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Abstract: Female athletes who endure physical strain on the same bone area are prone to stress
fractures. Preventing these improves their quality of life. Blood vitamin B2 (V.B2) and E (V.E) levels
influence blood homocysteine (Hcy) levels, which, when elevated, increase the risk of stress fractures.
We aimed to determine the effects of V.B2 and V.E supplementation on plasma Hcy concentrations in
these athletes carrying the C677T polymorphism in methylenetetrahydrofolate reductase (MTHFR).
This study is a before–after study in 16 female athletes. It was divided into three intervention
periods of V.B2 (28 mg/day), V.E (60 mg/day), and V.B2 + V.E intake, and each period was 14 days.
Blood samples were collected before and after each period, and plasma Hcy concentration and each
blood vitamin concentration were measured. Plasma Hcy concentration significantly decreased in all
periods, but the maximum lowering effect was obtained when V.B2 and V.E were used in combination.
The administration of V.B2 might have lowered the plasma Hcy level by maximizing the catalytic
activity of MTHFR; V.E might have suppressed cell oxidation, increasing the efficiency of folate in
lowering the plasma Hcy level. We propose the combined intake of V.B2 and V.E as effective nutrients
to reduce plasma Hcy concentrations in female athletes with MTHFR polymorphisms.

Keywords: vitamin B2; vitamin E; homocysteine; methylenetetrahydrofolate reductase; stress
fractures; female athletes

1. Introduction

There has been an increasing interest in sports in recent years, resulting in an upsurge
of health issues. Health problems associated with sports have led to the development of a
concept called the “female athlete triad” (FAT), which comprises disordered energy avail-
ability, menstrual problems, and weak bones. This concept was devised by the American
College of Sports Medicine in 2007 [1,2]. FAT refers to the interrelationship between energy
availability, menstrual function, and bone mineral density that may have clinical manifes-
tations such as eating disorders, functional hypothalamic amenorrhea, and osteoporosis.
Prevention of FAT is important, as the condition leads to poor athletic conditioning, result-
ing in a loss of strength and endurance. Furthermore, in 2014 the International Olympic
Committee presented the “Relative Energy Deficiency in Sport (RED-S)”. RED-S is more
comprehensive and broader, including the concept of FAT, revealing it to be a syndrome
that affects many aspects of metabolic rate, immunity, and physiological function [3]. In
particular, female track athletes are often reported to have a high prevalence of low energy
availability. In addition, as a characteristic of track and field sports, sub-maximal stress
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loads are repeatedly applied to bones, increasing the risk of stress fractures, which deterio-
rates their competitive lives [4]. These findings suggest that female track athletes may be at
a significantly higher risk of stress fractures.

Homocysteine (Hcy), a non-protein amino acid, has been reported to be an inde-
pendent risk factor for abnormal bone metabolism and is also implicated in stress frac-
tures [5–10]. It is an intermediate metabolite of methionine, which is mainly metabolized
through two pathways: (1) remethylation to methionine, which is dependent on folate,
vitamin B12 (V.B12), and riboflavin (vitamin B2 [V.B2]), and (2) transsulfuration, which
is dependent on vitamin B6 (V.B6). In the remethylation pathway, methionine is formed
by the addition of a methyl group from 5-methyltetrahydrofolate, which is derived from
dietary folate catalyzed by the enzyme 5,10-methyltetrahydrofolate reductase (MTHFR).
In the gene encoding MTHFR, there is a C-to-T polymorphism at position 677 (MTHFR
C677T), which causes alanine to be replaced by valine. Homozygotes and heterozygotes
for C677T have been reported to have reduced MTHFR enzymatic activity by 60–70%
and 30–35%, respectively [11–13]. Moreover, the single nucleotide polymorphism (SNP)
C677T has been shown to decrease the enzymatic activity of MTHFR, resulting in decreased
production of 5-methyltetrahydrofolate, which inhibits the remethylation pathway from
Hcy to methionine, leading to an increase in blood Hcy concentration [14–17]. Mutations
in the C677T polymorphism of MTHFR have been identified as an independent risk factor
for stress fractures associated with hyperhomocysteinemia-mediated stress fractures [18].
V.B2, a precursor of flavin adenine dinucleotide (FAD), which is a cofactor of MTHFR,
is an independent determinant of plasma Hcy levels [19]. However, low levels of V.B2
supplementation (<1.6 mg/day) failed to reduce blood Hcy levels [20]. Therefore, high
V.B2 intake should be studied to determine the effect of V.B2 supplementation on plasma
Hcy levels.

Folate plays a key role as a one-carbon carrier, facilitating the conversion of Hcy to
methionine during methylation. Folate antioxidation has been explored as an attractive
method to increase circulating levels of folate and reduce Hcy levels. Diet supplementation
with antioxidants such as beta-carotene, V.C, and vitamin E (V.E), have been reported to
reduce blood Hcy levels [21]. However, there are few studies on V.E intake alone and
plasma Hcy concentrations. Thus, we hypothesized that the concurrent administration of
antioxidant vitamins may potentiate the effects of group B vitamins on elevated plasma Hcy
levels and aimed to determine the effects of V.B2 and/or V.E supplementation on blood Hcy
levels in female track and field athletes with homozygous (TT) and heterozygous (CT) types
of the C677T polymorphism. The findings of this study may provide scientific evidence for
developing nutritional management support by considering genetic polymorphisms as a
decision-making factor for the healthcare of female athletes.

2. Materials and Methods
2.1. Ethics of Human Research

This study followed the guidelines of the Declaration of Helsinki for research on
human subjects. The study was approved by the Committee for the Ethical Guidelines for
Medical and Health Research Involving Human Subjects at Toyo University (approval num-
ber: TU2018-16). Written consent was obtained from all participants for their participation
after they were informed of the risks, discomforts, and benefits of the study.

2.2. Participants and Procedure
2.2.1. Participants

In this study, 16 female collegiate track and field athletes (age: 19.8 ± 0.8 years, height:
160.2 ± 5.5 cm, weight: 47.1 ± 5.2 kg) were enrolled. Participants taking medication were
excluded. Of these, three participants who were unable to participate during all periods
were excluded, and the remaining 13 were analyzed for TT or CT genotypes of the MTHFR
C677T polymorphism. Eleven female track and field athletes had TT or CT genotypes
in the MTHFR C677T polymorphism. Therefore, the final number of participants in the
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experiment was 11. The sample size was calculated at a power of 80% using α = 0.05 and
β = 0.20. The effect size of Hcy was 1.0 µmol/L [22]. Hence, the number of participants in
this study met the calculated values.

2.2.2. Procedure

This study process is shown in Figure 1. This study is a before–after study. Participants
were continuously administered a prescribed amount of V.B2 and/or V.E for 14 days. For
the intake period, we referred to studies that had used V.B2 and V.E supplementation and
studies that confirmed the Hcy level by supplement intake [21,23]. The study period was
divided into three periods: V.B2 intake period (V.B2 period), V.E intake period (V.E period),
and combined intake period (V.B2 + V.E period), including a 14-day washout period
between each experimental period. Throughout the study, participants were blinded to the
presence, type, and amount of vitamin intake. All participants stayed in the same dormitory
and consumed the same meals in the morning and at night during the experimental period.
Meals were prepared and served by registered dietitians in the dormitory kitchen. In
accordance with the Dietary Reference Intakes for Japanese (2015 edition) [24] and previous
studies on oral intake of vitamin B2 and Vitamin E, the daily loading level was set to
28 mg/day for V.B2 and 60 mg/day for V.E [24–27]. In the previous study [25], 27 mg
of V.B2 was reported to be the maximum level for absorption into the human body as a
water-soluble vitamin. V.B2 is not susceptible to overdose due to high doses, and even in
a previous study in which 400 mg of V.B2, which greatly exceeds the loading dose in this
study, was taken continuously daily for 3 months [26], no health problems were reported.
In addition, V.E is a fat-soluble vitamin, which could be harmful for the human body with
an overdose of more than 800 mg/day [24]. Therefore, we carefully targeted the level at
60 mg/day, which a previous study [27] had confirmed resulted in an increase in plasma
V.E concentration and no health problems. The same amounts were also used for the
combined intake. Participants ingested the powdered vitamin twice a day, at breakfast
and at dinner. This intake frequency was based on the half-life of the vitamin in the blood.
Each vitamin was administered by mixing it with a meal (yogurt or fruit gelatin). The
V.B2 and V.E (α-tocopherol) supplements were prepared by Mitsubishi Chemical Foods
Corp., Japan. Daily energy and nutrient intakes were assessed using a brief-type self-
administered diet history questionnaire (BDHQ) consisting of approximately 80 questions.
The BDHQ is a reliable questionnaire for adults living in Japan that checks the amount
of nutrients habitually ingested from ordinary foods (excluding supplements) for the
past month and has approximately the same as or slightly higher validity than similar
questionnaires [28–30].
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2.3. Analysis of Saliva

Saliva was collected after no food or drink for 30 min. Saliva samples were collected,
and DNA was extracted using the Oragene® Dis-cover kit OGR-600 (DNA Genetek Inc.,
Ottawa, ON, Canada) as per the manufacturer’s instructions. MTHFR was amplified using
primers MTHFR C677T Primer-S, 5′-TGAAGGAGAAGGTGTCTGCGGGA-3′, MTHFR
C677T Primer-AS, 5′-CCTCACCTGGATGGGAAAGATCC-3′, and DNA polymerase Pre-
mix Taq™ version 2.0 (Takara Bio Inc., Shiga, Japan). The DNA amplification program
comprised initial denaturation at 94 ◦C for 5 min, denaturation at 94 ◦C for 30 s, annealing
at 60 ◦C for 60 s, and extension at 72 ◦C for 60 s which was repeated for 50 cycles and
followed by a final extension at 72 ◦C for 60 s, and incubation at 4 ◦C thereafter. HinfI (New
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England Biolabs, Inc., Rowley, MA, USA) was the restriction enzyme, and DNA was cleaved
using the polymerase chain reaction (PCR)-restriction fragment length poly-morphism
method (PCR-RFLP). The cleaved PCR products were separated on a 3% agarose gel to
differentiate the wild-type, C677T (heterozygote), and T677T (homozygote) polymorphisms
of the MTHFR gene. The analysis of the MTHFR C677T polymorphism described above
was performed with reference to previous studies [31,32].

2.4. Analysis of Blood Components

Fasting morning blood samples were collected from the participants before (pre) and
after (post) each vitamin intake period. Plasma was separated from the blood samples
within an hour of collection. Plasma samples were stored at −80 ◦C until further analysis.
The plasma V.E and Hcy concentrations were measured using high-performance liquid
chromatography (HPLC). Analysis of the serum V.B2 concentration was out-sourced to LSI
Medience Corporation, Tokyo, Japan.

2.4.1. Plasma Homocysteine Analysis

The plasma sample for Hcy analysis was prepared by adding 205 µL of 0.3 M PBS
(pH 7.4) and 25 µL of 10 µM N-Acetyl-L-cysteine (Sigma-Aldrich Japan K.K., Tokyo, Japan)
to 25 µL of plasma. After the sample was stirred, 10 µL of 60 mM Tris (2-carboxyethyl)
phosphine hydrochloride (Nacalai Tesque, Inc., Kyoto, Japan) was added. After the sample
was stirred again the mixture was incubated at 20–24 ◦C for 30 min with stirring. Next,
90 µL of 100 g/L trichloroacetic acids (FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan) containing 1 mM EDTA-2Na (FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan) was added, and the mixture was stirred and centrifuged (20 ◦C, 13,000× g, 10 min).
The supernatant (90 µL) was transferred to a sample vial, 7.5 µL of 1.55 M NaOH was
added, and the mixture was stirred again.

The mobile phase was prepared by adding 12 g of disodium hydrogen phosphate to
1000 mL of MilliQ water, and the sample was stirred again. The pH of the solution was
adjusted to pH 2.5 by adding phosphoric acid. Further, 10% methanol, 170 mg anhydrous
sodium dihydrogen phosphate (Kanto Chemical Co., Inc., Tokyo, Japan), and 5 mg of
EDTA-2Na were added. The samples were analyzed by HPLC (JASCO Co., Tokyo, Japan).
The analytical conditions are shown in Table 1.

Table 1. Analytical conditions for plasma Hcy and V.E concentrations by HPLC.

Items Equipment, Reagents, and Conditions for Hcy Equipment, Reagents, and Conditions for V.E.

Pump EP-700 (LIQUID CHROMATOGRAPH
PUMP/Eicom)

EP-700 (LIQUID CHROMATOGRAPH
PUMP/Eicom)

Auto Sampler M-514 (Eicom) AS-4050 (Eicom)

Detector Eicom ECD-700 (Eicom) FP-2025 Plus intelligent fluorescence
detector (Jasco)

Working Electrode Eicom WE-AU (Eicom) Eicom WE-AU (Eicom)

Precolumn COSMOSIL Guard Cartridge 5PFP 4.6ID × 10 mm
(COSMOSIL) Eicom PC-04 4.0 mmϕ × 5 mm (Eicom)

Column Eicom-3OSD 3.0ϕ × 150 nm (Eicom) COSMOSIL Packed column 5PFP 4.6 mm
I.D. × 250 mm (nacalai tesque)

Column Temp 25 ◦C 40 ◦C

Buffer
99% 0.1 M Sodium phosphate buffer (pH 2.5), 1%

Methanol, 170 mg/L Sodium octansulfonate,
5 mg/L EDTA-2Na

Methanol:MilliQ (v/v) = 9:1

Flow rate 500 µL/min 700 µL/min

Hcy, homocysteine; HPLC, high-performance liquid chromatography; V.E, vitamin E.

2.4.2. Plasma V.E Analysis

The plasma sample for V.E analysis was prepared by adding 390 µL of 100% ethanol
and 10 µL of 100 µM dl-Tocol (Tama Biochemical Co., Ltd., Tokyo, Japan) as an internal
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standard to 100 µL of plasma, and the mixture was centrifuged (4 ◦C, 15,000 rpm, 15 min).
Then, the supernatant was collected with a 1 mL syringe and passed through a 0.2 µm filter,
and the precipitate was discarded. Subsequently, 100 µL was dispensed into a sample vial
and substituted with argon.

The mobile phase for the analysis was 90% methanol (prepared using HPLC-grade
methanol and MilliQ water). The samples were analyzed using HPLC (JASCO Co., Tokyo,
Japan). The analytical conditions are shown in Table 1.

2.4.3. Plasma Folate Analysis Using Enzyme-Linked Immune Sorbent Assay (ELISA) Kit

Plasma folate concentrations were quantitatively estimated using a folate ELISA kit
(Cell Biolabs, Inc., San Diego, CA, USA) as per the manufacturer’s instructions. After the
enzymatic reaction, the absorbance of each microwell was read on a spectrophotometer
(Sunrise™, Tecan Japan Co., Ltd., Kanagawa, Japan) at 450 nm, and the folate standard
curve was used to determine plasma folate concentrations.

2.5. Statistical Analysis

All statistical analyses were performed using SPSS version 26 (IBM Corp., Armonk, NY,
USA). The normality of pre-and-post-intervention data was compared by the Shapiro–Wilk
test. Normally distributed data were compared using the paired t-test, and non-normally
distributed data were analyzed using Wilcoxon’s signed-rank test. For the change in
concentrations, significance was determined by one-way analysis of variance using the
one-way non-parametric Kruskal–Wallis test based on the normality of variables. For all
statistical analyses, values of p < 0.05 were considered significant.

3. Results
3.1. The C677T Polymorphism Status and Physical Characteristics of the Participants

Of the 16 healthy participants, 11 had the C677T polymorphism and were recruited
for subsequent analyses. The age of these 11 participants ranged from 19 to 21 years, with
an average age of 19.9 ± 0.9 years. The mean number of competing years was 7.5 years.
The participants’ body mass index (BMI) was 17.7 ± 1.3 and monthly running distance was
476 ± 128 km. Physical characteristics of the participants are listed in Table 2.

Table 2. Physical characteristics of female track and field athletes with C677T genotype and their
competition performance.

ID Sex Age
(Years)

Height
(cm)

Weight
(kg) BMI

Number of
Stress

Fractures

SNPs
(MTHFR
C677T)

Monthly
Running
Distance

(km)

Competing
in the Track

and Field
(Year)

Best Record
(3000 m

Race) (min)

A F 21 156.0 45.0 18.5 2 CT 425 9 9.34
B F 21 165.2 49.5 18.1 1 CT 392 9 9.57
C F 21 162.8 42.4 16.0 2 CT 416 10 9.43
D F 21 150.0 42.0 18.7 0 CT 519 12 9.47
E F 20 160.0 42.5 16.6 0 CT 804 5 9.25
F F 20 160.0 46.5 18.2 0 TT 418 8 9.48
G F 19 163.0 47.5 17.9 0 CT 500 7 9.36
H F 19 158.3 38.5 15.4 0 CT 252 4 9.45
I F 19 157.3 45.9 18.6 0 CT 517 7 9.49
J F 19 163.5 53.0 19.8 0 CT 467 4 10.08
K F 19 171.0 49.0 16.8 0 CT 525 7 9.29

(Mean ± S.D.) 19.9 ± 0.9 160.6 ± 5.2 45.6 ± 3.9 17.7 ± 1.3 0.5 ± 0.8 476 ± 128 7.5 ± 2.4 9.47 ± 21

ID, identification; BMI, body mass index; MTHFR, methylenetetrahydrofolate reductase; SNP, single nucleotide
polymorphism. The number of stress fractures was defined as the number of times a fracture had occurred since
beginning training for track.

3.2. Dietary Nutrient Intake

The energy intake of the participants was 2145 ± 572 kcal. The intakes of V.B2 and
V.E were 0.9 ± 0.2 mg/1000 kcal and 5.2 ± 1.5 mg/1000 kcal, respectively. Protein and
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carbohydrate intakes were 2.2 g and 6.2 g per kg of body weight, respectively. Dietary
energy and nutrient intake of the participants are shown in Table 3.

Table 3. Dietary energy and nutrient intake of female athletes.

Calculated Values (Mean ± S.D.) DRIs

Energy (kcal) 2145 ± 572
Protein (%) 18.6 ± 2.4 13~20%

PFC energy ratioFat (%) 28.5 ± 6.0 20~30%
Carbohydrates (%) 52.1 ± 7.6 50~65%

V.B2 (mg/1000 kcal) 0.9 ± 0.2 0.6 RDA
V.B6 (mg/1000 kcal) 1.0 ± 0.2 0.55 RDA
V.B12 (µg/1000 kcal) 9.1 ± 2.5 1.2 RDA

Folic acid (µg/1000 kcal) 252 ± 78 120 RDA
V.C (mg/1000 kcal) 95 ± 38 50 RDA

V.A (µgRAE/1000 kcal) 825 ± 310 325 RDA
V.E (mg/1000 kcal) 5.2 ± 1.4 2.5 RDA

Dietary protein, fat, and carbohydrate intakes are shown by the PFC energy ratio. V.B2 and V.E are shown
as intakes per 1000 kcal of energy. DRI, dietary reference intakes; PFC, protein, fat, and carbohydrates; RDA,
recommended dietary allowances.

3.3. Serum Vitamin B2, Plasma Vitamin E, Folate, and Homocysteine Concentrations

The concentrations of serum V.B2, plasma V.E, and folate are shown in Table 4. Serum
V.B2 levels increased significantly during the period of V.B2 intake (from 20.3 ± 3.4 to
24.0 ± 2.6 in the V.B2 + V.E period, p < 0.01; from 17.4 ± 4.1 to 22.4 ± 2.4 in the V.B2 period,
p < 0.001) and decreased significantly during the period of V.E intake (from 23.5 ± 4.5 to
19.5 ± 2.5 in the V.E period, p < 0.05). Plasma V.E concentration decreased significantly
during the period of ingestion of V.B2 (from 25.2 ± 4.4 to 20.6 ± 3.9 in the V.B2 period,
p < 0.001) and increased significantly during the period of ingestion of V.E (from 18.1 ± 3.1
to 20.7 ± 1.5 in the V.B2 + V.E period, p < 0.05; from 19.5 ± 4.1 to 23.6 ± 4.0 in the V.E
period, p < 0.05). Plasma folic acid concentration did not show a significant difference
(p > 0.05). In contrast, plasma Hcy concentrations significantly decreased in all periods
after the supplements were administered (p < 0.05). However, the reduction was maximum
in the V.B2 + V.E period (2.2 µmol/L), which was significantly higher than in the V.E period
(2.0 µmol/L, p < 0.05; Figure 2).

Table 4. Serum V.B2, plasma V.E and folate concentrations pre and post V.B2 and/or V.E administration.

(n = 11)
V.E + V.B2 Period V.B2 Period V.E Period

Pre Post Pre Post Pre Post

Serum V.B2 (µg/dL) # 20.3 ± 3.4 24.0 ± 2.6 ** 17.4 ± 4.1 22.4 ± 2.4 *** 23.5 ± 4.5 19.5 ± 2.5 *
Plasma V.E (µmol/L) # 18.1 ± 3.1 20.7 ± 1.5 * 25.2 ± 4.4 20.6 ± 3.9 *** 19.5 ± 4.1 23.6 ± 4.0 *

Plasma folate (ng/mL) † 9.5 ± 5.0 10.7 ± 3.7 8.0 ± 4.1 6.8 ± 3.8 7.7 ± 4.7 7.2 ± 4.2

Values represent the mean ± standard deviation of fasting blood samples taken 14 days pre and post vitamin
treatment. The number of asterisks in a row indicates the significant difference between the pre- and post-treatment
data (* p < 0.05, ** p < 0.01, *** p < 0.001). Reference ranges for blood tests are serum V.B2: 12.8–27.6 µg/dL,
plasma V.E: 17.4–32.7 µmol/L; and plasma folate: 3.6–12.9 ng/mL. All blood data were within the reference
ranges. One of plasma folate levels in the V.E group was hemolyzed; therefore, it was excluded from the data and
is not shown in the table. The statistical analysis method is specified with symbols (#: paired t-test, †: Wilcoxon’s
signed-rank test).
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Figure 2. Comparison of the reduction in plasma homocysteine (Hcy) concentration after vitamin 

(V.B2) and/or vitamin E (V.E) administration. There was a significant difference between the vita-

min B2 (V.B2) + vitamin E (V.E) period and the V.E period (* p < 0.05). The lowest plasma homocys-

teine (Hcy) concentration was in the V.B2 + V.E period. Plasma Hcy concentration decreased 

(pre−treatment to post−treatment [μmol/L] from 6.4 ± 1.0 to 4.2 ± 1.1 in the V.B2 + V.E period (p < 

0.001), and from 10.1 ± 0.7 to 8.1 ± 1.0 in the V.B2 period (p < 0.001), and in the V.E period it also 

decreased from 8.7 ± 1.1 to 7.7 ± 1.2 (p < 0.05). In Japan, the reference value of plasma Hcy concen-
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istration. 

(n = 11) 
V.E + V.B2 Period V.B2 Period V.E Period 

Pre Post Pre Post Pre Post 

Serum V.B2 

(μg/dL) # 
20.3 ± 3.4 24.0 ± 2.6 ** 17.4 ± 4.1 22.4 ± 2.4 *** 23.5 ± 4.5 19.5 ± 2.5 * 

Plasma V.E 

(μmol/L) # 
18.1 ± 3.1 20.7 ± 1.5 * 25.2 ± 4.4 20.6 ± 3.9 *** 19.5 ± 4.1 23.6 ± 4.0 * 

Plasma folate 

(ng/mL) † 
9.5 ± 5.0 10.7 ± 3.7 8.0 ± 4.1 6.8 ± 3.8 7.7 ± 4.7 7.2 ± 4.2 

Values represent the mean ± standard deviation of fasting blood samples taken 14 days pre and post 

vitamin treatment. The number of asterisks in a row indicates the significant difference between the 

pre- and post-treatment data (* p < 0.05, ** p < 0.01, *** p < 0.001). Reference ranges for blood tests are 

serum V.B2: 12.8–27.6 μg/dL, plasma V.E: 17.4–32.7 μmol/L; and plasma folate: 3.6–12.9 ng/mL. All 

blood data were within the reference ranges. One of plasma folate levels in the V.E group was he-

molyzed; therefore, it was excluded from the data and is not shown in the table. The statistical anal-

ysis method is specified with symbols (#: paired t-test, †: Wilcoxon’s signed-rank test). 

Figure 2. Comparison of the reduction in plasma homocysteine (Hcy) concentration after vita-
min (V.B2) and/or vitamin E (V.E) administration. There was a significant difference between the
vitamin B2 (V.B2) + vitamin E (V.E) period and the V.E period (* p < 0.05). The lowest plasma ho-
mocysteine (Hcy) concentration was in the V.B2 + V.E period. Plasma Hcy concentration decreased
(pre−treatment to post−treatment [µmol/L] from 6.4 ± 1.0 to 4.2 ± 1.1 in the V.B2 + V.E period
(p < 0.001), and from 10.1 ± 0.7 to 8.1 ± 1.0 in the V.B2 period (p < 0.001), and in the V.E period it
also decreased from 8.7 ± 1.1 to 7.7 ± 1.2 (p < 0.05). In Japan, the reference value of plasma Hcy
concentration is 3–15 µmol/L. In this study, all fluctuations were within the standard value. V.B2,
vitamin B2; V.E, vitamin E; Hcy, homocysteine.

4. Discussion

This study examined female track and field athletes with the C677T SNP associated
with elevated Hcy, and therefore with stress fractures. The purpose of this study was to
determine the effect of V.B2 and antioxidant V.E supplementation on plasma Hcy levels. The
results of this study showed that administration of V.B2 and/or V.E for 14 days significantly
reduced plasma Hcy concentrations in all periods, with the greatest reduction effect in the
V.B2 + V.E period. Reduction in plasma Hcy concentrations may prevent stress fractures.
Prevention of stress fractures can improve athletes’ quality of life.

Of the 13 participants who participated in the entire study period, 11 had the MTHFR
C677T polymorphism, 10 (76.9%) had the CT genotype and 1 (7.7%) had the TT genotype.
The remaining 2 (15.4%) had the CC genotype. Previous studies in Japanese people have
reported that 11% of the population have the TT type, 46.8–54% have the CT type, and
35–42.2% have the CC type [15,33]. The distribution of the participants in this study tended
to include a lower proportion of CT type than in the general population, but it is considered
that there is no big difference from previous studies. In addition, the assessment of the
dietary energy and nutrient uptake of the participants, as obtained through the BDHQ
analysis (Table 3), showed that each nutrient met the recommended dietary allowance in
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Japan (2015 edition) [24]. Therefore, this study was considered to be a vitamin load test in a
group of well-fed female athletes.

V.B2, the precursor of FAD (a cofactor for MTHFR), has been reported to influence
plasma Hcy levels [34,35]. Ingestion of folate and V.B2 lowers blood Hcy levels, whereas
low V.B2 levels are associated with elevated plasma Hcy levels [36]. Another study reported
that riboflavin supplementation led to a reduction in Hcy, even when limited to participants
with low blood folate levels and the MTHFR C677T genotype [37]. In the present study, the
plasma Hcy concentration was reduced by V.B2 intake, as it was observed in participants
with the MTHFR C677T genotype who had adequate folic acid intake. A study reported that
the administration of 1.6 mg V.B2 daily for 12 weeks did not affect Hcy levels [19]. In this
study, V.B2 at 28 mg per day for 14 consecutive days reduced plasma Hcy concentrations
by maximizing the catalytic activity of MTHFR. In the present study, the effect of V.B2 was
demonstrated in a study of only participants with the MTHFR gene polymorphism.

Some researchers have suggested that vitamins with antioxidant effects enhance folate
utilization efficiency, promote the conversion of Hcy to methionine, reduce intracellular
oxidative stress, and lower blood Hcy concentrations [21,38,39]. The present results indicate
that V.E reduces plasma Hcy concentrations. The athletes were routinely managed by a
dietician and received sufficient energy-rich nutrients (carbohydrates, fats, and proteins),
folate, and antioxidant vitamins. However, despite adequate dietary intake of V.E, plasma
concentrations of V.E were <20 µmol/L before supplementation. Mean values were within
the reference range, but some participants were below the reference range. These results
suggest that, within the range of daily dietary intake, it may be difficult for female athletes
to obtain adequate amounts of V.E from their daily diet. In this study, adding 60 mg of
V.E to the daily diet maintained V.E concentration at ≥20 µmol/L in female track athletes
running 400 km per month. This suggests that V.E supplementation has the potential
to reduce post-training oxidative stress [40,41] and contributes to a decrease in plasma
Hcy concentrations.

In this study, the maximum effect was obtained by the combined intake of V.B2 + V.E.
As mentioned above, V.B2 decreased plasma Hcy concentration by increasing the activity
of MTHFR, and V.E decreased plasma Hcy concentration by enhancing folate utilization
efficiency. Although the mechanisms of action of these vitamins are different, both vitamins
work to promote the metabolism of Hcy. It is presumed that combined intake of V.B2
and V.E promoted turnover and decreased plasma Hcy concentration more than separate
supplement consumption. In addition, Rajesh et al. [42] showed that there were significantly
lower blood Hcy levels in the group that took antioxidant vitamins (V.C, V.E) and the
vitamin B group (folic acid, V.B2, V.B6, V.B12) in combination than in the group that took
only vitamin B. Similarly, we found that it was more effective to take V.E and V.B2 in
combination than to take V.B2 alone, which was a result supporting the previous study.

This study, although successful, had some limitations. First, the effect of the partici-
pant’s menstrual cycle on Hcy has not been eliminated. In the future, it is hoped that a FAT
solution method will be constructed by conduction of research that takes the menstrual
cycle into consideration. The second is the lack of measurement of body composition,
including bone density. In the future, it is necessary to confirm the effects on bones through
long-term interventions. Thirdly, there is no set control period. In order to more accurately
determine the effect of vitamins, it is desirable to conduct the study using control conditions
in the future.

5. Conclusions

The results of this study suggest that V.B2 and V.E supplementation for track and
field athletes may prevent stress fractures via reduction in plasma Hcy concentrations. The
results of these studies may be useful in building further scientific evidence for nutritional
management support based on genetic polymorphisms.
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