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Abstract: Lung cancer is one of the deadliest cancers, responsible for more than 1.80 million deaths
annually worldwide, and it is on the priority list of the WHO. In the current scenario, when cancer
cells become resistant to drugs, making them less effective and leaving the patient in vulnerable
conditions. To overcome this situation, researchers are constantly working on new drugs and
medications that can help fight drug resistance and improve patients’ outcomes. In this study, we
have taken five main proteins of lung cancer, namely RSK4 N-terminal kinase, guanylate kinase,
cyclin-dependent kinase 2, kinase CK2 holoenzyme, and tumour necrosis factor-alpha, and screened
the prepared Drug Bank library with 155,888 compounds against all using three Glide-based docking
algorithms, namely HTVS, standard precision and extra precise, with a docking score ranging from
−5.422 to −8.432 Kcal/mol. The poses were filtered with the MM\GBSA calculations, which helped
to identify Imidazolidinyl urea C11H16N8O8 (DB14075) as a multitargeted inhibitor for lung cancer,
validated with advanced computations such as ADMET and interaction pattern fingerprints. Further,
it is proposed to optimise the compound with Jaguar and MD Simulation for at least 100 ns with NPT
ensemble class to analyse the deviation and fluctuations and possible interactions for stability and
experimental validation on the A549 cell line.

Keywords: lung cancer; molecular docking; Imidazolidinyl urea; molecular fingerprints

1. Introduction

This study is majorly focused on repurposing a drug that can act against multiple
protein targets that have the slightest chance to develop resistance as there are various
interacting residues. The possibility is significantly less as all the interacting residues have
to go through the mutation, which is not easily possible, giving it less chance to develop
resistance [1–4]. In lung cancer, many proteins participate directly and indirectly, and
influencing their role can be a significant asset for multitargeted drug design. In lung and
bladder cancer cells, RSK4 N-terminal kinase (PDBID: 6G77) promotes drug resistance
and metastasis, and it is one of the essential proteins for the study because inhibiting it
in vitro and in vivo in a tail vein injection model made tumour cells more susceptible to
treatment and prevented metastasis [5]. The human guanylate kinase, or hGMPK (PDBID:
6NUI), is the only enzyme that produces cellular GDP, which is necessary for cellular
viability and proliferation. Additionally, hGMPK has been given a crucial role in the
metabolic activation of prodrugs that contain nucleoside analogues that are antiviral and
antineoplastic. The production of the nucleotide building blocks of DNA, RNA, and cGMP
depends on the hGMPK, and cancer cells have higher GTP levels [6]. The CDK2 gene
in humans encodes the cyclin-dependent kinase 2 (PDBID: 1AQ1), also known as cell
division protein kinase-2 or Cdk2. This gene produces an SER/THR protein kinase that
belongs to the cyclin-dependent kinase family [7]. The casein kinase-2 holoenzyme (PDBID:
1JWH) is a protein serine/threonine kinase typically found in tetrameric complexes of two
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alpha catalytic subunits and two regulatory beta subunits. It is traditionally categorised
as a messenger-independent protein kinase. It phosphorylates many substrates, regulates
several signalling pathways, is connected to numerous human disorders in cancer, and
controls nearly all malignant markers, which is best understood. Other prominent roles for
CK2 in human infections include the usage of host cell CK2 by various viruses for their life
cycles [8]. The tumour necrosis factor-alpha (PDBID: 1TNF) is the potent paracrine and
endocrine modulator of inflammatory and immunological processes and regulates various
types of cell growth and differentiation, and altered cells are destroyed explicitly, especially
when combined with interferons [9]. All five of the above-cited kinases and proteins are
crucial for developing lung cancer cells, and their continuous proliferation and finding a
drug candidate that can potentially target them together can be a great asset.

2. Methods
2.1. Protein Preparation and Ligand Library Collection and Preparation

The proteins were identified through literature reviews and searched for in https://www.
rcsb.org/ for 3D protein structures [10]. We identified RSK4 N-terminal kinase (PDBID:
6G77) [5], human guanylate kinase or hGMPK (PDBID: 6NUI) [6], cyclin-dependent kinase
2 (PDBID: 1AQ1) [7], casein kinase-2 holoenzyme (PDBID: 1JWH) [8], and tumour necrosis
factor-alpha (PDBID: 1TNF) [9]. All five proteins were downloaded and imported to
Schrodinger’s Maestro workspace for preparation optimisation and minimisation. The
protein preparation workflow (PPW) was used to prepare the proteins [10–12]. First, 6G77
contains a dimer of two chains and two ligands bound to each chain with solvents and
two zinc metals; only chain A was kept, and everything else was removed. In 6NUI, only
chain A was found and kept the same, while in 1AQ1, chain A was found with solvents
and ligands, so we removed the solvent before preparations. Next, 1JWH contains four
chains with ligands, solvents and metal zinc and phosphates, and each was removed except
chain A and the bound ligand, while in the case of 1TNF, we kept only chain A out of four
chains. In the preprocess tab of PPW, we capped the termini of each protein, filled missing
side chains, assigned bond orders to the CCD database, replaced hydrogen, and created
zero bond orders and disulphide bonds [12]. Termini oxygen was added to protein chains,
converted selenomethionines to methionine, filled missing loops with Prime, generated the
hetero state with Epik at pH 7 ± 2 and set only one state best to process further [13,14]. In
the optimisation of hydrogen bond assignments tab, sample water orientation and used
crystal symmetry to obtain the best-fitted state and minimised hydrogen of altered species
and used PROPKA for the optimisation. Further, in the minimisation and delete water
tab, converge heavy atoms to RMSD 0.30 Å, delete water beyond 5 Å to the ligand, and
minimise with the OPLS4 force field [15].

At the same time, the complete Drug Bank library from http://go.drugbank.com/
was downloaded [16,17]. The LigPrep tool was used to prepare the ligand library, where
we browsed the complete library and kept the filter size to 500 atoms and beyond that
was dropped, and the below 500 atoms ligands were initially minimised with the OPLS4
forcefield [15,18]. The ionisation was kept generating possible states at a target pH of
7 ± 2 while using the Epik and adding the metal binding states, including the original
state and desalt, to generate tautomers [13]. The stereoisomer computations were kept
retaining specified chiralities and generating 32/ligand in the SDF file that generated
1,55,888 ligand states.

2.2. Glide Grid Generation and Multitargeted Molecular Docking

The receptor Grid Generation tool was used to generate the grids on each protein
individually, and for the case of 1AQ1 and 1JWH, the native ligand site was selected, while
in the case of proteins with no ligand, such as 6G77, 6NUI, and 1TNF, the complete protein
residues were selected under grid for blind docking to find the best docking poses [19].
For the molecular docking, we used the virtual screening workflow (VSW) tool, where
we browsed the prepared ligand library as a ligand source, used the combined input files,

https://www.rcsb.org/
https://www.rcsb.org/
http://go.drugbank.com/


Med. Sci. Forum 2023, 21, 36 3 of 7

and redistributed them for sub-jobs [11]. In the filter tab, QikProp and Lipinski’s rules
were checked to ensure only ligands satisfying the criteria of drug candidates pass to the
following screening level, and then prepared girds were added [20]. In the docking tab, we
used the Epik state penalties for the docking and the screening with the High Throughput
Virtual Screening (HTVS), Standard Precision (SP) Docking, and Extra Precise (XP) Docking
and then the poses were post-processed with the Molecular Mechanics-based Generalised
Born Surface Area (MM\GBSA) calculations [11]. The flexible docking strategy was used
where only the top 5% of data from HTVS were passed to SP, and 10% of the SP was passed
to XP. The minimisation from XP was performed after docking and generated up to 4 poses
from each compound state, and then 100% of compounds were passed to the MM\GBSA
computations [3,4].

2.3. ADMET and Interaction Fingerprinting Analysis

The compound’s ADMET was computed using the QikProp and Schrodinger’s mae-
stro and produced the number of amidine, acid, amide, rotor, rtvFG, CNS, mol MW, dipole,
SASA, FOSA, FISA, PISA, WPSA, donor hydrogen bonds, accepter hydrogen bonds, and %
of human oral absorption, with Lipinski’s rule of 5 and 3 [20] and have computed many
more ADMET values. Furthermore, molecular interaction patterns or fingerprints are a
summary of the interactions between a drug and a set of proteins, and they are often used
in drug discovery and development to predict the potential therapeutic effects and side
effects of a drug. The interaction fingerprint tool generated the fingerprints among the
proteins and identified the compound Imidazolidinyl urea. The receptor–ligand complexes
were generated after merging them individually. Then, we selected any contact option and
aligned the sequences while keeping 6G77 as a reference sequence to define the N and C
terminal of the protein and generate the fingerprints. The complete matrix was then plotted
for any contact, ligand display property was selected for the docking score and coloured
the main plot to the residue number sequences to identify initial and ending residues.
Further, only interacting residues were taken to eliminate the noise and understand it better
while taking the count of ligand interactions and count of residue interaction to understand
which amino acids are participating more from which protein with the ligand [11].

3. Results and Discussion
3.1. Interaction Analysis

The multitargeted potency of the drugs has been identified with extra-precise docking
and MM\GBSA computations through individual sampling and computations in sheets
with the help of produced scores. The RSK4 N-terminal kinase (PDBID: 6G77) in the
complex with Imidazolidinyl urea has formed eight hydrogen bonds among the LYS213,
ARG156 and O atom, and GLN100, LEU101, ASP153 and OH atoms, and ASP153, PHE154,
and NH atoms (Figure 1) while producing the docking score of −6.723 Kcal/mol and
MM\GBSA score of −34.67 Kcal/mol (Table 1). The human guanylate kinase or hGMPK
(PDBID: 6NUI) in the complex with Imidazolidinyl urea has formed six hydrogen bonds
among the O atom and THR83 and SER37, and NH atoms and ASP52, SER35, and GLU72
(Figure 1), while producing the docking score of −7.147 (Kcal/mol) and MM\GBSA score
of −48.55 (Kcal/mol) (Table 1). The cyclin-dependent kinase 2 (PDBID: 1AQ1) in the
complex with Imidazolidinyl urea has produced eight hydrogen bonds among the ASP145,
GLN131, ASP86, LEU83 and NH atoms, and LEU83, GLU12 with O atoms and GLU12
have also interacted with OH atoms (Figure 1) while producing the docking score of
−7.945 Kcal/mol and MM\GBSA score of −42.95 Kcal/mol (Table 1). The casein kinase-2
holoenzyme (PDBID: 1JWH) in the complex with Imidazolidinyl urea has formed eight
hydrogen bonds among the ASH175, LYS68, LYS77, LYS49, TYR50, SER51 and O atoms,
and LYS68 and OH atoms (Figure 1) while producing the docking score of−6.635 Kcal/mol
and MM\GBSA score of −42.82 Kcal/mol (Table 1). The tumour necrosis factor-alpha
(PDBID: 1TNF) in the complex with Imidazolidinyl urea has formed five hydrogen bonds
among the ALA33, ARG32 and ACE5 with NH atoms (Figure 1) while producing the
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docking score of −5.422 Kcal/mol and MM\GBSA score of −38.16 Kcal/mol (Table 1). The
overall molecular docking and Prime MM\GBSA results are beyond satisfaction regarding
the scoring and the number of hydrogen bonds. The H-bonds play a significant role in
the binding affinity among the Imidazolidinyl urea and the proteins, and it significantly
influences the conformation and stability of a protein-ligand complex and increases its
affinity for the protein. The Glide searches for potential binding sites on the protein and
generates a list of possible poses for the ligand, and then evaluates the stability of each
pose by calculating the energy of the complex pose with the lowest energy considered for
further analysis because of their stability and best fit for the protein–ligand complex.
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Figure 1. Showing the ligand interaction diagram (LID) with 3D snaps to clarify where the ligand
is binding to the proteins and 2D representation study the interacting atoms, residues with types
and bonds.

Table 1. Showing the docking score (Kcal/mol), MM\GBSA score (Kcal/mol), and other important
computations produced during the molecular docking process.

S. No. PDB ID Docking Score MM\GBSA
dG Bind

Rotatable
Bonds Evdw Ecoul

1 6G77 −6.723 −34.67 12 −27.324 −22.436
2 6NUI −7.147 −48.55 12 −34.682 −10.659
3 1AQ1 −7.945 −42.95 12 −45.501 −13.995
4 1JWH −6.635 −42.82 12 −42.71 −18.582
5 1TNF −5.422 −38.16 12 −29.631 −14.062

3.2. ADMET and Interaction Pattern Identification

The ADMET properties were computed with the help of the QikProp tool, and the
same values were used to filter against the compounds with Lipinski’s rules. The compound
has obtained five stars out of five, as the ADMET values perfectly match the standard values
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and with the lowest toxicity. Imidazolidinyl urea has zero amines, amidine, acid, amide,
rotor, and rtvFG and is inactive for the central nervous system. The compound’s molecular
weight is 388.296, and the atom numbers are below 500 atoms and can be considered among
the novel drug candidates. The dipole, SASA, FOSA, FISA and volume of the compounds
are 13.717, 590.656, 162.601, 428.055, and 1034.87, respectively, while the PISA and WPSA
values are zero. Additionally, the compound can donate 2.5 hydrogen bonds and accept
8.9 hydrogen bonds. Further, an extended table (Table 2) is provided to understand each
compound descriptor against the standard values. The interaction fingerprints of the
compound were computed to understand the compound’s diversity of the interacting
residues. Imidazolidinyl urea has interacted with the protein with the middle and ending
residues RSK4 N-terminal kinase (6G77) and the human guanylate kinase or hGMPK
(6NUI) while with cyclin-dependent kinase 2 (1AQ1), casein kinase-2 holoenzyme (1JWH)
and tumour necrosis factor-alpha (1TNF), it has interacted with the initial residues. ARG156
from 6G77, 6NUI and 1AQ1 was the most interacting residue that formed three interactions
and then GLN181, GLY82, SER83, VAL87, GLN100, LEU101, TYR102, ALA103, LYS105,
PHE154, and ASP216 are the ones that formed at least two interactions among the selected
proteins. Additionally, 1AQ1 is the protein that has formed the most interaction, and then
1JWH, followed by 6NUI, 6G77 and 1TNF, with the Imidazolidinyl urea (Figure 2).

Table 2. Showing the ADMET properties produced by QikProp with descriptors.

Descriptor Imidazolidinyl Urea Descriptor Imidazolidinyl Urea

#stars 5 QPlogS −1.348
#amine 0 CIQPlogS −2.753

#amidine 0 QPlogHERG −1.409
#acid 0 QPPCaco 0.381

#amide 2 QPlogBB −3.985
#rotor 8 QPPMDCK 0.242
#rtvFG 0 QPlogKp −8.64

CNS −2 IP(eV) 10.085
mol MW 388.296 EA(eV) 0.341

dipole 13.717 #metab 4
SASA 590.656 QPlogKhsa −1.17
FOSA 162.601 HumanOralAbsorption 1
FISA 428.055 % HumanOralAbsorption 0
PISA 0 SAfluorine 0

WPSA 0 SAamideO 44.64
volume 1034.87 PSA 289.333

donorHB 2.5 #NandO 16
accptHB 8.9 RuleOfFive 2
dipˆ2/V 0.1818131 RuleOfThree 1

ACxDNˆ.5/SA 0.0238246 #ringatoms 10
glob 0.8376977 #in34 0

QPpolrz 30.125 #in56 10
QPlogPC16 11.394 #noncon 2
QPlogPoct 21.625 #nonHatm 27
QPlogPw 18.019 Jm 0

QPlogPo/w −2.194
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Figure 2. Showing the interaction fingerprints of interacting atoms with residues of Imidazolidinyl
urea and RSK4 N-terminal kinase (6G77), human guanylate kinase or hGMPK (6NUI), cyclin-
dependent kinase 2 (1AQ1), casein kinase-2 holoenzyme (1JWH) and tumour necrosis factor-alpha
(1TNF) with the ligand and residue interaction counts. The C and N terminals are shown with
different colours to make it clear with the interaction, and the counts are plotted adjacent to the PDBs.

4. Conclusions

The treatment of lung cancer has come a long way in recent years, thanks to modern
drug designing techniques that allowed us to create more effective and safer drugs and
reduce the risk of drug resistance. By using targeted drug therapies and allosteric regulators,
we can improve the effectiveness of the drugs and reduce the risk of side effects. However,
it is easier to develop resistance to this strategy. We have also seen several breakthroughs in
the past years, giving us hope for a more effective treatment for lung cancer. In this study,
we have identified Imidazolidinyl urea, which is used as a cosmetic preservative and is
an antimicrobial compound that effectively acts against multiple protein targets and has
the potency to reduce cancer cells. The molecular docking, fingerprinting with interaction
patterns, and MM\GBSA calculation helped to understand the multitargeted potency of
the compound.
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