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Abstract: In this study, novel potential inhibitors of SARS-CoV-2 variants were designed de novo
using generative neural networks. The top-performing ligand based on docking performance and
ADMET profiles was CID #526. It forms several hydrogen bonds with wild-type SARS-CoV-2,
indicating its potential as an inhibitor of the receptor-binding domain. Mutated variants of the
RBD also showed good interactions with CID #526, implying the inhibitory properties of our top-
performing compound against various variants. Molecular dynamics analysis showed a stable
ligand–RBD complex. CID #526 can easily be synthesized using low-cost starting molecules. Overall,
the generated ligands merit further investigation to determine their efficacy and safety as a treatment
for COVID-19.

Keywords: SARS-CoV-2; COVID-19; de novo drug design; molecular dynamics

1. Introduction

COVID-19, a disease caused by the coronavirus SARS-CoV-2 [1], is still being spread by
millions of people across all nations well over two years after it was first reported in Wuhan,
China. Several vaccines, such as those developed by Pfizer/BioNTech [2] and Moderna [3],
among others, have already been deployed after showing promising efficacy rates in their
clinical trials. However, the rise of new variants of SARS-CoV-2 could threaten the efficacy
of the current vaccines, which have been developed from the parent variant [4,5].

A viral isolate is named a variant of concern (VOC) if there is sufficient evidence
that the emerging variant presents increased transmissibility or causes increased disease
severity or the reduction in efficacy/failure of existing diagnostics, treatments, and vaccines.
The first VOC identified was the B.1.1.7 lineage, which was first reported in the United
Kingdom. It contains the N501Y, A570D, D614G, and P681H mutations and 69/70/144
deletions in the spike protein. These mutations caused a significant surge in COVID-19
cases in the UK and then in the EU in the last quarter of 2021 and the early months of 2021
owing to the replicative advantage acquired by the new variant [6,7].

Meanwhile, the B.1.351 lineage, which was first reported in Nelson Mandela Bay,
South Africa, also involves multiple mutations in its spike protein, including K417N, E484K,
N501Y, and D614G, resulting in increased transmissibility and evasion of immunity [8,9].
The P.1 lineage also contains several mutations in its spike protein, namely, K417T, E484K,
N501Y, and D614G. This variant was first reported by the National Institute of Infectious
Diseases (NIID) in Japan in isolates obtained from Brazilian travelers. These mutations have
been shown to be able to potentially evade immunity and present increased transmissibility
compared to the wild-type coronavirus [10,11].

Several other mutations in the SARS-CoV-2 spike protein have been recorded from ge-
nomic analyses of isolates conducted worldwide. The top substitutions in the SARS-CoV-2
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spike protein are N501Y, E484K, L452R, S477N, N439K, T478K, K417N, S464P, N501T, are
A520S [12]. E484K is thought to be associated with an increased probability of evading the
immune response, while the N501Y and D614G mutations have been shown to be associ-
ated with increased transmissibility [13,14]. Together with the slow pace of immunization
programs and vaccine inequality, these variants could further evolve the virus, which could
hamper our collective progress in COVID-19 management. As such, it remains imperative
that further research be conducted in order to develop other vaccines and therapeutics
against COVID-19. However, drug development for COVID-19 has been side-tracked
due to the disappointing results of the solidarity trials conducted by the World Health
Organization (WHO) [15].

Inhibiting the critical proteins involved in the viral life cycle of SARS-CoV-2 is the
primary strategy currently used for developing new drugs against COVID-19. Viral entry
can be prevented by inhibiting the spike protein or through ACE2 modulation, such as
ACE2 inhibition and RAAS inhibition. The main protease and the papain-like protease,
which are responsible for the cleavage of polyproteins translated from viral RNA into
functional or effector proteins for virus replication and packaging within host cells, could
also be drug targets for blocking viral replication. Inhibiting the RNA-dependent RNA
polymerase, which assists in the translation and replication of the virus, could interfere
with the replication, transcription, and translation of viral genomic material, leading to the
termination of viral reproduction. Other drug targets include envelope proteins, membrane
proteins, and nucleoproteins [16–18].

Several reviews have summarized the use of potential drugs against COVID-19 [19–23].
Nevertheless, despite the influx of studies on drug therapies against COVID-19, only a
few have gained the approval of the U.S. Food and Drug Administration under their
Emergency Use Authorization (EUA). These include using remdesivir, bamlanivimab,
and andasirivimab/imdevimab for managing severe COVID-19 cases [24]. The WHO has
only approved remdesivir as a treatment for patients requiring hospitalization. Despite
their limited numbers, these drugs represent considerable progress in drug development,
considering the long pipeline involved in drug discovery up to the approval process by
local and international regulators.

Computational approaches can be used to perform high-throughput screening of
drug libraries and small-molecule databases for candidate drugs against their affinities
with the target binding site. This strategy is called structure-based drug design. This
is, however, limited by the quality of the database used [25,26]. Another approach is to
design drug-like molecules de novo following a fragment-based design concept (ligand-
based design). This approach uses the structural information of the biological target as
a design guide, which offers the advantage of allowing for an ample chemical space of
virtual structures to be explored without the actual synthesis of such a large number of
compounds. However, this also presents a challenge with respect to how to handle the
infinitely large number of theoretically possible topologies and the variety of conformations
for a single topology [27,28]. This requires efficient optimization algorithms and high-
quality QSAR descriptors in order to navigate the chemical search space [27,29]. For both
in silico strategies, the feasibility of the candidate drugs to be synthesized further slows the
drug discovery process.

In this study, novel drug molecules were designed that target the receptor-binding
domain (RBD) of the SARS-CoV-2 spike protein, which is known to be involved in the
viral attachment to its host cell. De novo design was used, targeting the original variant,
the B.1.1.7 variant, the B.1.351 variant, and the B.1.427 variants of SARS-CoV-2. These
drug-like molecules can inhibit viral replication, rendering them potential new therapies
for COVID-19.
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2. Computational Details
2.1. Target Preparation

The high-resolution crystal structure of the receptor-binding domain (RBD) of the
SARS-CoV-2 spike protein (PDB 6MOJ) [30] was obtained from the Protein Data Bank.
Its structure was mutated with the corresponding amino acid substitutions for each
SARS-CoV-2 variant. All four structures were then pre-processed to determine their
minimum-energy configuration, which was used in subsequent docking calculations.
Specifically, missing hydrogens were added, correct bond orders were checked and as-
signed, correct protonation states were predicted, and hydrogen bonds were optimized
through systematic and cluster-based approaches. Restrained minimization was also
applied to relax bonds, angles, and overlaps within each structure.

2.2. De Novo Drug Design Using Generative Neural Networks

De novo drug design was also employed, using the LIGANN web server to generate
a library of drug-like molecules that target the RBD of each SARS-CoV-2 variant through
generative neural networks. In particular, a generative adversarial network was used to
produce complementary ligand shapes in a multimodal fashion. Then, a shape-captioning
network decoded the ligand shapes into SMILES strings [31], which were then converted
to a structure file using Open Babel v. 3.1.1 [32]. Next, the chemical library generated for
each SARS-CoV-2 variant was combined to produce the main library. This main library,
consisting of 2334 molecules, was then docked against the RBD of each SARS-CoV-2 variant
using the same docking protocol described above as implemented in the LEA3D web server.
Finally, the docking scores of the drug molecules against each SARS-CoV-2 variant were
averaged and then ranked to determine the best-performing drugs that could inhibit all
four variants.

2.3. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Study

The ADMET profiles of all the best-performing drug candidates against the RBD of
SARS-CoV-2 were analyzed using the ADMETlab 2.0 platform. ADMETlab 2.0 is based on
53 predictive models from a comprehensively collected database of 288,867 molecules. The
library of input molecules is fed into a Multi-task Graph Attention (MGA) framework to
generate the ADMET profiles of each entry based on the trained regression models [33]. In
this study, only those that passed the following criteria were deemed promising candidate
molecules: good human intestinal absorption (p < 0.7), low probability of passing through
the blood–brain barrier (p < 0.7), good drug clearance (CL ≥ 5), low hERG toxicity (p < 0.3),
low hepatoxicity (p < 0.3), low drug-induced liver damage probability (p < 0.3), low
mutagenicity (p < 0.3), low acute toxicity (p < 0.3), and low carcinogenicity (p < 0.3).

2.4. Molecular Dynamics

Ligand–protein interactional binding modes and the nature of the dynamical unbind-
ing process were determined by carrying out molecular dynamics calculations on the
top-performing ligand obtained via de novo drug design. The calculations were imple-
mented using the Ligand and Receptor Molecular Dynamics (LARMD) webserver [34] for
each protein–ligand complex structure. The antechamber module and the Tleap module
of the AMBER16 program [35] were used to assign bcc charges for the ligand atoms and
construct the complexes’ coordinate and topology files. The AMBER ff14SB force field [36]
and gaff force field [37,38] were used for amino acid residues and ligands. The structures
were solvated using an octahedral box of TIP3P water [39] extended at least 10 Å in each
direction from the solute [40]. Na+ and/or Cl− ions were added to the system as counter
ions. Four-step minimization of the system was achieved using the Sander module in
AMBER16. The 2000-steps steepest descent method and the 3000-steps conjugated gradient
method were used for each minimization step. The system was then heated from 10 to
300 K in 30 ps using an NVT ensemble, which was followed by a dynamics run at 300 K and
1 atm for 4 ns. All dynamics runs were performed using the Pmemd module of AMBER16.
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The MD trajectories were then analyzed using the Cpptraj module of AMBER16. MDTraj
was used to calculate nonnative contact [41], and Bio3d was utilized to analyze PCA and
residue cross-correlation [42] as implemented in the LARMD server.

3. Results and Discussion
3.1. Structure and Mutations in the Receptor-Binding Domain

The minimized structure of the receptor-binding domain (RBD) of the original wild-
type SARS-CoV-2 is shown in Figure S1. Structurally, the RBD consists of 195 amino acid
residues. Accordingly, single-amino-acid substitutions in the RBD of SARS-CoV-2 (N501,
Q498, E484, T470, L452, and N439) against SARS-CoV-1 resulted in the loss of favorable
interactions with hACE2. Meanwhile, five RBD substitutions (P499, Q493, F486, A475, and
L455) led to enhanced SARS-CoV-2 RBD-hACE2 binding activity [43]. In our subsequent
docking experiments, these amino acid residues were used to define the binding site region.
Interestingly, these mutations are involved in the new SARS-CoV-2 variants discovered.
The N501Y mutation is present in the B.1.1.7, B.1.351, and P.1 variants. This mutation
is associated with increased transmissibility of the new VOCs. Furthermore, the E484K
mutation is present in the B.1.351 and P.1 variants. The E484K mutation is associated with
the increased ability of said VOCs to evade innate and acquired immunity. So far, only the
B.1.351 variant contains the K417N mutation in its RBD.

3.2. De Novo Drug Design

A chemical library of potential inhibitors of the RBD of SARS-CoV-2 was generated de
novo using generative neural networks. This technique is more robust than other de novo
drug design techniques since it captures the structure of the binding site and then populates
a library of complementary ligand shapes in a multimodal fashion. We used 50 ligand
shape generations and 20 decoding processes per shape to generate 539 molecules based on
the wild-type, 631 molecules based on the B.1.1.7 variant, 615 molecules using the B.1.351
variant, and 572 molecules using the P.1 variant. We combined these molecules into a single
chemical library of 2357 ligands and then docked them against each COVID-19 variant.
The average docking scores for each ligand were calculated and then ranked to determine
the best-performing ligands that can inhibit all four variants of SARS-CoV-2. The top-
performing ligands based on the averaged docking scores are shown in Figures S1 and S2.

Among the generated top-performing ligands, CID #526 or [3-(4-ethylpiperazin-1-
yl)propyl](1-{3-[3-(morpholin-4-yl)propyl]-1,2,4-oxadiazol-5-yl}-4-phenylbutyl)amine, has
the best ADMET profile compared to the others; hence, we further investigated this molecule.
CID #526 complies with all the parameters set by Lipinski’s Rule of Five. Moreover, it has
good human intestinal absorption, good MDCK permeability (log Papp = 8.02 × 10−6), a low
degree of plasma protein binding (53.56%), desirable volume distribution (1.069 L/kg),
and high clearance (7.05 mL/min/kg) and does not inhibit the Cytochrome 450 metabolic
pathway. It also presents low cardiotoxicity (p = 0.399), hepatoxicity (p = 0.565), Ames
mutagenicity (p = 0.037), and carcinogenicity (0.067).

Two hydrogen bonds with Gly 496, one with the amine group and one with the
oxygen atom of the five-membered heterocycle of CID #526, are formed with the wild-type
SARS-CoV-2. It also forms a hydrogen bond with Ser 494 and engages in a π–π interaction
with Tyr 505 of the wild-type SARS-CoV-2. Only the hydrogen bond with the oxygen
atom is conserved in the B.1.1.7 variant. CID #596 interacts differently with the B.1.351
variant. It forms a hydrogen bond with the nitrogen atom in the five-membered heterocycle
and interacts with Phe 490 via π–π interactions. Only the π–π interaction is conserved in
the P.1 variant, but it forms two different hydrogen bonds: one each for Gln 493 and Ser
494, respectively.

3.3. Molecular Dynamics Analysis

A molecular dynamics simulation was performed in relation to the docked protein–ligand
structure to further elucidate the inhibitory effect of CID #526 against the four variants of
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SARS-CoV-2 investigated in this study. The results are shown in the Supplementary Materials.
Strong binding energy was calculated for each variant, showing the good inhibitory prop-
erty of CID #526. It performs the best with respect to the wild SARS-CoV-2, as evidenced by
the lowest binding energy detected in that regard, indicating the most stable ligand–protein
complex. Meanwhile, it performs worst against the B.1.1.7 variant, which has the highest
binding energy.

We also performed principal component analysis and dynamic cross-correlation anal-
ysis to evaluate the inhibitory effect of CID #526 against the SARS-CoV-2 RBD based on the
MD trajectory. As the top three principal components are sufficient for determining 50% of
the total variance in a given family of structures, only the top three principal components
were analyzed [34]. The stability of the docked CID #526 was confirmed based on our re-
sults, thus confirming our hypothesis that CID #526 could be an inhibitor of SARS-CoV-2′s
receptor-binding domain.

4. Conclusions

De novo drug design using generative neural networks was performed to generate a
library of possible inhibitors of each variant of SARS-CoV-2. These ligands were docked
against the receptor-binding domains of SARS-CoV-2 variants and were ranked according
to the average values of their docking scores. The ADMET profiles of the top-performing
ligands were evaluated. Among these compounds, CID #526 emerged as the top candidate,
presenting excellent docking performance against all four variants and a good ADMET
profile. It forms several hydrogen bonds and interacts with the RBD via π–π interactions.
Molecular dynamics analysis revealed the stability of the docked compound in the RBD
of SARS-CoV-2, presenting comparable binding energies against all four variants. The
organic retrosynthesis study showed that CID #526 could be synthesized using five major
reaction steps. Further studies are needed to ascertain these compounds’ efficacy, safety,
and tolerability for the treatment of COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ECB2023-14371/s1, Figure S1: Structure of the receptor-binding domain
of wild-type SARS-CoV-2 (RBD-W); Figure S2: Structures of top-performing de novo generated
drug-like molecule (Compound ID 526) docked in the RBD of SARS-CoV-2 and their corresponding
ligand interaction diagrams; Figure S3: Top-performing (1—15) drug-like molecules with respect to
inhibiting the RBD of SARS-CoV-2 variants; Figure S4: Top-performing (16—30) drug-like molecules
with respect to inhibiting the RBD of SARS-CoV-2 variants; Table S1: Comparison of the performance
of top-performing de novo designed drugs in terms of their role as potential inhibitors of the RBD
of SARS-CoV-2 variants; Table S2: ADMET physicochemical properties of top-performing de novo
designed drugs in terms of their role as potential inhibitors of the RBD of SARS-CoV-2 variants;
Table S3: ADMET absorption, distribution, and excretion properties of top-performing de novo
designed drugs in terms of their role as potential inhibitors of the RBD of SARS-CoV-2 variants;
Table S4: ADMET metabolism and toxicity properties of top-performing de novo designed drugs
in terms of their role as potential inhibitors of the RBD of SARS-CoV-2 variants; Table S5: ADMET
toxicity and drug-likeness properties of top-performing de novo designed drugs in terms of their
role as potential inhibitors of the RBD of SARS-CoV-2 variants; Figure S5: RMSD profiles of docked
CID #526 designed using generative neural networks of the RBD, RMSD histogram of the ligand,
and RMSD histogram of the receptor for (a—c) wild-type, (d—f) B.1.1.7 variant, (g—i) B.135 variant,
and (j—l) P.1 variant of SARS-CoV-2; Figure S6: (a) Principal Component Analysis (PCA) concerning
the MD trajectory of the binding of CID #526 to the RBD of wild-type SARS-CoV-2. The trajectory
frames are colored from blue to white to red, which corresponds to their order with respect to time.
(b) Simple clustering in PC subspace. The conformations were divided into two clusters (black
and red) according to the top three PC spaces shown in the PC subspace; Figure S7: (a) Principal
Component Analysis (PCA) concerning the MD trajectory of the unbinding of CID #526 to the
RBD of wild-type SARS−CoV−2. The trajectory frames are colored from blue to white to red,
which corresponds to their order with respect to time. (b) Simple clustering in PC subspace. The
conformations were divided into two clusters (black and red) according to the top three PC spaces
shown in the PC subspace; Figure S8: Dynamical residue cross-correlation map for the MD trajectory

https://www.mdpi.com/article/10.3390/ECB2023-14371/s1
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of the (a) binding process and (b) unbinding process of the receptor–ligand complex involving CID
#526 docked in the RBD of wild-type SARS-CoV-2. PCA results regarding trajectory with trajectory
frames colored from blue to white to red, which corresponds to their order with respect to time;
Figure S9: Residue-wise loading for (a) PC1, (b) PC2, and (c) PC3 of the binding process of the
receptor–ligand complex involving CID #526 docked in the RBD of wild-type SARS-CoV-2. Residue-
wise loading for (d) PC1, (e) PC2, and (f) PC3 of the unbinding process of the receptor–ligand complex
involving CID #526 docked in wild-type SARS-CoV-2; Figure S10: (a) Principal Component Analysis
(PCA) concerning the MD trajectory of the binding of CID #526 to the RBD of the B.1.1.7 variant of
SARS-CoV-2. The trajectory frames are colored from blue to white to red, which corresponds to their
order with respect to time. (b) Simple clustering in PC subspace. The conformations were divided
into two clusters (black and red) according to the top three PC spaces shown in the PC subspace;
Figure S11: (a) Principal Component Analysis (PCA) concerning the MD trajectory of the binding of
CID #526 to the RBD of the B.1.1.7 variant of SARS-CoV-2. The trajectory frames are colored from
blue to white to red, which corresponds to their order with respect to time. (b) Simple clustering in
PC subspace. The conformations were divided into two clusters (black and red) according to the top
three PC spaces shown in the PC subspace; Figure S12: Dynamical residue cross-correlation map
for the MD trajectory of the (a) binding process and (b) unbinding process of the receptor–ligand
complex involving CID #526 docked in the RBD of the B.1.1.7 variant of SARS-CoV-2. PCA results for
trajectory with trajectory frames colored from blue to white to red, which corresponds to their order
with respect to time; Figure S13: Residue-wise loading for (a) PC1, (b) PC2, and (c) PC3 of the binding
process of the receptor–ligand complex involving CID #526 docked in the RBD of the B.1.1.7 variant of
SARS-CoV-2. Residue-wise loading for (d) PC1, (e) PC2, and (f) PC3 of the unbinding process of the
receptor–ligand complex involving CID #526 docked in the B.1.1.7 variant of SARS-CoV-2; Figure S14:
(a) Principal Component Analysis (PCA) concerning the MD trajectory of the binding of CID #526 to
the RBD of the B.1.351 variant of SARS−CoV−2. The trajectory frames are colored from blue to white
to red, which corresponds to their order with respect to time. (b) Simple clustering in PC subspace.
The conformations were divided into two clusters (black and red) according to the top three PC
spaces shown in the PC subspace; Figure S15: (a) Principal Component Analysis (PCA) concerning
the MD trajectory of the binding of CID #526 to the RBD of the B.1.351 variant of SARS−CoV−2. The
trajectory frames are colored from blue to white to red, which corresponds to their order with respect
to time. (b) Simple clustering in PC subspace. The conformations were divided into two clusters
(black and red) according to the top three PC spaces shown in the PC subspace; Figure S16: Dynamical
residue cross-correlation map for the MD trajectory of the (a) binding process and (b) unbinding
process of the receptor–ligand complex involving CID #526 docked in the RBD of the B.1.351 variant
of SARS-CoV-2. PCA results for trajectory with trajectory frames colored from blue to white to
red, which corresponds to their order with respect to time; Figure S17: Residue-wise loading for
(a) PC1, (b) PC2, and (c) PC3 of the binding process of the receptor–ligand complex involving CID
#526 docked in the RBD of the B.1.351 variant of SARS-CoV-2. Residue-wise loading for (d) PC1,
(e) PC2, and (f) PC3 of the unbinding process of the receptor–ligand complex involving CID #526
docked in the B.1.351 variant of SARS-CoV-2; Figure S18: (a) Principal Component Analysis (PCA)
concerning the MD trajectory of the binding of CID #526 to the RBD of P.1 variant of SARS-CoV-2.
The trajectory frames are colored from blue to white to red, which corresponds to their order with
respect to time. (b) Simple clustering in PC subspace. The conformations were divided into two
clusters (black and red) according to the top three PC spaces shown in the PC subspace; Figure S19:
(a) Principal Component Analysis (PCA) concerning the MD trajectory of the binding of CID #526 to
the RBD of P.1 variant of SARS-CoV-2. The trajectory frames are colored from blue to white to red,
which corresponds to their order with respect to time. (b) Simple clustering in PC subspace. The
conformations were divided into two clusters (black and red) according to the top three PC spaces
shown in the PC subspace; Figure S20: Dynamical residue cross-correlation map for the MD trajectory
of the (a) binding process and (b) unbinding process of the receptor–ligand complex involving CID
#526 docked in the RBD of P.1 variant SARS CoV-2. PCA results for trajectory with trajectory frames
colored from blue to white to red, which corresponds to their order with respect to time; Figure S21:
Residue-wise loading for (a) PC1, (b) PC2, and (c) PC3 of the binding process of the receptor–ligand
complex involving CID #526 docked in the RBD of P.1 variant of SARS-CoV-2. Residue-wise loading
for (d) PC1, (e) PC2, and (f) PC3 of the unbinding process of the receptor–ligand complex involving
CID #526 docked in P.1 variant of SARS-CoV-2; Table S6. Binding Energy of CID #526 against various
variants of SARS-CoV-2.
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