
capacities at half the lifespan for each case based on this literature. An example distribution
of capacity is shown below in Figure 5. The lifespan of the roof considered is 30 years.

Pmean = RFageP0 (4)
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with lifespan of 30 years. Distribution across the mean is shown at ages 10, 15 and 20 years.

Here Pmean is the mean roof capacity for the particular building simulation, obtained
after multiplying the RFage (the reduction associated with the age of the roof) to P0 (as
described in Equations (2) and (3)). The resistance capacities for the discretized elements of
the roof are sampled from a Gaussian distribution based on [13,40]. The capacity of an ith
element on the roof can then be assigned a capacity as shown below.

p(Pi) = N(Pmean, σ2) (5)

Interior Value

The normative quantities reported in FEMA P58 [76,77] are used to determine the
interior value. Normative quantities give the quantity of non-structural items available for
the unit area or unit volume of the building. FEMA P58 Methodology reports the 10th, 50th
and 90th percentiles of these items. The main items include Architectural trades on walls
and floors, HVAC, Stairs, Elevators, Electrical and Fire protection. For a particular building
occupancy type, the value of the interior (VI) of the building is determined using FEMA
P58-1 50th percentile normative quantities for that occupancy type and RSMeans Data for
the unit price. VI influences the DR calculation, since it increases the value of the building
and also the possible damage that rainwater can cause to the interior. Needless to say, if the
value of interior differs considerably for two buildings with similar envelope constructions
and capacities, their damage ratios will also be different. Hence, it is important to model
the interior value based on occupancy and dimensions of the building.

We use the 50th percentile values of non-structural components reported in FEMA
P58 normative quantities to estimate the quantity of non-structural components. The total
quantity of each component in the building is found by multiplying the per-square-feet
quantity by the total area in square feet of the building. The Appendix A shows selected
normative quantities and corresponding RSMeans rate [78]. The unit cost for each item is
selected from the RSMeans database. The total quantity of one component multiplied by its
unit cost will give the dollar amount for that component. Upon adding the dollar amount
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for all non-structural components, we obtain the total value of the interior of the building.
The distribution of interior value from one hundred samples is shown in Figure 6.
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2.2. Demand Model

The building under study will be subjected to wind loads of increasing intensities,
one wind speed at a time. Each wind speed will be applied from different directions of
the building as schematically shown in Figure 7. Wind pressure, debris impact and rain
intrusion possibilities will be evaluated for each wind speed.

2.2.1. Wind Pressure Load

The loads on the components will be determined assuming a quasi-static approach
following ASCE 07-10. The formula for the wind load on the components and cladding is
used here:

q = 0.00256kzw2(GCpe − GCpi ) (6)

The value of kz is determined using the formula given in ASCE 7-10, Table 28.3.1.

kz = 2.01(
z
zg

)
( 2

α ) (7)

Here, z is the height of the component, zg is the nominal height of the atmospheric
boundary layer and α is the power law exponent. Each region of the roof (as shown in
Figure 7) or wall is assigned a mean pressure coefficient and the discretized elements of
each region of the roof can each be assigned a pressure coefficient.

2.2.2. Debris Impact

Based on the knowledge from recent studies [40–50] an efficient computational model
is developed. A Tachikawa number is used to model the speed of the debris at each wind
speed. The speed of the debris before hitting the target is modeled based on [48,50]. The
density, mass and dimension are based on the data in [44,47]. The maximum percentage of
potential debris hitting the building is fixed at 60%, based on [40].

K = 0.5ρw2/(ghmρm) (8)

x∗ = gx/w2 (9)
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wd = w(1− exp(−
√

2CKx∗)) (10)
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given wind direction. The width of corner zones “a” is determined using ASCE 07-10. Arrows of 
wind 0° and 45° wind direction are also shown. Angles of attack used in the analysis are 0° through 
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the walls, A to H and 1′ to 6′ for the roof. 

  

Figure 7. Subdivided zones of a building—each zone is assigned a mean pressure coefficient for a
given wind direction. The width of corner zones “a” is determined using ASCE 07-10. Arrows of
wind 0◦ and 45◦ wind direction are also shown. Angles of attack used in the analysis are 0◦ through
315◦ in the increments of 45◦ moving counterclockwise. The zones are numbered from 1 to 14 for the
walls, A to H and 1′ to 6′ for the roof.

Descriptions of variables are available in the nomenclature table. The number of po-
tential elements of debris is initially assigned. Then, the percentage of debris hitting the
building is determined as a function of the wind speed. The debris that hits the building and
target location on the building are randomly sampled. If any debris hits the window, the
property of that debris is recorded. The ratio of momentum of the debris and the capacity of
the protected window is calculated [71] for every element of debris that impacts the window.
If the sum of the ratios for all the impacts is greater than one, then the window is marked as
failed. The model is validated using the results from [10] as shown in Figure 8. Furthermore,
the failure probability for protected and unprotected windows in two different environments
is presented—a small-missile environment and a large-missile environment.

The results from the proposed model replicate the trend observed in Cope, 2004
for small-missile and large-missile environments. Since the unprotected window has a
very low resistance to debris impact, it is expected that the failure probability will be
similar for both cases. However, failure probability decreases from 0.5 (unprotected) to
about 0.1 (protected) at 150 mph in a large-missile environment. If there is a breach in
the envelope (window, door or wall) due to debris impact or pressure failure, the internal
pressure is modified [24–26,33,37]. Properties of the breach, which include the area and
location of the breach with respect to wind direction (for example windward or leeward
wall), are required to modify the internal pressure.

After the internal pressure is modified, another envelope breach check is carried out
using the new internal pressure. If there is any additional failure, the internal pressure
is modified again. This continues until stability is reached. A final record is taken for
component damage to obtain component-wise damage for the given building for a given
wind speed and direction.
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Figure 8. Probability of 3.5ft x5 ft unprotected window failure on a 44ftx10ft wall. Validated using 
the results of Cope, 2004. Also shown are the probability of failure of protected window in small 
missile and large missile environment. UPW—Unprotected window, PW—Protected Window, 
SM—Small-Missile Environment and LM—Large-Missile Environment. 
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2.2.3. Rain Intrusion 
Hurricane events possess a risk of wind-driven rain, which causes water intrusion 

into the building. Losses due to rain intrusion depend on the following main factors [56–
62]: the intensity of impinging rain, spatial distribution of rain around the building and 
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Impinging Rain 
The quantity of impinging rain is conservatively modeled based on [56] as a function 
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Figure 8. Probability of 3.5ft x5 ft unprotected window failure on a 44ftx10ft wall. Validated
using the results of Cope, 2004. Also shown are the probability of failure of protected window in
small missile and large missile environment. UPW—Unprotected window, PW—Protected Window,
SM—Small-Missile Environment and LM—Large-Missile Environment.

2.2.3. Rain Intrusion

Hurricane events possess a risk of wind-driven rain, which causes water intrusion into
the building. Losses due to rain intrusion depend on the following main factors [56–62]: the
intensity of impinging rain, spatial distribution of rain around the building and deficiency
in windows and doors.

Impinging Rain

The quantity of impinging rain is conservatively modeled based on [56] as a function
of wind speed. The average quantity of rain in inches is modeled as shown below.

IR = 12.013 log(w)− 44.4 (11)

Here, w is the wind speed in meters per second.

Distribution of Rain across the Surface of a Building

Rain admittance factors (RAF) values from [57] are used across the surface to incorpo-
rate the differences in rain intensity at different locations on the surface of building.

Area of Envelope Failure

The damaged roof-cover area contributes to water intrusion into the roof sheathing.
Failure of roof sheathing leads to water intrusion into the building [11–17]. For wall
components, it is conservatively assumed that, upon the failure of a window due to debris
impact or pressure, the entire window or door area will contribute to wind-driven rain.
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Deficiency in Windows and Doors

The deficiency along the edges of windows and doors acts as an entry point for wind-
driven rain [56]. The deficiencies in windows and doors are obtained as factors using the
ASHRAE data [56]. We use the deficiencies di for each window.

Vi = IR RAF Aw di (12)

2.3. Damage Evaluation

The following steps are carried out to determine the failure

a. Initial failure check: each component of the building is checked for failure for a
given wind speed and wind direction. Any component that is failed is recorded.
Dependency of the roof cover on the roof deck is considered in this check along with
the dependency of the roof sheathing on roof-to-wall connections.

b. Recalculation of internal pressure if the envelope is breached: if the envelope is
breached, the internal pressure coefficient is recalculated based on the area of failure
and wind direction [24–26,33,37].

c. Recalculate the loads on the components and check for equilibrium: the loads on
the components are recalculated, using the new internal pressure. Using the new
loads, each component is checked for failure. Since the internal pressure depends on
the area and location of failure of the envelope, we need to recalculate load, internal
pressure and area of failure until there is an equilibrium, which means there is no
more failure of any components. At this point, the maximum damage that can happen
to the building due to wind pressure and debris will be obtained. This amount of
damage for all the components that are modeled is recorded for the particular wind
speed. These values will be further used in the next steps to estimate dollar losses.

2.4. Consequence Evaluation

This includes the calculation of the amount of water that enters the building and the
dollar loss that it can cause.

2.4.1. Quantity of Water Entering the Building

The amount of water accumulating in each floor is determined from the top to the
bottom floor. The amount of water entering the top floor is determined as a function of
roof cover failure, roof deck failure and fenestration failure in the top floor. The amount of
water entering due to roof cover failure is obtained using the following method. The area
of failure is obtained from previous steps.

A model is proposed for rain entering the building based on [50–53]. The amount
of water that can enter the building after the roof cover failure and roof deck failure is
found, accounting for surface runoff and rain entering the building directly [53]. The area
of breach Arc or Ars is modeled as a square with one side along the edge of the roof. A
hypothetical channel of water from the missing deck area to the ridge is considered. The
length of the channel is from the top of ridge to the top corner of the square area. The depth
of the water in the channel is determined in inches of rainfall, obtained from Equation (10).
A factor of 0.03 is used, based on engineering judgement, to adjust the surface runoff and
actual amount of water passing through the opening. Similarly, the volume of direct rain
entering the building is 10% of the directly impinging rain. Combining the surface runoff
and direct rain, the volume is found using Equation (12).

Vij = Fij IR cos(θ)(0.03B
√

Ai + 0.1Ai) (13)

i = 1 for RC, i = 2 for RS, j = 1 for Arc >= Ars, j = 2 forArc < Ars

F11 = 1, F12 = 0, F21 = F22 = 10
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Apparently, during the wind event, the rain is horizontal. Hence, the quantity of rain
entering the inside of the building is determined using the projected vertical area of roof
cover and roof deck failure. The quantity of water entering each floor is determined by sum-
ming up the individual contributions and water that percolates from the floor immediately
above it. The water percolating to the next level will be subtracted. Equations (14) and (15)
give, respectively, the volume of water entering the top story due to roof cover and roof
deck failure.

VRCi = IR Ap f rc Rrc (14)

VRSi = IR Ap f rs (15)

Percolation to the floor below is modeled as per [56] as 12% of the water accumulating
in the given floor.

V = IR Ap f rs (16)

Typical floor—water entering from damaged windows for this floor and water perco-
lating from the top floor will be calculated. The amount of water percolating to the floor
below will be subtracted.

First floor—the water entering through breached doors, windows of this floor and
water percolating from the floor above will be added up.

2.4.2. Dollar Loss

When the volume of water entering a floor can cover one inch of depth for the entire
floor, the whole value of the floor is marked as a total loss [13,56]. Losses due to water
intrusion to the interior are modeled as a polynomial function for a depth less than 1”.

2.5. Damage Ratio Calculation

The damage ratio is defined as the ratio of repair cost of the damaged components
to the total replacement value of the building. The envelope repair cost is found by
multiplying the unit cost of repair by the loss and adding up the repair costs for each
component. The interior repair cost is found as a function of the depth of water that enters
the building.

DR =
Nc

∑
i
(DiCi)/

Nc

∑
i
(QiCi) (17)

DR is the total damage ratio for the building.
Di is the amount of damage to the ith component.
Ci is the unit cost of replacement for the ith component.
Qi is the total quantity of the component.
Nc is the total number of components.
Dollar loss to interior: to determine the dollar loss due to water intrusion, the depth of

water in each floor is determined by dividing the total volume of water in each floor with
the floor area. Dollar loss is modeled as a polynomial, reaching one hundred percent of
the floor when the depth of water for the entire floor is one inch. Finally, the cost of repair,
for the envelope and interior, is divided by the total value of the building to obtain the
damage ratio. This calculation is carried out for eight directions (45-degree increments)
and one hundred simulations, which results in 800 damage ratio values for each wind
speed. The average of eight directions is found for each wind speed. In the next section
we demonstrate an example, present validations and use model results to demonstrate the
influence of attributes.

3. Results

In this section, we first ensure that the simulations converge. Then, the results from
the proposed model are validated using the examples from public models and insurance
claims data from Hurricane Andrew. Furthermore, the influences of different attributes are
investigated using the proposed model for a commercial occupancy example.
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3.1. Convergence of Simulations

In order to ensure that the simulations can reproduce results consistently, the stability
of the results is verified for a different number of simulations for a commercial office
building. Results are given in Figure 9.
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Figure 9. Convergence of simulations as observed from the (a) mean and (b) standard deviation of 
DR for a commercial building at various wind speeds. 

The mean DR was found to converge with 100 simulations and the percentage change 
is less than 1% when simulations were increased from 100 to 1000. The percentage im-
provement in the standard deviation is close to 2% when simulations were increased from 
100 to 1000. Hence, 100 simulations is identified as a suitable number of simulations for 
the framework. If the simulations do not converge after 100 runs, it is recommended to 
run 1000 or more simulations until the results converge. 

3.2. Case Study 1: Residential Building 
In order to validate the accuracy of the model, an example study from [13] is carried 

out. The building has a length of 56 ft and breadth of 44 ft. This is a wood, gable roof-type 
building with a roof slope of 5:12 and design speed of 100 mph. More details about the 

Figure 9. Convergence of simulations as observed from the (a) mean and (b) standard deviation of
DR for a commercial building at various wind speeds.

The mean DR was found to converge with 100 simulations and the percentage change
is less than 1% when simulations were increased from 100 to 1000. The percentage im-
provement in the standard deviation is close to 2% when simulations were increased
from 100 to 1000. Hence, 100 simulations is identified as a suitable number of simulations
for the framework. If the simulations do not converge after 100 runs, it is recommended to
run 1000 or more simulations until the results converge.

3.2. Case Study 1: Residential Building

In order to validate the accuracy of the model, an example study from [13] is carried
out. The building has a length of 56 ft and breadth of 44 ft. This is a wood, gable roof-type
building with a roof slope of 5:12 and design speed of 100 mph. More details about the input
values are given in Table A1 for this case study. Figure 10 shows the three-dimensional plot
of the study building and the contour of pressure coefficients on the surface of the building,
generated for one sample simulation.
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Figure 10. Simulated, sample external wind pressure coefficient (Cpe) contour on a 3D plot. 
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Figure 11. Roof Cover (RC) and Roof Sheathing (RS) vulnerability at different wind speeds. Model 
results show component vulnerability using the proposed model. Results are compared with Cope, 
2004. 
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The pressure coefficients are simulated from the mean value and the coefficeint of
variation (COV) using the probability distribution obtained from [13]. For each wind speed
and direction, the pressure coefficients are randomly sampled using a Gaussian model. Com-
ponent vulnerability shows the extent of damage that can happen to a particular component
for a given wind speed and is averaged across all wind directions. After completing the
simulation, the component vulnerability of the roof cover and sheathing was compared
for this study. The results (Figure 11) show a good match between the vulnerability of the
components (roof cover and roof sheathing) from [13] and the proposed model.
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3.3. Case Study 2: Commercial Buildings Based on HAZUS Models

This Case Study compares HAZUS vulnerability functions for commercial concrete
(low- and medium-rise buildings) in open terrain with the model results. The purpose of this
study is to verify whether the model can replicate the qualitative trend observed in HAZUS
loss functions. The proposed vulnerability framework is used to model 3- and 5-story offices
with concrete walls and roofs at a design speed of 100 mph. The input variables were based
on a HAZUS technical report [12]; however, exact values of all the variables are not available
and engineering judgement was used to fill the missing input variables. A detailed list of the
input data is shown in Tables A1 and A2 in Appendix A. Four combinations were obtained:
3-story weak, 3-story strong, 5-story weak and 5-story strong. Results simulated using the
proposed model for each case are compared with the 5, 50 and 95th percentiles of HAZUS
vulnerability functions. The results (Figure 12) show that the proposed model captures the
general trend observed in the HAZUS loss functions database.
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Figure 12. Model results for mid-rise vs. HAZUS mid-rise vulnerability functions database.
3S—3-story strong, 3W—3-story weak, 5S—5-story strong, 5W—5-story weak. Attributes for the
examples are given in Table A1.

Strong buildings are modeled to exceed the design criteria factor of safety and are
modeled with windows that can sustain large debris impacts. Weak buildings do not meet
the factor of safety for design criteria and windows are vulnerable to small debris attacks.
Properties of the proposed models are shown in Table A1 in Appendix A. The results show
that the model is well-capable of replicating the qualitative trend observed in the HAZUS
loss functions database for mid-rise buildings. However, the results will not match closely
because the proposed analysis methodology is different from HAZUS.

3.4. Case Study 3: Influence of Primary and Secondary Modifiers

Primary modifiers are considered to be significant drivers of loss in insurance industry
circles. The influence of primary modifiers on DR is shown below. This include Con-
struction, Occupancy and Number of stories. While the year of construction is a primary
influencer, it is not included in the study here. Given below are the vulnerability functions
from multiple cases and the average losses for each hurricane category obtained by averag-
ing the vulnerability function in the interval of the Saffir-Simpson wind speeds for each
hurricane category. This averaging helps to compare the DRs for multiple buildings easily.

a. Number of Stories: model results from Figure 13 show that, in general, DR decreases
with an increase in the number of stories for a given wind speed. A single-story building
is more vulnerable than a two-story building. While roof and window damage will not
deviate significantly from each other for single- and two-story buildings, single-story
buildings are more susceptible to interior damage, primarily because of the concentration
of interior value in a single floor. Hence, water intrusion and subsequent dollar loss
increases rapidly in the single-story building compared to the two-story building. On an
average the DR from the model was found to be 0.14, 0.04 and 0.02 for one-, two- and three-
story buildings respectively for Cat1 hurricanes, while it is 0.71, 0.46 and 0.25 respectively
for Cat2 hurricanes.
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Figure 13. Influence of number of stories on the DRs in strong concrete office buildings designed for 
100 mph winds and average losses for each hurricane category. (a) Vulnerability functions for build-
ings with 1, 2 and 3 stories (b) average damage ratio for buildings with 1, 2, and 3 stories. 
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are shown below in Figure 14. Reinforced concrete buildings are less vulnerable compared 
to masonry buildings. The average DR and percentage change with respect to reinforced 
concrete buildings are shown below in the table. 

Figure 13. Influence of number of stories on the DRs in strong concrete office buildings designed
for 100 mph winds and average losses for each hurricane category. (a) Vulnerability functions for
buildings with 1, 2 and 3 stories (b) average damage ratio for buildings with 1, 2, and 3 stories.

b. Construction type: the model results from two different wall construction types are
shown below in Figure 14. Reinforced concrete buildings are less vulnerable compared
to masonry buildings. The average DR and percentage change with respect to reinforced
concrete buildings are shown below in the table.
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Figure 14. Comparison of vulnerability functions for single-story strong, concrete and masonry of-
fice buildings. (a) Vulnerability functions for concrete and engineered masonry construction types; 
(b) average damage ratio for concrete and engineered masonry construction types. 

The influences of secondary modifiers were tested using the proposed model to en-
sure the model meets the expected outcomes for each modifier type. This study will enable 
the exploration of the future research possibilities of the model and to understand the 
approach for the model calibration. 

c. Opening Protection: the debris impact protection was compared for large debris 
impact-rated windows and windows with no debris impact protection, as shown in Figure 
15. All stories are modelled with windows rated for large debris impact protection. Also, 
in this study, the debris impact model considers the probability of missiles striking in each 
story. This example compares two similar buildings, one with debris impact protection 
and other with no debris impact protection. The model results show that the influence of 
window protection is significant in the 100 mph wind speed to design speed (3 s peak 
gust) regime. Here a factor of safety of 1.5 (Table A3) and a design wind speed of 130 mph 
are used to estimate the capacity of the roof cover and roof deck for both the buildings. 
The results indicate that a lack of window protection can be a significant driver of loss in 
the Cat1, Cat2 and Cat3 hurricane wind speeds for the vulnerable building. So, even if all 
the building components meet or exceed the design wind speed demand, but the windows 
do not meet the debris impact standards, then such buildings could experience losses of 
5%, 15% and 30% at Cat1, Cat2 and Cat3 wind speeds respectively. Impact-resistant win-
dows will reduce the losses by 66% for Cat3 and by 100% for Cat2 and Cat1 hurricane. In 
addition, losses in buildings with no window protection and a high-debris environment 
are also presented. The losses can go up by almost 100% at 150 mph in a high-debris en-
vironment. 

Figure 14. Comparison of vulnerability functions for single-story strong, concrete and masonry
office buildings. (a) Vulnerability functions for concrete and engineered masonry construction types;
(b) average damage ratio for concrete and engineered masonry construction types.

The influences of secondary modifiers were tested using the proposed model to ensure
the model meets the expected outcomes for each modifier type. This study will enable the
exploration of the future research possibilities of the model and to understand the approach
for the model calibration.

c. Opening Protection: the debris impact protection was compared for large de-
bris impact-rated windows and windows with no debris impact protection, as shown
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in Figure 15. All stories are modelled with windows rated for large debris impact protec-
tion. Also, in this study, the debris impact model considers the probability of missiles
striking in each story. This example compares two similar buildings, one with debris impact
protection and other with no debris impact protection. The model results show that the
influence of window protection is significant in the 100 mph wind speed to design speed
(3 s peak gust) regime. Here a factor of safety of 1.5 (Table A3) and a design wind speed of
130 mph are used to estimate the capacity of the roof cover and roof deck for both the build-
ings. The results indicate that a lack of window protection can be a significant driver of loss
in the Cat1, Cat2 and Cat3 hurricane wind speeds for the vulnerable building. So, even if all
the building components meet or exceed the design wind speed demand, but the windows
do not meet the debris impact standards, then such buildings could experience losses of 5%,
15% and 30% at Cat1, Cat2 and Cat3 wind speeds respectively. Impact-resistant windows
will reduce the losses by 66% for Cat3 and by 100% for Cat2 and Cat1 hurricane. In addition,
losses in buildings with no window protection and a high-debris environment are also
presented. The losses can go up by almost 100% at 150 mph in a high-debris environment.
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Figure 15. Model results for 3-story concrete office building with impact-rated windows and non-
impact-rated windows. Additional example with no window protection in large debris environment 
is also presented. Design speed is 130 mph for all buildings. (a) Vulnerability functions (b) average 
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d. Roof aging: as per the model, the aging of the roof can influence its performance,
and hence, the DR induced in the building as shown in Figure 16. Roof retrofit to improve
performance is not considered in this study. Aging of the roof increases losses, averaging at
0.05, 0.6 and 0.12 for 10-, 20- and 30-year-old commercial roof for Cat1 hurricanes. Similarly,
the DR is 0.3, 0.45 and 0.5 for Cat2 hurricanes. The difference diminishes thereafter.

e. Floor Area: it was also observed (from Figure 17) that footprint area does not
influence the model result significantly. There has been research indicating that buildings
with larger floor areas tend to have lower damage ratios when compared to buildings with
smaller damage ratios. This model shows DR at 0.1 and 0.15 at Cat 1 for 10k square feet
and 20k square feet, respectively. However, this study finds that the influence of floor area
on DR is not significant compared to other modifiers discussed earlier.
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4. Discussion

A wind vulnerability framework was proposed, which was used to generate loss
functions for residential and commercial buildings. The proposed framework enables loss
modeling based on a component vulnerability approach and without considering the fragility
of the building components as such. The new contributions include a Markovian roof aging
model and normative quantities from FEMA P58 for each occupancy type. The resistance
capacity of the building components is determined based on design wind speed and the
relevant ASCE 7-10 code. The modelers can adjust the component capacities by engineering
judgement of the factor of safety depending on the perceived quality of the construction.
Roof aging and roof maintenance factors are modeled using a Markovian model, which
enables the loss modeler to choose which inputs can be provided based on the knowledge
they have about the building. This knowledge may come from the year of the last renovation
of the roof, or an inspection of the roof. Similarly, the modelers can also choose the inputs
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for the debris impact resistance of windows and water intrusion criteria. Thus, the model
provides more flexibility in modeling risk using the input parameters. The initial results are
promising; however, further validation with insurance claims data and component failure
data (such as roof cover or cladding), and calibration may be required to make the model
more robust. The framework and software modules are well organized, and any changes or
additions in the framework can be easily implemented in the software platform. At present,
the framework considers the vulnerability of roof-to-wall connections but does not consider
the failure of main structural elements such as beams, slabs and columns. Hence the model
has a limitation that it will not be able to replicate the results observed for cases of structural
failure under wind loads. The main highlights of this study are:

• A framework for generating vulnerability functions to assist insurance loss modeling
has been proposed, which, unlike conventional models, does not rely on the fragility
of components. Results were validated using the residential building examples from
FPHLM and a commercial building example from HAZUS. The influence of primary
modifiers (story and construction) and secondary modifiers (window protection, roof
age, and debris composition) on overall loss was also explored.

• A Markovian approach-based roof aging model is introduced, which is able to predict
the increase in vulnerability with aging. Further study based on claims data is neces-
sary to validate the results of the model or to calibrate the model as necessary. The
state transition probabilities used in the analysis can also be modified if new data are
available from in-service roofs.

• Damage ratio was found to decrease with an increase in the number of stories by about
50% for Cat1 hurricanes for each added story. Floor area does not influence losses
significantly.

• Reinforced concrete buildings are about twice as resilient as masonry for Cat1 hurri-
canes.

• The model also shows that window protection can help to mitigate losses induced by
debris impact in different debris environments. It can reduce losses for Cat2 hurricanes
by 100% and Cat3 by 66%.

The initial results from this study are very promising, and validation with actual
losses paid is important in the future. It should be noted that post-hurricane claims data
(which are the actual compensation paid to the customers) may not show a similar trend,
mainly due to the fact that claims data are not well detailed (for example, number of stories,
actual value, amount of damage to roof, windows or walls) and could often be polluted
unintentionally because losses from other causes (such as a flood) could be counted as
wind-induced losses. Future work will include validation of DRs using good-quality claims
data and investigating the influence of the year of construction while considering the effect
of aging on roofs and other components as well. Moreover, future work will also involve
regional study integrating wind hazards and vulnerability modules to study the influence
of engineering properties and envelope retrofit on financial loss during hurricane events
in a study region. Integrated models can also be used to study long-term and short-term
financial risks in any study region for insurance risk management.
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Appendix A

Table A1. Attributes of the buildings used as inputs for example 2 are listed below.

Attribute Name Residential
(Case Study 1)

Strong
(Case Study 2)

Weak
(Case Study 2)

Occupancy Single Family Office Office

Construction Wood Concrete Concrete

Year 1997 1997 1997

Number of Stories 1 3,5 3,5

Floor Area 2464 10,000 10,000

Aspect Ratio 1.64 3 3

Roof Geometry Gable Flat, with basic slope Flat, with basic slope

Roof Slope 5/12 1/12 1/12

Roof Maintenance Excellent Excellent Excellent

Hurricane Bracing Adequate Adequate Adequate

Opening Protection No Large Debris No

Height Ground 10 12 12

Height Typical 0 10 10

Height Top 0 10 10

Exposure Category for Design C C C

Exposure Category for Load C C C

Design Speed 100 100 100

Debris Percentage Small 90 90 90

Debris Percentage Medium 5 5 5

Debris Percentage Large 5 5 5

Wall Cladding Type Vinyl Siding Brick Veneer Brick Veneer

Percentage Window Area First Floor 10 20 20

Percentage Window Area Typical Floor 0 20 20

Percentage Window Area Top Floor 0 20 20

Roof Factor of Safety in Main region 1.5 1.5 1.0

Roof Factor of Safety in Corner region 1.2 1.5 1.0

Roof Factor of Safety in Edge region 1.2 1.5 1.0

Roof Cover Capacity Distribution Lognormal Gaussian Gaussian

Roof Insulation Capacity Distribution NA Gaussian Gaussian

Roof Deck Capacity Distribution Lognormal Gaussian Gaussian

Roof cover COV 0.4 0.1 0.1

Roof Sheathing COV 0.4 0.1 0.1

Wall FS Main 1.2 2 1.5

Wall FS Corner 1.2 2 1.5
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Table A1. Cont.

Attribute Name Residential
(Case Study 1)

Strong
(Case Study 2)

Weak
(Case Study 2)

Wall Capacity Distribution Gaussian Gaussian Gaussian

Wall COV 0.4 0.1 0.1

Window Capacity Distribution Gaussian Gaussian Gaussian

Window COV 0.2 0.1 0.1

Window FS 1.16 2 1.5

Table A2. Inputs for Debris impact model.

Attribute Description Numerical Values Units

Distance to source of debris [10,35] feet

Debris uplift wind speed limits
Small [80,110]
Medium [130,160]
Large [140,170]

mph

Debris C value 0.8, 0.496, 0.9

Momentum capacity of unprotected window 0.025 kgm/s

Momentum capacity of protected window 62.37 kgm/s

Table A3. Selected Normative quantities of selected items and their unit rates from RSMeans shown
as an example. More details can be found in FEMA (2012) and RSMeans 2013.

Item Unit of Measurement Normative Quantity
(50th Percentile)

Unit Rate as Per
RSMeans 2013 ($)

Interior partition length 100 LF per 1 gsf 1 E-3 10/ft

Ceramic Tile floors SF per 1 gsf 0.042 4.3/sf

Ceiling Lay in Tile % 95 1.8/sf
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