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Abstract: Inverse problems arise anywhere we have an indirect measurement. In general, they are
ill-posed to obtain satisfactory solutions, which needs prior knowledge. Classically, different regu-
larization methods and Bayesian inference-based methods have been proposed. As these methods
need a great number of forward and backward computations, they become costly in computation,
particularly when the forward or generative models are complex, and the evaluation of the likelihood
becomes very costly. Using deep neural network surrogate models and approximate computation
can become very helpful. However, in accounting for the uncertainties, we need first to understand
Bayesian deep learning, and then we can see how we can use it for inverse problems. In this work, we
focus on NN, DL, and, more specifically, the Bayesian DL particularly adapted for inverse problems.
We first give details of Bayesian DL approximate computations with exponential families; then, we
see how we can use them for inverse problems. We consider two cases: First, we consider the case
where the forward operator is known and used as a physics constraint, and the second examines
more general data-driven DL methods.

Keywords: bayesian inference; neural network; deep learning (DL); inverse problems; physics-based
DL; infrared imaging

1. Introduction

Inverse problems arise almost everywhere in science and engineering. In fact, anytime
and in any application when we have indirect measurements related to what we really want
to measure through some mathematical relation, this is called the forward model. Then,
we have to infer the desired unknown from the observed data using this forward model
or a surrogate one. In general, many inverse problems are ill-posed, and many methods
for finding well-posed solutions for them are mainly based either on regularization theory
or Bayesian inference. We mention those in particular, which are based on the optimiza-
tion of a criterion with two parts: a data model output matching criterion (likelihood
part in the Bayesian) and a regularization term (prior model in the Bayesian). Different
criteria for these two terms and a great number of standard and advanced optimization
algorithms have been proposed and used with great success. When these two terms are
distances, they can have a Bayesian maximum a posteriori (MAP) interpretation, where
these two terms correspond, respectively, to the likelihood and prior probability models.
The Bayesian approach gives more flexibility in choosing these terms via the likelihood
and the prior probability distributions. This flexibility goes much further with the hierar-
chical models and appropriate hidden variables [1]. Also, the possibility of estimating the
hyperparameters gives much more flexibility for semisupervised methods.
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However, full Bayesian computations can become very heavy computationally. In
particular, this occurs when the forward model is complex, and the evaluation of the
likelihood has a high computational cost [2]. In those cases, using surrogate simpler models
can become very helpful to reduce the computational costs, but then we have to account
for the uncertainty quantification (UQ) of the obtained results [3]. Neural networks (NNs),
with their diversity such as convolutional neural networks (CNNs), deep learning (DL),
etc., have become tools for fast and low computational surrogate forward models.

Over the last decades, machine learning (ML) methods and algorithms have gained
great success in many tasks, such as classification, clustering, segmentation, object detection,
and many other areas. There are many different structures of neural networks (NNs), such
as feed-forward, Convolutional NNs (CNNs), Deep NNs, etc. [4]. Using these methods
directly for inverse problems, as intermediate preprocessing or as tools for performing fast
approximate computation in different steps of regularization or Bayesian inference, has
also been successful, but not as much as could be possible. Recently, physics-informed
neural networks have gained great success in many inverse problems, thereby propos-
ing interaction between the Bayesian formulation of forward models and optimization
algorithms and ML-specific algorithms for intermediate hidden variables. These methods
have become very helpful to obtain approximate practical solutions to inverse problems in
real-world applications [5–11].

In this paper, first, in Section 2, some mathematical notations for dealing with NNs are
given. In Section 3, a detailed presentation of the Bayesian inference and the approximate
computation needed for BDL are given. Then, in Section 4, we consider a focus on the NN
and DL methods for inverse problems. First, we present the same cases where we know
the forward and its adjoint model. Then, we consider the case where we may not have this
knowledge and want to propose directly data-driven DL methods [12,13].

2. Neural Networks, Deep Learning, and Bayesian DL

The main objective of the NN for a regression problem can be described as follows:

xi → NN: f (xi) → yi.

The objective is to infer the function f : RM → R from the observations y = (y1, . . . , yN)
T

at locations given by x = (x1, . . . , xN). The usual NN learning approach is to define a
parametric family of functions φθ : RM × θ→ R that is flexible enough so that ∃θ? such
that φ(·) ≈ φθ?(·):

{xi, yi} → NN Learning: yi = φ(xi) ≈ φθ?(xi) → θ?.

Deep learning focuses on learning the optimal parameters θ?, which can then be used for
predicting the output ŷj for any input xj:

xj → NN: φθ?(xj) → ŷj.

In this approach, there is no uncertainty quantification.
The Bayesian deep learning approach can be summarized as follows:

{xi, yi} → p(θ|D) = p(D|θ)p(θ)
p(D) → p(θ|D),

xj → p(yj|xj,D) =
∫

p(yj|xj, θ,D)p(θ|D) dθ → ŷj.

As we can see, uncertainties are accounted for in both steps of the parameter estimation
and prediction. However, as we will see, the computational costs are important. We need
to find solutions to perform fast computation.
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3. Bayesian Inference and Approximate Computation

In a general Bayesian framework for NNs and DL, the objective is to infer the parame-
ters θ from the data, D : {xi, yi}, using the Bayes rule:

p(θ|D) = p(D|θ)p(θ)
p(D) , (1)

where p(θ) is the prior, `(D|θ) = p(D|θ) is the likelihood, p(θ|D) is the posterior, and

p(D) =
∫

p(D|θ)p(θ) dθ is called the evidence. We can also write p(θ|D) ∝ `(D|θ)p(θ),

where the classical maximum likelihood estimation (MLE) is defined as
θ̂ = arg maxθ{`(D|θ)}.

A particular point of the posterior is of high interest, because we may be interested
in maximum a posterior (MAP) estimation: θ̂ = arg maxθ{`(D|θ)p(θ)}. We may also be
interested in mean squared error (MSE) estimation, which is shown that it corresponds to

θ̂ = Ep(θ|D){θ} =
∫∫

θ p(θ|D) dθ.

The exact expression of the posterior and the computations of these integrals for great
dimensional problems may be very computationally costly. For this reason, we need to
perform approximate computation. In the following subsections, we review a few solutions.

3.1. Laplace Approximation

Rewriting the general Bayes rules slightly differently gives us the following:

p(θ|D) = 1
p(D) p(D|θ)p(θ) =

1
Z

exp[L(θ|D)], (2)

the Laplace approximations use a second-order expansion of L(θ|D) = ln p(D|θ) + ln p(θ)
around θ̂MAP to construct a Gaussian approximation of p(θ|D):

L(θ) ≈ L(θ̂MAP) +
1
2
(θ− θ̂MAP)

′
(
∇2

θL(θ)|θ̂MAP

)
(θ− θ̂MAP), (3)

where the first-order term vanishes at the θ̂MAP. This is equivalent to calculating the
following approximation:

Approximate p(θ|D) by q(θ) = N
(

θ|θ̂MAP, Σ = [∇2
θL(θ)|θ̂MAP

]
)

.

With this approximation, the evidence p(D) is approximated by the following:

Z = p(D) = (2π)d/2|Σ|1/2 exp
[
−L(θ̂MAP)

]
. (4)

For great dimensional problems such as BDL, the full computation of Σ is very costly.
We have still to do more approximations. The following are a few solutions for scalable
approximations for BDL:

• Work with the subnetwork or last layer (transfer learning);
• Perform covariance matrix decomposition (low rank, Kronecker-factored approximate

curvature (KFAC), Diag);
• Conduct the computation during the hyperparameter tuning using crossvalidation;
• Use approximate predictive computation.
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3.2. Approximate Computation: Variational Inference

The main idea then is to perform approximate Bayesian computation (ABC) by ap-
proximating the posterior p(θ|D) using a simpler expression q(θ). When approximation is
performed by minimizing

KL[q(θ) : p(θ|D)] =
∫∫

q(θ) log
q(θ)

p(θ|D) dθ, (5)

the method is called the variational Bayesian approximation (VBA). When q(θ) is chosen
to be separable in some components of the parameters q(θ) = ∏j qj(θ j), the approximation
is called the mean field VBA (MFVBA).

Let us come back to the general VBA, KL[q : p] =
∫∫

q log
q
p
= Eq{log q} − Eq{log p},

and note using L = Eq{log p} the expected likelihood and using S = −Eq{log q} the
entropy of q. Then, we have the following:

q∗ = arg min
q
{KL[q : p]} = arg max

q
{E = S + L}. (6)

E is also called the evidence lower bound (ELBO):

ELBO = −Eq{log q}+ Eq{log p}. (7)

At this point, it is important to note one main property of the VBA: When p(θ|D), the
posterior probability law p and the approximate probability law q are in the exponential
family; then, Ep{θ} = Eq{θ}.

3.3. VBA and Natural Exponential Family

If q is chosen to be in a natural exponential family, q(θ|η) = exp[η′θ− A(η)], then it is
entirely characterized by its mean m = Eq{θ}, and if q is conjugate to p, then q∗(θ|η) =
exp

[
η∗′θ− A(η∗)

]
, which is entirely characterized by its mean m∗ = Eq∗{θ}. We can then

define the objective E as a function of m, and the first order condition of the optimality
is ∂E

∂m

∣∣
m=m∗ = 0. From this property, we can obtain a fixed-point algorithm to compute

m∗ = Eq∗{θ}:

∂E
∂m
∣∣
m=m∗ = 0→ ∂E

∂m
∣∣
m=m∗ + m = m→ M(m) = m.

Iterating on this fixed-point algorithm gives us the following:

M(m) = m(k−1) with M(m) :=
∂E
∂m

+ m (8)

which converges to m∗ = Eq∗{θ∗} and is also m∗ = Ep{θ∗}. This algorithm can be
summarized as follows:

• Having chosen the prior and likelihood, find the expression of p(θ|D) ∝ p(D|θ)p(θ);
• Choose a family q and find the expressions of L = Eq{ln p} and S = Eq{ln q}, which

thus yield E = L + S as a function of m = Eq{θ};
• Find the expression of the vector operator M = ∇mE + m and update it

M(m) = m(k−1) until convergence, which results in m∗ = Eq∗{θ∗} = Ep∗{θ∗}.
At this point, it is important to note that, in this approach, even if the mean is well

approximated, the variances or the covariance are underestimated. Some authors who
are interested in this approach have proposed solutions to better estimate the covariance.
See [14] for one of the solutions.
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4. Deep Learning and Bayesian DL

As introduced before, in classical DL, the training and prediction steps can be summa-
rized as follows:

{xi, yi} → NN Learning: φθ?(·) → θ? xj → NN: φθ?(xj) → ŷj

In this approach, there is no uncertainty quantification. The Bayesian deep learning can be
summarized as follows:

{xi, yi} → p(θ|D) = p(D|θ)p(θ)
p(D) → p(θ|D) or q(θ|D),

xj → p(yj|xj,D) =
∫

p(yj|xj, θ,D)p(θ|D) dθ → p(yi|xj,D) or q(yi|xj,D).

As we can see, uncertainties are accounted for in both steps of the parameter estimation
and prediction. However, computational costs are important. We need to find solutions to
perform fast computation. As mentioned before, the different possible tools are Laplace
and Gaussian approximation, variational inference, and more controlled approximation to
design new deep learning algorithms, which can scale up for practical situations.

Exponential Family Approximation

Let us consider the case of general exponential families q(θ|λ) = exp
[
λTt(θ)− F(λ)

]
,

where θ represents the original parameters, λ represents the natural parameters, t(θ)
represents sufficient statistics, F(λ) represents the log partition function, and we define the
expectations parameters as µ := Eq{t(θ)}. Let us also define the dual function F∗(η) and
the dual parameters η via the Legendre transform:

G(η) = F∗(η) = sup
λ

{< λ, η > −F(λ)}.

Then, we can show the triangular relation between θ ∈ Θ, λ ∈ Λ, and µ ∈ M shown in
Figure 1.

θ ∈ Θ

Legendre Transform
< Λ, F >=<M, F∗ >λ ∈ Λ µ ∈ M

λ = ∇µF∗(µ) µ = ∇λF(λ)

Figure 1. General exponential family, with original parameters θ, natural parameters λ, expectations
parameters µ := Eq{t(θ)}, and their relations via the Legendre Transform.

With these notations, applying the VBA rule minq∈Q Eq{L(θ)} − H(q) results in the
following updating rule for the natural parameters:

λ← λ− ρ∇µ(L(θ)− H(q)). (9)

For example, by considering the Gaussian case

q(θ) = N (θ|m, S−1) ∝ exp
[
−1

2
(θ−m)TS(θ−m)

]
∝ exp

[
(Sm)Tθ+ Tr(−S

2
θθT)

]
. (10)
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we can identify the natural parameters as λ = [Sm,−S/2]→ µ := [Eq{θ}, Eq
{

θθT}], and
we easily obtain the following algorithm:{

Sm← (1− ρ)Sm− ρ∇Eq{θ}Eq{L(θ)},
S← (1− ρ)S− ρ

2∇Eq{θθT}Eq{L(θ)}.
(11)

where {
∇Eq{θ}Eq{L(θ)} = Eq{∇θL(θ)} − 2Eq{L(θ)},
∇Eq{θθT}Eq{L(θ)} = Eq{H(θ)},

which results, explicitly, in {
m← m− ρS−1∇mL(m),
S← (1− ρ)S + ρHm.

(12)

For a linear model y = Xθ and Gaussian priors, we have

L(θ) = (y− Xθ)T(y− Xθ) + γθTθ = −2θT(XTy) + Tr
[
θθT(XTX + γI)

]
, (13)

and Eq{L(θ)} = λTµ,∇µEq{L(θ)} = λ.
It is interesting to note that many classical algorithms for updating the parameters,

such as forward–backward, sparse variational inference, and variational message passing,
become special cases. A main remark here is that this linear generating function case will
link us to the linear inverse problems g = Hf + ε if we replace y with g, X with H, and θ
with f.

5. NN, DL, and Bayesian Inference for Linear Inverse Problems

To show the possibilities of the interaction between inverse problems methods, neural
networks and deep learning, the best way is to give a few examples.

5.1. First Example: A Known Linear Forward Model

The first and easiest example is the case of linear inverse problems g = Hf + ε,
where we know the forward model H and we assume the Gaussian likelihood p(g|f) =
N (g|Hf, σ2

ε I) and the Gaussian prior p(f) = N (f|0, σ2
f I) are the easiest cases to consider,

where we know that the posterior is Gaussian p(f|g) = N (f|̂f, Σ̂) with

f̂ = (HtH + λI)−1Htg = A g = BHt g or still f̂ = Ht(
1
λ

HHt + I)−1g = HtC g,

where λ = σ2
ε /σ2

f , A = (HtH + λI)−1Ht, B = (HtH + λI)−1, C = ( 1
λ HHt + I)−1, and

Σ̂ = (HtH + λI)−1.
These relations can be presented schematically as

g→ A → f̂, g→ Ht → B → f̂, g→ C → Ht → f̂.

We can then consider replacing A, B, and C with appropriate deep neural networks and
apply all the previous BDL methods to them. As we can see, these relations directly induce
a linear feed-forward NN structure. In particular, if H represents a convolution operator,
then Ht, HtH, and HHt are too, as well as the operators B and C. Thus, the whole inversion
can be modeled using a CNN [15,16].

For the case of computed tomography (CT), the first operation is equivalent to an
analytic inversion, the second corresponds to back projection that is first followed by
2D filtering in the image domain, and the third corresponds to the famous filtered back
projection (FBP), which is implemented on classical CT scans. These cases are illustrated in
Figure 2.
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g→ A → f̂

Totally data-driven NN

  

Analytical
Inversion

Direct NN
Inversion

g→ Ht → B → f̂

Back projection + NN 2D filtering
  

Analytical
Inversion

or
Back

Projection

2D
Filtering

2D Filering
By NN

g→ C → Ht → f̂

NN 1D filtering + Back projection (FBP)
  

Analytical
Inversion

or
Back

Projection

Analytical
Inversion

Filtering
by NN

Figure 2. Three linear NN structures, which are derived directly from quadratic regularization
inversion method. The right part of this figure is adapted from [16].

5.2. Second Example: A Deep Learning Equivalence of Iterative Gradient-Based Algorithms

One of the classical iterative methods in linear inverse problem algorithms is based on
the gradient descent method to optimize J(f) = ‖g−Hf‖2:

f(k+1) = f(k) + αHt(g−Hf(k)) = αHtg + (I− αHtH)f(k) , (14)

where the solution to the problem is obtained recursively. Everybody knows that when
the forward model operator H is singular or ill-conditioned, this iterative algorithm starts
by converging, but it may diverge easily. One of the experimental methods to obtain an
acceptable approximate solution is just to stop the iterations after K iterations. This idea can
be translated to a deep learning NN by using K layers. Each layer represents one iteration
of the algorithm. See Figure 3.

g����
?

αHt

?

-(I− αHtH)-����
+
?
--(I− αHtH)-����

+
?
-. . . -(I− αHtH)-����

+
?
-f(1) f(K)

Figure 3. A K layers DL NN equivalent to K iterations of the basic optimization algorithm.

This DL structure can easily be extended to a regularized criterion
J(f) = 1

2‖g−Hf‖2 + λ‖Df‖2, which can also be interpreted as the MAP or posterior
mean solution with a Gaussian likelihood and prior. In this case, we have the following:

f(k+1) = f(k) + α[Ht(g−Hf(k))− λDtD] = αHtg + (I− αHtH− αλDtD)f(k) . (15)

We just need to replace (I− αHtH) with (I− αHtH− αλDtD).
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This structure can also be extended to all the sparsity-enforcing regularization terms
such as `1 and the total variation (TV) using appropriate algorithms such as the ISTA (itera-
tive soft threshold algorithm) or its fast version FISTA by replacing the update expression
and by adding an NL operation, much like the ordinary NNs. A simple example is given
in the following subsection.

5.3. Third Example: `1 Regularization and NN

The case of the MAP solution with a Gaussian likelihood and double exponential prior
becomes equivalent to the `1 regularization criterion:

J(f) = ‖g−Hf‖2
2 + λ‖f‖1 , (16)

where the solution can be obtained with an iterative optimization algorithm, such as ISTA:

f(k+1) = Prox`1

(
f(k), λ

)4
= Sλα

(
αHtg + (I− αHtH)f(k)

)
, (17)

where Sθ is a soft threshold operator, and α ≤ |eig(HtH)| is the Lipschitz constant of the
normal operator. When H is a convolution operator, then

• (I− αHtH)f(k) can also be approximated by a convolution and thus considered as a
filtering operator;

• 1
α Htg can be considered as a bias term and is also a convolution operator;

• Sθ=λα is a nonlinear pointwise operator. In particular, when f is a positive quantity,
this soft threshold operator can be compared to the ReLU activation function of the
NN. See Figure 4.

Using the iterative gradient-based algorithm with a fixed number of iterations for
computing a GI or a regularized one, as explained in the previous section, can be used
to propose a DL structure with K layers, with K being the number of iterations before
stopping. Figure 5 shows this structure for a quadratic regularization, which results in a
linear NN, and Figure 6 shows the case of `1 regularization.

f(k) - (I− αHtH) -����
+ - �

�
- f(k+1)

?

αHt
?

g����

f(k) - W(k) -����
+ - �

�
- f(k+1)

?

W0

?

g����

Figure 4. A K layers DL NN equivalent to K iterations of a basic gradient-based optimization
algorithm. A quadratic regularization results in a linear NN, while a `1 regularization results in a
classical NN with a nonlinear activation function. Left: supervised case. Right: unsupervised case. In
both cases, all the K layers have the same structure.

- W(1) -����
+ - �

�
-

?

W0

?

g����

- W(2) -����
+ - �

�
-

?

W0

?

g����

- W(K) -����
+ - �

�
-

?

W0

?

g����

. . .f̂(1) f̂(K)

Figure 5. All the K layers of DL NN equivalent to K iterations of an iterative gradient-based op-
timization algorithm. The simplest solution is to choose W0 = αH and W(k) = W = (I− αHtH),
k = 1, · · · , K. A more robust, but more costly approach, is to learn all the layers for
W(k) = (I− α(k)HtH), k = 1, · · · , K.
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In all these examples, we could directly obtain the structure of the NN from the
forward model and known parameters. However, in these approaches, there are some
difficulties that consist of the determination of the structure of the NN. For example, in the
first example, obtaining the structure of B depends on the regularization parameter λ. The
same difficulty arises in determining the shape and the threshold level of the threshold
bloc of the network in the second example. The same need for the regularization parameter,
as well as many other hyperparameters, makes it necessary to create the NN structure and
weights. In practice, we can decide, for example, on the number and structure of a DL
network, but as their corresponding weights depend on many unknown or difficult-to-fix
parameters, ML may become of help. In the following, we first consider the training part of
a general ML method. Then, we will see how to include the physics-based knowledge of
the forward model in the structure of learning [4,10,17,18].

Learning Data
(gk, fk)

K
k=1

→ Fixed Physics-based
f̃k = Htgk

→ f̃k →
Trainable part

B̂ = arg min
B

{
K

∑
k=1
‖fk −φ(Bf̃k)‖2 + λR(B))

}
→ B̂

New Data
gj

→ Physics-based part
f̃j = Htgj

→ f̃j →
Trained part
f̂j = φ(B̂f̃j)

→ f̂j

Figure 6. Training (top) and testing (bottom) steps in the first use of physics-based ML approach.

5.4. Decomposition of the NN Structure to Fixed and Trainable Parts

The first easiest and most understandable method consists of decomposing the struc-
ture of the network W in two parts: a fixed part and a learnable part. As the simplest
example, we can consider the case of analytical expression of the quadratic regularization
f̂ = (HHt + λDDt)−1Htg = BHtg, which suggests having a two-layer network with a
fixed part structure Ht and a trainable one B = (HHt + λDDt)−1. See Figure 6.

It is interesting to note that in X-ray-computed tomography (CT), the forward operator
H is called projection, the adjoint operator Ht is called back projection (BP), and the B operator
is assimilated to a 2D filtering (convolution).

6. DL Structure and Deterministic or Bayesian Computation

To be able to look at the DNN and analyze it either in a deterministic or Bayesian
manner, let us come back to the general notations and consider the following NN with
input x, output y, and intermediate hidden variables z1, z2, . . . , zL:

x→ first layer → z1 → second layer → z2 · · · → last layer → y.

In the deterministic case, each layer is defined by its parameters (Wl , bl):

x→ fW0,b0(x) → z1 → fW1,b1(z1) → z2 · · · → fWL ,bL(zL−1) → y,

and we can write:

y = fθ(x) = ( f(W0,b0)
� f(W1,b1)

� · · · f(WL ,bL)
)(x)

with
θ = ((W0, b0), (W1, b1), · · · , (WL, bL))

and
y = fL(WLzL−1 + bL), zl = fl(Wlzl−1 + bl), l = L, · · · , 1, z0 = x. (18)
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6.1. Deterministic DL Computation

In general, during the training steps, the parameters θ are estimated via

θ∗ = arg min
θ

{
∑

i
`(yi, fθ(xi)) + ∑

k
λkφk(Wk, bk)

}
. (19)

The main point here is to choose how to choose λk and φ(.), as well as which optimization
algorithm to choose for better convergence.

When parameters are obtained (the model is trained), we can use it easily via

z0 = x, zl = fl(Wlzl−1 + bl), y = fL(WLzL−1 + bL). (20)

6.2. Bayesian Deep Neural Network

In Bayesian DL, the question of choosing λk and φ(.) in the previous case becomes
the choice of the prior, p(θ), which can also be assumed to be a priori separable in the
components of θ or not. Then, we have to choose the expression of the likelihood (in general
Gaussian) and find the expression of the posterior p(θ|D). As explained extensively before,
directly using this posterior is almost impossible. Hopefully, we have a great number
of approximate computation methods, such as MCMC sampling, slice sampling, nested
sampling, data augmentation, and variational inference, which can still be used in practical
situations. However, the training step in the Bayesian DL still stays very costly, particularly
if we want to quantify the uncertainties.

Prediction Step

In the prediction step, we again have to consider choosing a probability law p(x) for
the class of the possible inputs and for all the outputs zl that are conditional to their inputs
zl−1. Then, we can consider, for example, the Gibbs sampling scheme. A comparison
between deterministic and Bayesian DL is shown here:

Deterministic: Bayesian:
z0 = x,
zl = fl(Wlzl−1 + bl), l = 1, · · · , L,
y = fL(WLzL−1 + bL).

→


z0 ∼ p(x),
zl ∼ p(zl |zl−1), l = 1, · · · , L,
y ∼ p(y|zL−1).

If we consider Gaussian laws for the input and all the conditional variables, then we
can write the following:

z0 ∼ N(z0|x, τ0I), zl ∼ N(zl | fl(zl−1), τlI), l = 1, · · · , L, y ∼ p(y|zL−1). (21)

Here too, the main difficulty occurs when there are nonlinear activation functions, particu-
larly in the last layer, where the Gaussian approximation may not be more valid.

7. Application: Infrared Imaging

Infrared (IR) imaging is used to diagnose and to survey the temperature field distri-
bution of sensitive objects in many industrial applications. These images are, in general,
low resolution and very noisy. The real values of the temperature also depend on many
other parameters, such as emissivity, attenuation, and diffusion, due to the distance of the
camera to the sources. To be really useful in practice, we need to reduce the noise, calibrate
and increase the resolution, segment for detection of the hot area, and finally survey the
temperature values of the different areas during the time to be able to conduct preventive
diagnosis and possible maintenance.
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Reducing the noise can be accomplished by filtering using the Fourier transform,
wavelet transform, or other sparse representations of images. To increase the resolution,
we may use deconvolution methods if we can obtain the point spread function (PSF) of the
camera, or if not by using blind deconvolution techniques. The segmentation and detection
of the hot area and the temperature value estimation at each area are also very important
steps in real applications. Any of these steps can be performed separately, but trying to
propose global processing using DL or BDL is necessary for real applications. As any of
these steps are in fact different inverse problems, and it is difficult to fix the parameters
in each step in a robust way, we propose a global process using the BDL. See the global
scheme in Figure 7.

Input g denoising deconvolution Segmentation Segmented

IR image→ C1 - Th - C2 → C3 - Thr - C4 → Bayesian SegNet → image

Figure 7. The proposed four groups of layers of NN for denoising, deconvolution, and segmentation
of IR images.

In the first step, as the final objective is to segment the image to obtain different levels
of temperature (for example, four levels: background, normal, high, and very high), we
propose to design an NN that obtains as input a low resolution and noisy image and
outputs a segmented image with those four levels and, at the same time, a good estimate of
the temperature at each segment. See Figure 8.

a simulated IR image ground truth labels deconv and segmentation

a real IR image deconv and segmentation

Figure 8. Example of expected results in deterministic methods. First row: a simulated IR image
(left), its ground truth labels (middle), and the result of the deconvolution and segmentation (right).
Second row: a real IR image (left) and the result of its deconvolution and segmentation (right).

To train this NN, we can generate different known shaped images to consider as the
ground truth and simulate the blurring effects of temperature diffusions via the convolution
of different appropriate PSFs. We can also add some noise to generate realistic images. We
can also use black body thermal sources and acquire different images at different conditions.
All these images can be used for the training of the network. See an example of the obtained
result in Figure 9.
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Figure 9. Example of expected results in Bayesian methods. First row from left: (a) simulated IR
image, (b) its ground truth labels, (c) the result of the deconvolution and segmentation, and (d) un-
certainties. Second row: (e) a real IR image, (f) no ground truth, (g) the result of its deconvolution
and segmentation, and (h) uncertainties.
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