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Abstract: Wind power’s increasing penetration into the electricity grid poses several challenges for
power system operators, primarily due to variability and unpredictability. Highly accurate wind
predictions are needed to address this concern. Therefore, the performance of hybrid forecasting
approaches combining autoregressive integrated moving average (ARIMA), machine learning mod-
els (SVR, RF), wavelet transform (WT), and Kalman filter (KF) techniques is essential to examine.
Comparing the proposed hybrid methods with available state-of-the-art algorithms shows that the
proposed approach provides more accurate prediction results. The best model is a hybrid of KF-WT-
ML with an average R2 score of 0.99967 and RMSE of 0.03874, followed by ARIMA-WT-ML with an
average R2 of 0.99796 and RMSE of 0.05863 over different datasets. Moreover, the KF-WT-ML model
evaluated on different terrains, including offshore and hilly regions, reveals that the proposed KF
based hybrid provides accurate wind speed forecasts for both onshore and offshore wind data.

Keywords: wind speed forecasting; hybrid model; wavelet transform; Kalman filter

1. Introduction

Renewable energy development has become a crucial part of today’s world as fossil
fuel resources reach their lowest levels. At the same time, the energy demand is ever-
increasing at an ascending pace. Furthermore, the extensive use of traditional fossil fuel-
based energy sources contributes to global warming and climate change. Renewable energy
sources such as wind and solar, on the other hand, are viable and environmentally friendly
alternatives to fossil fuels. Wind energy, among the low-carbon energy technologies, has a
lot of potential for achieving a long-term energy supply. However, the intermittent nature
of wind results in stochastic wind power generation, which is the electricity system’s major
challenge. With wind power’s growing popularity, one of the most urgent issues is its
integration into the power grid [1–3].

Accurate wind speed and power projections are crucial for modern grid reliability and
security. Wind forecasting methods are of four categories: (a) physical methods, (b) statisti-
cal methods, (c) artificial intelligence/machine learning (AI/ML) methods, and (d) hybrid
methods. Statistical and ML models find wide usage for wind predictions with the ad-
vancement in data-driven techniques. Among these methodologies, the most common
techniques deployed include autoregressive integrated moving average (ARIMA), support
vector regression (SVR), and artificial neural networks (ANN). Wind speed’s nonlinear fea-
tures make forecasting with traditional statistical and ML methods arduous, and ML-based
hybrid models effectively address such challenges[4]. Furthermore, individual models do
not consistently achieve the targeted performance for all terrains and time horizons. As
a result, hybrid models have emerged and evolved, combining the individually superior
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aspects of several forecasting models to produce an advanced forecasting method with
higher accuracy levels and being generalized over wider forecast horizons [5,6].

Since the primary objective of hybrid models is to combine the strengths of individual
models while achieving a globally optimal forecasting performance, a significant amount
of research and study has gone into developing and investigating the best possible wind
forecast method by combining a wide range of intelligent techniques [7]. Liu et al. present
a genetic algorithm powered WT and support vector machine-based hybrid short-term
wind speed forecasting approach [8]. Another hybrid method utilizes a statistical method,
ARIMA, and intelligent model artificial neural network [9]. To predict wind speed, Liu
and Tian compared the combination of wavelets and ANN to conventional models such as
persistence method, ANFIS, and wavelet-RBF [10]. Xiao et al. have illustrated the combina-
tion models based on the proposed non-negative constraints and artificial intelligence for
wind speed prediction [11]. Dhiman et al. proposed and evaluated the performance of a
hybrid forecasting technique [12] that included WT, and various Support Vector Regression
variations (SVR) [13]. Apart from other decomposition and signal processing approaches, a
mathematical and statistical approach termed as the Kalman filter has been researched and
explored for short-term wind prediction since the earliest times [14].

Su et al. devised an enhanced hybrid technique based on the ARIMA and KF, which
incorporates particle swarm optimization (PSO) to optimize the ARIMA model’s parame-
ters [15]. For multistep ahead wind prediction, Liu et al. developed two hybrid models, the
ARIMA-ANN and the ARIMA-Kalman, and demonstrated the effectiveness of the hybrid
approaches [16]. Hur came up with a wind speed prediction scheme with EKF-based
estimation via NN and extrapolation [17]. Lio et al. developed a wind speed estimator
that incorporated a regression-based power coefficient (Cp) surface and an enhanced KF,
with the regression-based approach resulting in reduced error [18]. Another hybrid wind
speed forecasting on a short-term time scale by Zhao et al. proposed and demonstrated the
superiority of the Gaussian process and unscented KF (GP-UKF) method over AR-KF and
GP-EKF [19].

In recent years, fruitful progress has taken place on devising novel hybrid approaches
in ultra-short-term and short-term time wind forecasting. However, a major drawback is
the consideration of only historical wind speed for the methodology, while other external
input factors, namely: wind direction, atmospheric pressure, air temperature may have
a considerable impact on wind speed, especially for shorter time scales. A combination
model is optimized by long short term memory (LSTM) based on empirical mode de-
composition, and sparrow search algorithm [20]. Another publication on ultra-short-term
wind forecasting [21] presents an enhanced PSO-based modes decomposition forecasting
method that is the adaptive variational mode based decomposition. Tian et al.introduce a
methodology based on an echo state network and variational mode decomposition that
has been tested on both ultra-short and short-term datasets [22]. The weights optimized by
a multiobjective optimization algorithm after decomposition by secondary ensemble-EMD
and grey wolf optimization (GWO) algorithm using weighted information criterion [23],
proved to be effective for the tested time-scale and dataset. Another hybrid strategy, based
on decomposition methods using a grey wolf optimizer (GWO) and a long short-term
memory (LSTM) network, captures nonlinear characteristics of the wind speed time se-
ries to improve forecasting accuracy [24]. Duan et al., in [25], developed an advanced
combination model for short-term wind speed forecasting that incorporated two recurrent
neural networks, again showing that modern ML techniques provide superior results.
In [26], a novel method for extracting features using the 2-D Riesz transform (RT) and
the multiobjective grey wolf optimizer (MOGWO) with the k-Nearest Neighbor (KNN)
algorithm was introduced, focusing on the power quality disturbances classification. These
studies resulted in novel and unique signal decomposition algorithms—an important step
in wind speed prediction.

Many scholars have worked on numerous strategies to optimize wind speed accuracies,
as evidenced by the literature study. Forecasting has proven to be reliable and accurate
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with statistical methods such as ARIMA to WT decomposition techniques. Furthermore,
state estimation techniques, such as Kalman filters (KF) and their variations, such as
the Extended KF and Unscented KF, are used to compensate for erroneous and noisy
sensor measurements. In some way or another, all of these strategies extract relevant
information and patterns from raw sensor data, thereby improving results when trained
using machine learning algorithms. Despite these studies, no work has attempted to
combine such techniques above. Our work’s primary motivation and contribution is to
implement various combinations of these popular decompositions and state estimation
techniques in tandem to improve the data quality provided to the ML algorithms for
training and testing and to improve wind speed forecasting.

This study aims to investigate short-term wind speed forecasting employing ARIMA,
WT, KF, and ML techniques. Support vector machine regressor (SVR) and random forest
regressor (RF) are two state-of-the-art machine learning techniques for regression. SVR
is a kernel-based nonlinear regression method that converts the original input data space
into a high-dimensional input space (hyperplanes) for linear regression, allowing for the
specification of a maximum margin separator for predicted generalization error minimiza-
tion and continuous data margin maximization. For regression tasks, RF is a standard
ML technique that utilizes an ensemble of decision trees. It selects subsets of data and
input variables at random and then averages the outputs of all trees to provide a better
result than individual trees. Using random training data samples for numerous decision
trees decreases overfitting when compared to using the entire training set with a single
decision tree.

The models were implemented over a variety of datasets including different terrains,
i.e., offshore and hilly terrains. Moreover, different intervals of short-term time horizon,
including 5 min, 10 min, 30 min, and 1 h, were also applied and evaluated to test the overall
model generalization. Further, we evaluated the performance of models on standard met-
rics such as R-squared (R2) score, root mean squared error (RMSE), and mean absolute error
(MAE) for the state-of-the-art ML methods and the proposed hybrid models. The remainder
of the paper is structured into the following sections: In Section 2, the basics of ARIMA,
WT, and KF are discussed. Section 3 discusses the a framework of the hybrid approaches:
ARIMA-WT-ML and KF-WT-ML, which is followed by the data description in Section 4,
and Results and Discussions in Section 5. Section 6 provides the concluding remarks.

2. Background Theories

Except when a series demonstrates nonstationaries that cannot be modeled in the
ARIMA framework, the researchers prefer a time series analysis to use ARIMA models. In
this section, we study the basics of the ARIMA and the KF models, forming the basis of
this work.

2.1. ARIMA Model

Statistical models, such as ARIMA are straightforward to apply and are cheaper to
develop compared to other models. ARIMA model uses historical wind speed time-series
data to forecast the next few minutes or hours and often provide good results for short-term
time horizon [27]. An ARIMA model is composed of autoregressive (AR) and moving
average (MA) terms, and an additional term in which the nonstationary time series is
differentiated at least once to make it stationary. Mathematically, a typical ARIMA model
ARIMA(p, d, q) can be expressed as:

yt =
p

∑
i=1

φiyt−i +
q

∑
j=1

θjet−j + εt. (1)

If the time series has a clear pattern or seasonality, it is classified as a nonstationary
series. In addition, various tests, such as the augmented Dickey—Fuller (ADF) test, are
commonly employed to assess the stationarity of a time series. The parameters p and q are
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chosen by analyzing the autocorrelation function (ACF) and partial autocorrelation (PACF)
plots after the series has been made stationary by differentiating it by d times. After that,
the model is fitted using the maximum likelihood method. The last step is to check the
residuals of the fitted model to the given data [28].

2.2. Wavelet Transform (WT)

The use of wavelet transform (WT) for time series forecasts is a well-known technique
for overcoming the drawbacks of other signal processing methods. Signal processing
using the WT helps extract information from wind speed [29]. The WT approach gives
information of the signal in both the time and frequency domains. As a result, this method
has proven popular in nonstationary signal processing and time series wind forecasting [30].
For length T of signal x(t) with scaling and translation parameters as functions of m, n
which are integers [13,31,32], we apply the discrete wavelet transform (DWT) which can be
written as:

W(m, n) = 2−m/2
T−1

∑
t=0

x(t)φ
(

t− n · 2m

2m

)
. (2)

The DWT decomposes a signal into two components: low frequency also known as
approximate coefficients and high frequency component or detail coefficients.

We use the original wind speed data in DWT’s first step, to obtain two coefficient
types under each level, termed approximation and detail coefficients. Except for the first,
each stage merely examines the approximation coefficients. The maximal decomposition
level is computed theoretically as

M = log2(N), (3)

for series length N. This decomposition process is depicted in Figure 1. With an increase
in the level of decomposition, more subsignals and specific information about the series
over more extended periods emerge. More input features may improve the model’s
performance, but they may also lower its computing efficiency and stability. As a result,
level-5 decomposition of the wind speed series was used in this investigation [33].

Figure 1. Wavelet decomposition—level 5.

The WT utilizes the basic wavelet functions identified as mother wavelets. Haar,
Daubechies, Biorthogonal, Coiflets, Morlet, and Mexican Hat are some common mother
wavelets. To modify the original wind speed time series, we employed the Daubechies
(db3) WT with five-level signal decomposition, as previously described.

2.3. Kalman Filter (KF)

A KF is a data processing technique designed to be as efficient as possible. Two steps
make up the KF:

1. the prediction step
2. the correction step

The state is anticipated in the first step using a dynamic mathematical model. It is then
corrected with the measurements of the observation model in the second stage, minimizing
the estimator’s error covariance [34]. At each step, this cycle continues, with the previous
time step’s state serving as the starting value [35]. As a result, the KF is described as
a recursive filter that estimates a process via feedback control. Typically, the measured
variables supplied to KF facilitate estimation of the state of the process to predict the actual
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data by taking measurements as input [36,37]. There are different sorts of KF equations:
time update and measurement update equations [38,39], given as

xt = Ft · xt−1 + wt
yt = Ht · xt + vt
xt/t−1 = Ft · xt−1
Pt/t−1 = Ft · Pt−1 · FT

t + Wt
xt = xt/t−1 + Kt(yt − Ht · xt/t−1)

Kt = Pt/t−1 · HT
t
(

Ht · Pt/t−1 · HT
t + Vt

)−1

Pt = (I − Kt · Ht)Pt/t−1.

(4)

The time update equations help project the present state and error covariance estima-
tions to derive an a priori estimate for the next phase. The measurement update equations,
on the other hand, provide feedback or add a new measurement to an a priori estimate
in order to generate a better posterior estimate [40,41]. The time update equations can
be viewed as predictor equations in this context, while the corrector equations can be
considered as measurement update equations. Figure 2 shows such a predictor-corrector
framework.

Figure 2. Flow of Kalman filter.

The keys to successfully applying the KF method are accurately set state, and mea-
surement equations for the KF model initialized using an ARIMA model in this work.

3. Hybrid Models Framework

In this study, we have propose two hybrid methodologies that yield highly accurate
short-term wind predictions.

3.1. ARIMA-WT-ML

The wind speed time series is fitted to an ARIMA model, and the residual wind speeds
are generated by comparing them to the original data. The following step is to use WT to
extract relevant parameters from the wind speed residuals. The approximate and detail
coefficients are derived by series decomposition and fed to a supervised ML algorithm—
SVR and RF—along with the wind speed time series. We use the MATLAB Wavelet
Analysis toolbox for our experiments with the mother wavelet as db3 and level-5 signal
decomposition. These WT features are considered independent input features and wind
speed as the dependent target variable for the ML model. A 75–25% train-test split precedes
the normalization of the training set values with the help of the StandardScaler function in
the sklearn python library. Hyperparameter tuning is also conducted in order to fit the ML
model, such as SVR, to the best parameters. A list of values for the parameters C, gamma,
and kernel has been defined for our experiments. The sklearn library’s GridSearchCV
function is used to identify the best potential parameter for the model. For our model
implementation, we used a k-fold crossvalidation of ten. The ML method is refitted with
these derived best parameter values once the best parameters from the given list have been
found. Wind speed is estimated from the unseen test feature set and compared to the actual
series test data in the next stage. Finally, the performance is evaluated based on the R2
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score, RMSE, and MAE values. This hybrid approach’s step-by-step process is presented in
the block diagram shown in Figure 3.

Figure 3. ARIMA error—WT based hybrid model: ARIMA-WT-SVR/RF.

3.2. KF-WT-ML

Another hybrid approach based on KF is proposed and introduced as a part of our
work, and the framework of this method contains three steps. To begin, an ARIMA model
aids in the initialization of the state and measurement equations. This process of state
initialization through ARIMA makes the KF-WT-ML method an extension or improvement
of sorts of the previous method, and the steps of obtaining the state equation in this way are
inspired by Liu’s work [16]. We derive the state equation (SE) and measurement equation
(ME) before obtaining the wind speed estimation from the KF. Finally, after selecting the
right order, we modify the fitted ARIMA model as

x1(t) = x(t), x2(t) = x(t− 1), . . . , xn(t) = x(t− n)
x1(t + 1) = α1x1(t) + α2x2(t) + · · ·+ αnxn(t) + w(t + 1).

(5)

As a result, the state equation can be expressed as:
x1(t + 1)
x2(t + 1)
...
xn(t + 1)

 =


α1 · · · αn−1 αn
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 ·


x1(t)
x2(t)
...
xn(t)

+


1
0
...
0

w(t + 1), (6)

and the measurement equation is formulated as:

z(t + 1) =
[

1 0 . . . 0
]


x1(t + 1)
x2(t + 1)
...
xn(t + 1)

+ v(t + 1). (7)

Once initialized, the predictor-corrector KF algorithm is implemented to the SE and
ME to estimate the wind speed, using the python library pykalman for the KF process. In
the next step, this KF estimated wind speed is fed into the Wavelet Analysis Toolbox (DWT:
db3, 5-level) for extracting the best features in the form of approximate and detail signals.
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Then, with the wind speed as the target variable, the generated approximate, and detail
signals are employed as input features to train the ML model. Finally, the model is tested
on the 25% test data, and its performance is evaluated based on the evaluation metrics. The
block diagram in Figure 4 depicts the model framework of the KF-based hybrid approach.

Figure 4. KF based hybrid model: KF-WT-SVR/RF.

4. Data Description and Evaluation Metrics

To validate the novel approaches introduced, we exposed these models to different sets
and data types to determine the outcome and to know their respective potential. Certain
evaluation metrics are needed to assess the model’s performance in regression predictions.

4.1. Data Description

To train and test models, we fed data from 10 min, 30 min, and 1 h time interval
ranges from various locations around the globe. For a comparison of the proposed models
with conventional ML models, we used four different datasets with varied temporal
horizons. The 10 min interval TN dataset was taken from Kaggle (www.kaggle.com,
accessed on 20 October 2020), while EDP T01 turbine SCADA data was obtained from
Energias de Portugal (EDP) open data webpage. In addition, we obtained a 30 min and 1 h
time interval dataset from two different geographical locations through a download from
the Modern-Era Retrospective analysis for Research and Applications (MERRA) website
(www.soda-pro.com/web-services/meteo-data/merra, accessed on 20 October 2020). The
detailed description of the datasets implemented in this study is summarized in Table 1.
There are four onland datasets in total, with time periods ranging from 10 min to 60 min.
In this study, two datasets from the offshore and hilly regions were retrieved and deployed.
The average wind speed and standard deviation are also provided in the data description
table for each dataset, along with the total number of datapoints.

Table 1. Datasets and details for short-term forecasting of wind speed.

Wind Farm
(Dataset) Data Points Time Interval

(Min.)
Terrain

(on/off Shore)
Mean
(m/s) Std Dev

TN 4460 10 on-land 5.03 1.48

EDP T01 57,428 10 on-land 5.79 2.48

Jaisalmer 52,000 30 on-land 3.73 2.09

EDP T01 8808 60 on-land 4.50 1.81

Az HT1 8808 10 hilly 4.44 2.31

Cal HT2 4000 10 hilly 3.60 1.78

NREL 20,000 10 Offshore 10.16 4.62

Orsted 11,362 10 Offshore 9.45 4.72

www.kaggle.com
www.soda-pro.com/web-services/meteo-data/merra
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Offshore wind energy is now seeing a surge in research and development, as these
resources are more abundant, powerful, and consistent than land-based wind resources.
Therefore, further analysis and comparison across several geographies provide a more
in-depth analysis of the KF-based proposed hybrid. In addition, the MERRA website
provides wind data for hilly terrain. Finally, the NREL and Orsted public datasets are the
source for offshore wind data.

4.2. Evaluation Metrics

The evaluation metrics mentioned below are standard metrics for assessing the model’s
performance in regression predictions. The mean absolute error (MAE), root mean square
error (RMSE) metrics, and coefficient of determination (R2) help evaluate the presented
framework’s performance. In time series analysis, the MAE is a common measure of the
forecast error that estimates the average magnitude of the errors. The average of the error
between the actual and forecasted data, as represented by MAE, is mathematically given as

MAE =
1
N

N

∑
i=1
|yi − ŷi| (8)

where N refers to the number of samples for the total period, yi is the measured/observed
value, and ŷi is the estimated/predicted value. As observed, this expression incorporates
the error as the absolute error. MAE is less vulnerable to outliers than RMSE because it
considers the absolute error. The RMSE is expressed as

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (9)

The difference between the actual and predicted mean squared error represents values
retrieved by squaring the average difference over the data set. The error rate by the square
root of MSE is known as RMSE [42]. As depicted by the mathematical equation, RMSE is a
quadratic assessment rule to find the average error magnitude. RMSE also gives significant
errors disproportionately high weights because errors are squared before being averaged.
When substantial errors are avoided, RMSE is most advantageous.

In summary, the model’s performance improves as the RMSE decreases. The coef-
ficient of determination (R2) reflects the goodness of fit compared to the original values,
represented as the subtraction of the fraction of the sum of squares of regression and a sum
of squares of the total, from unity. The value typically ranges from 0 to 1 and is expressed
as a percentage: the greater the value (ideally 1), the more accurate the model:

R2 = 1−
SSRegression

SSTotal
= 1− ∑i(yi − ŷi)

2

∑i(yi − ȳ)2 . (10)

5. Results and Discussion

Four datasets from various sources, such as EDP energies and the MERRA soda-
pro website to cover 10 min, 30 min, and 1 h time intervals of wind data, are utilized
in the present study. Comparing the hybrid model results with the state-of-the-art ML
methods reveals that the predictions for both the proposed hybrid models have improved
significantly.

From Tables 2 and 3, it is evident that the state-of-the-art ML models perform decently
on 10 min interval time-scale datasets. Wind prediction accuracy, on the other hand, could
be improved. In terms of R2 score, RMSE, and MAE, the proposed hybrid models produce
accurate predictions, indicating that the KF-based hybrid strategy has a modest advantage
over the ARIMA-WT-ML model. The R2 scores for both hybrids are over 0.99, with the best
RMSE of 0.0062 for KF-WT-RF (TN dataset) and 0.098 for KF-WT-SVR (EDP T01 dataset).
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Table 2. TN [10 min].

Metrics ML
SVR RF ARIMA-WT-ML

SVR RF KF-WT-ML
SVR RF

R2 0.81842 0.84237 0.99594 0.99996 0.99812 0.99998
RMSE 0.63806 0.59450 0.06932 0.00648 0.06323 0.00627
MAE 0.40712 0.35344 0.06229 0.00394 0.05214 0.00003

Table 3. EDP T01 [10 min].

Metrics ML
SVR RF ARIMA-WT-ML

SVR RF KF-WT-ML
SVR RF

R2 0.93240 0.96738 0.99809 0.99770 0.99888 0.99813
RMSE 0.82982 0.57640 0.11358 0.12458 0.09861 0.12715
MAE 0.68861 0.33224 0.09760 0.01552 0.08626 0.01616

For the TN dataset, there is over a 15% increase in R2 score for the proposed hybrids
over the traditional ML models. In addition, this number is about 5% for the EDP T01
dataset. Furthermore, for TN, we observe a significant reduction in error by over 55% for
the RMSE evaluator. The case with the error terms of EDP T01 data is similar. In addition,
for the data obtained from EDP, the line plots (Figure 5) illustrate the high R2 scores and
low root mean and mean absolute errors for both ARIMA-WT and Kalman-WT based
techniques. In these time horizons as well, the KF-based hybrid outputs slightly better
scores in terms of accuracy and prediction errors.

Figure 5. (a) ARIMA-WT-ML and (b) KF-WT-ML plots for EDP T01 dataset [10 min].
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The ML models perform poorly for 30 min and 1 h datasets, as inferred from
Tables 4 and 5. The evaluation metrics show that the R2 scores hover around 0.50, and
the errors (RMSE and MAE) also range from 1 to 2. However, there is consistency in the
proposed hybrid approaches as they perform exceptionally well to give close to precise
wind speed forecasts. The R2 scores for both hybrids are over 0.99, showing an increment
of around 50% for both approaches to provide the best RMSE of 0.01 for KF-WT-RF (30 min)
and 0.03 for KF-WT-RF (1 h). In these time horizons, the KF-based hybrid outputs slightly
better scores in terms of accuracy and prediction errors. Furthermore, for the dataset
collected from MEERA webpage, the line plots, in Figure 6 represent minimal error in terms
of predicted and original wind speed data for both the proposed hybrid techniques.

Table 4. Jaisalmer [30 min].

Metrics ML
SVR RF ARIMA-WT-ML

SVR RF KF-WT-ML
SVR RF

R2 0.48459 0.64206 0.99679 0.99978 0.99711 0.99997
RMSE 1.48526 1.23775 0.09436 0.02374 0.11117 0.01023
MAE 2.20600 1.53203 0.08258 0.00056 0.10023 0.00010

Table 5. AWF [1 h].

Metrics ML
SVR RF ARIMA-WT-ML

SVR RF KF-WT-ML
SVR RF

R2 0.53552 0.66426 0.99694 0.99498 0.99840 0.99970
RMSE 1.23116 0.9540 0.07311 0.07435 0.07010 0.03109
MAE 1.51577 0.91011 0.06366 0.00552 0.05576 0.00096

Figure 6. (a) ARIMA-WT-ML and (b) KF-WT-ML plots for Jaisalmer dataset [30 min].
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In addition, the KF-based hybrid approach is trained and evaluated on datasets from
different terrains and regions around the globe. Along with the onshore, i.e., onland
data, a study on two offshore and two hilly region datasets reveals the proposed model’s
performance on various terrains. As discussed, the offshore datasets for the Portland coast
and the Orsted’s Westermost Rough (WMR) offshore wind farm obtained from NREL
Wind Prospector and Orsted webpage, respectively, implement the KF-WL-ML model
framework for comparative analysis. Results shown in Tables 6 and 7 represent a high
prediction accuracy from the offshore and hilly regions wind data, as indicated by the R2
score, for all are over the 0.99 range. However, the errors in the form of RMSE and MAE
for the offshore wind speed predictions are relatively larger than onshore wind forecasts.
The range of RMSE and MAE for offshore predictions is 0.1678− 0.2727, while for the
onshore forecasts, these errors range between 0.0009− 0.1151. High prediction accuracy
wind forecast is obtained for the Kalman-filter-based combination model over different
topologies and geographic locations that can be indicated the line plot, in Figure 7, between
original and predicted wind speed.

Table 6. KF-WT-ML(SVR) on different terrains.

On Land Off-Shore Hilly RegionsDataset TN EDP T01 Portland Orsted Az HR1 Cal HR2

R2 0.99812 0.99888 0.99810 0.99703 0.99747 0.99742
RMSE 0.06323 0.09861 0.20321 0.27273 0.11514 0.07940
MAE 0.05214 0.08626 0.16784 0.22727 0.10199 0.00096

Table 7. KF-WT-ML(RF) on different terrains.

On Land Off-Shore Hilly RegionsDataset TN EDP T01 Portland Orsted Az HR1 Cal HR2

R2 0.99998 0.99813 0.999826 0.99859 0.999961 0.99997
RMSE 0.00627 0.12715 0.06140 0.18788 0.01428 0.00813
MAE 0.00003 0.01616 0.003770 0.03530 0.000203 0.00006

Figure 7. Offshore NREL KF-WT-ML(SVR).

The model training time is another positive aspect of the proposed hybrids. The
models are trained and tested without the requirement of GPU. For almost all the models,
the online training time is not more than a few minutes. Training time is in seconds
for the datasets with relatively lesser datapoints. The proposed approaches yield more
precise wind speed forecasts, as indicated by the statistics of the performance metrics.
Furthermore, from the obtained results, the trend of KF based hybrid yielding similar but
better scores than that of the ARIMA-WT model is observed over all datasets. One of the
reasons for such a trend is the predictor-corrector algorithm which refines the noisy sensor
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measurements by incorporating a system model and estimates new wind speed series that
the WT then processes. The effectiveness of the presented hybrids is demonstrated by the
range of datasets implemented, based on various locations, topologies, and time horizons.
Furthermore, the consideration of other input features and parameters such as temperature,
humidity, and pressure may aid in providing more valuable information about the wind
speed, especially for the short-term time horizon.

6. Conclusions

This study investigates short-term forecasting employing two-hybrid approaches that
incorporate the ARIMA model, WT, and KF for wind speeds. The hybrid forecasting
methods evaluated on four datasets reveal that both the proposed hybrids ARIMA-WT-
ML and KF-WT-ML outperform the state-of-the-art ML methods: SVR and RF. Further,
the KF based approach is a better regressor for wind speed predictions. On broader
time scales, where the conventional ML algorithms failed to give good forecasts, both
the hybrid approaches provide significantly precise results with minimal forecast error.
Furthermore, when comparing the proposed model’s prediction accuracy across a number
of terrains, it was revealed that the proposed model’s prediction accuracy is superior for
onshore datasets, followed by offshore wind data. As discussed, it would be interesting to
work with newly developed decomposition approaches and ML algorithms in the future,
improve the approach for feature selection and more in-depth hyperparameter tuning, and
evaluate the predictive accuracy of these models over a long time horizon. Furthermore,
deep learning approaches are becoming increasingly popular, and in many applications,
they outperform classic machine learning algorithms at the trade-off of longer computer
processing times.
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