

Abstract Resveratrol-Loaded Glycosylated Liposomes for Targeting Bacteria[†]

Cecilia Bombelli ^{1,*}, Livia Pagano ², Stefano Aiello ², Foteini Gkartziou ³, Beatrice Simonis ^{1,2}, Francesca Ceccacci ¹, Simona Sennato ⁴, Alessia Ciogli ⁵, Francesca Bugli ^{6,7,*}, Cecilia Martini ⁷, Maurizio Sanguinetti ^{6,7}, Riccardo Torelli ^{6,7}, Spyridon Mourtas ⁸, Iris Spiliopoulou ⁹, Sophia G. Antimisiaris ^{3,8} and Giovanna Mancini ¹⁰

- ¹ Institute for Biological Systems, Italian National Research Council (ISB-CNR) Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
- ² Department of Chemistry, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
- ³ Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), Platani, 26504 Patras, Greece
- ⁴ Institute of Complex Systems, Italian National Research Council (ISC-CNR), Sede Sapienza c/o Physics Department, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
- ⁵ Department of Chemistry and Technology of Drug, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
- ⁶ Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
- ⁷ Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- ⁸ Lab Pharm Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Rio-Patras, Greece
- ⁹ Department of Microbiology, School of Medicine, University of Patras, Rio, 26504 Patras, Greece
- ¹⁰ Institute for Biological Systems, Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy
- * Correspondence: cecilia.bombelli@cnr.it (C.B.); francesca.bugli@unicatt.it (F.B.)
- + Presented at the 8th International Electronic Conference on Medicinal Chemistry, 1–30 November 2022; Available online: https://ecmc2022.sciforum.net/.

Keywords: glycoliposomes; trans-resveratrol; cationic liposomes; MRSA biofilm; *S. epidermidis*; galactosylamphiphile; glucosylamphiphile; mannosylamphiphile

Biofilm-associated bacterial diseases are a major health problem due to the high antibiotic resistance of biofilm infections [1,2]. In recent years, several methods, some of which rely on nanotechnology [3], have been developed to tackle this problem. The search for non-antibiotic strategies has renewed interest in natural molecules that exploit alternative bacterial-fighting mechanisms and, above all, do not induce resistance. In this context, we have developed two sets of cationic glycosylated liposomes for the targeted delivery of trans-resveratrol (RSV), a secondary plant metabolite with antimicrobial properties, to bacteria that express carbohydrate-specific proteins able to recognize monosaccharides, namely Staphylococcus epidermidis [4] and Methicillin Resistant Staphylococcus Aureus (MRSA) [5]. Liposome physico-chemical properties (diameter, polidispersity index-PDI-, charge, and RSV entrapment efficiency) were measured by dynamic light scattering (DLS), electrophoretic mobility, and high-performance liquid chromatography (HPLC). Liposomes used in the experiments on MRSA were composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine, cholesterol (Chol), and glycoamphiphiles featuring a galactosyl, mannosyl, or glucosyl moiety [5]. The objective was to identify the best sugar moiety to target MRSA biofilm. Microbiological tests carried out to monitor the demolition effect of RSV-loaded liposomes on MRSA mature biofilms showed that RSV-galactosylated liposomes are the most effective at an RSV concentration 60 times below the minimum inhibitory concentration (MIC). Liposomes used

Citation: Bombelli, C.; Pagano, L.; Aiello, S.; Gkartziou, F.; Simonis, B.; Ceccacci, F.; Sennato, S.; Ciogli, A.; Bugli, F.; Martini, C.; et al. Resveratrol-Loaded Glycosylated Liposomes for Targeting Bacteria. *Med. Sci. Forum* 2022, *14*, 61. https:// doi.org/10.3390/ECMC2022-13158

Academic Editor: Alfredo Berzal-Herranz

Published: 1 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). in the experiments on *S. epidermidis* were formulated with 1,2-dipalmitoyl-*sn*-glycero-3-phosphocholine, Chol, and the glycoamphiphile featuring the glucose residue [4]. The ability of RSV-loaded liposomes to inhibit the growth of a slime-positive and a slime-negative strain of *S. epidermidis* was evaluated. Glucosylated liposomes, which are non-toxic, kill bacteria at concentrations tenfold under the MIC of RSV.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10 .3390/ECMC2022-13158/s1.

Author Contributions: C.B.: Conceptualization, Methodology, Project administration, Writing original draft, Visualization, Writing—review & editing; L.P.: Investigation, Visualization; S.A.: Investigation, Visualization; F.G.: Investigation, Visualization; B.S.: Investigation, Visualization; F.C.: Validation, Visualization, Writing—review & editing; S.S.: Investigation, Formal analysis; A.C.: Methodology, Investigation; F.B.: Methodology, Validation, Writing—review & editing, Supervision; C.M.: Investigation; M.S.: Supervision; R.T.: Investigation, Formal analysis, Visualization; S.M.: Methodology, Investigation; I.S.: Methodology, Supervision. S.G.A.: Supervision, Validation; G.M.: Conceptualization, Supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data supporting the presented data are published in [4,5].

Conflicts of Interest: The authors declare no conflict of interest.

References

- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. *Chem. Soc. Rev.* 2021, 50, 7820–7880. [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. *Clin. Microbiol. Rev.* 2002, 15, 167–193. [CrossRef] [PubMed]
- Ferreira, M.; Ogren, M.; Dias, J.N.R.; Silva, M.; Gil, S.; Tavares, L.; Aires-da-Silva, F.; Gaspar, M.M.; Aguiar, S.I. Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. *Molecules* 2021, 26, 2047. [CrossRef] [PubMed]
- Pagano, L.; Gkartziou, F.; Aiello, S.; Simonis, B.; Ceccacci, F.; Sennato, S.; Ciogli, A.; Mourtas, S.; Spiliopoulou, I.; Antimisiaris, S.G.; et al. Resveratrol loaded in cationic glucosylated liposomes to treat Staphylococcus epidermidis infections. *Chem. Phys. Lipids* 2022, 243, 105174. [CrossRef] [PubMed]
- Aiello, S.; Pagano, L.; Ceccacci, F.; Simonis, B.; Sennato, S.; Bugli, F.; Martini, C.; Torelli, R.; Sanguinetti, M.; Ciogli, A.; et al. Mannosyl, glucosyl or galactosyl liposomes to improve resveratrol efficacy against Methicillin Resistant Staphylococcus aureus biofilm. *Colloids Surf. A: Physicochem. Eng. Asp.* 2021, 617, 126321. [CrossRef]