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Abstract: The NuMI target facility at Fermilab produces an intense muon neutrino beam for the
NOvA (NuMI Off-axis νe Appearance) long baseline neutrino experiment. Three arrays of muon
monitors located downstream of the hadron absorber in the NuMI beamline provide the measure-
ments of the primary beam and horn current quality. We have studied the response of muon
monitors with the proton beam profile changes and focusing horn current variations. The responses
of muon monitors are used to develop machine learning (ML) algorithms to monitor the beam quality.
We present the development of the machine learning applications and future plans. This effort is im-
portant for future applications such as beam quality assurance, anomaly detection, and neutrino beam
systematics studies. Our results demonstrate the advantages of developing useful ML applications
that can be leveraged for future beamlines such as LBNF.

Keywords: NuMI beamline; machine learning; NuMI neutrino beam

1. Introduction

The Neutrinos at the Main Injector (NuMI) beamline [1–3] at the Fermi National
Accelerator Laboratory in Illinois has been designed to deliver an intense muon neutrino
beam to NuMI neutrino experiments. Protons of 120 GeV from the main injector collide
with a fixed graphite target to produce the neutrino beam for experiments. The charged
particles produced from the proton interactions with the target nuclei are focused on a
675 m long, 2 m diameter cylindrical decay pipe by using two focusing horn systems which
operate with 200 kA horn current. The mesons may decay into neutrinos and muons before
they are absorbed through the hadron absorber, located after the decay volume. Some of
the high-energy muons produced from the meson decay may pass through muon monitors
that are located after the hadron absorber.

The muon monitors are an array of helium gas ionization chambers [4]. Each muon
monitor has been built with 81 parallel plate ionization chambers with an electrode spacing
of 3 mm. Every charged particle ionizes the helium gas to produce ions and electrons when
they pass through the ionizing chambers. Muon monitors are sensitive to the primary beam
changes and horn current variations. Unique responses of muon monitors are useful to
build machine learning applications to monitor the quality of the NuMI neutrino beam.

After the MINOS detector shut down in February 2019, the muon monitors provide
useful information to monitor the beam quality, target health, and horn performance and
identify issues with the beamline alignment. Our goal is to improve and monitor the
performance of neutrino beam delivery for neutrino experiments by applying modern
artificial intelligence and machine learning techniques.
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2. Muon Monitor Responses

The three muon monitors have a unique response to the proton beam variables. In
this paper, we report the muon monitor responses to the proton beam position changes
at the target as an example. The data have been recorded by moving the proton beam
horizontally and vertically for selected horn current settings. The beam positions at the
target have been extrapolated by using two sets of horizontal and vertical beam position
monitors (BPMs) upstream of the target.

We report the correlation of the muon monitor centroid measurement as a function
of the beam position at the target. The responses of the muon flux centroid to the hori-
zontal and vertical beam variations for 200 kA horn current setting are shown in Figure 1.
The correlation of the muon monitor centroid to the proton beam position has been fitted
using linear function. The study shows that the three muon monitors are responding
differently to the proton beam variations. According to the vertical scan, the non-linear
response of the muon flux centroid is visible at the upper and lower limits of the proton
beam position.
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Figure 1. Muon flux centroid measurements as a function of proton beam position at the target. Blue,
red and green distributions are the measured centroids on muon monitor 1, 2 and 3 respectively.
The horizontal and the vertical scans are shown in the left and right plots, respectively.

3. Predicting Beam Parameters with ML

In this study, we present a machine learning approach to predict the proton beam po-
sition at the target, beam intensity, and the focusing horn current based on the downstream
muon monitor signals. The responses of the individual pixels in the muon monitoring
system to the beam and horn current variations have been taken into account to train an
ML model.

3.1. Data

The data samples have been collected from the spill-by-spill time series measurements
of devices in the NuMI beamline for beam settings and horn current settings. The pedestal-
subtracted signal measurements of 241 pixels (two dead pixels from muon monitor 1 have
not been taken into account for ML applications) of three muon monitors were taken as
input variables for the ML model. The randomly sampled training (70%) and validation
(30%) data samples were selected from the target scan data collected on 12 December 2019
and a few hours of selected normal operation data.

3.2. Machine Learning Method

The ML model architecture is defined as a fully connected multilayered artificial
neural network (ANN) with multiple hidden layers. The output of each node in the
layers is calculated by an appropriate “activation function”. The ANN is designed by
using 241 pixel measurements of three muon monitors as input nodes and multiple hid-
den layers and four output nodes to predict the proton beam position (horizontal and
vertical), beam intensity, and horn current. ANN has been optimized by using a hy-
perparameter tuning process to obtain the optimal architecture. The hyperparameter
tuning is carried out by searching the best combination of the number of hidden layers,
number of nodes, batch size, learning rate and the activation functions. Figure 2 shows an
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example of the number of nodes searched for the first and fourth hidden layers. The plot
shows the correlation between the number of nodes in the first and the fourth hidden layers.

Figure 2. The correlation between the number of nodes in the 1st and the 4th hidden layers. Ex-
ample of the hyperparameter optimization to obtain the number of nodes in the hidden layers.
The hyperparameters are tuned based on obtaining the lowest objective values as shown in the
contour plot.

The network is trained to obtain the best weights to predict the network output by
minimizing an appropriate loss function. The best-optimized ANN structure that we have
achieved from our network optimization is described in Table 1 with four hidden layers, a
learning rate of η = 10−5, and a batch size of 32.

Table 1. The optimized ANN model with the number of hidden layers, parameters, and the asso-
ciated activation functions. Each node in the first layer has been connected to 243 inputs from the
muon monitor signals and the output layer is predicting the beam position, beam intensity, and the
horn current.

Layer Shape Parameters Activation

1 480 116,160 tanh

2 130 62,530 sigmoid

3 135 17,685 sigmoid

4 11 1496 sigmoid

5 4 48 linear

A comparison of the model predictions of four output variables on the validation data
is shown in Figure 3. The top left and top right plots in Figure 3 show the predictions of the
proton beam in horizontal and vertical positions. The beam intensity and the horn current
predictions are shown in the bottom left and right plots in Figure 3.

The model has been tested with randomly selected datasets for normal beam operations.
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Figure 3. A test of the model predictions (orange) of all four output variables for 12 December 2019
target scan data (blue). The beam position is horizontal and vertical; the beam intensity and the horn
current are shown in the top left, top right, bottom left, and bottom right, respectively.

4. Simulation Effort

In this section, we describe the efforts to build ML models by using simulation data.
This effort may help to understand some of the rare “anomaly” scenarios such as horn
tilt or slip, target tilt, target deterioration, and density effects. The simulation data for ML
applications are generated using NuMI beamline simulation (G4NuMI), which is based on
geant4 simulation tools [5].

A uniform beam simulation technique is used to generate a significant amount
of Monte Carlo data samples for machine learning applications by varying the inci-
dent beam parameters and horn current settings. In this technique, we generate a uni-
formly distributed single simulation data sample for the selected beam variable range.
The uniformly distributed sample is then used to generate Gaussian beam profiles for the
selected beam positions and widths.

A linear regression model has been tested to predict the horizontal proton beam
position and the horn current from simulation data. In this study, we take 243 muon
monitor pixels as inputs for the linear model training for each targeted prediction variable.
After the training, the model shows a high accuracy of predicting the beam position (left)
and the horn current (right), as shown in Figure 4.

Another supervised ML model has been studied by applying convolutional neural
network (CNN) techniques. In this study, the model reads each muon monitor pixel
information (9 × 9) as an image for the model training. The model reads the image features
to make predictions on the targeted output variables. Image information is processed
through 3 × 3 convolutional filters, a 2 × 2 max pooling layer, and a fully connected
multilayered perceptron (MLP) during the training process. The results from the model
predictions are shown in Figure 5. The top two distributions show the comparison of the
beam position predictions along the horizontal and the vertical directions. The bottom plot
shows the horn current prediction.

Both models provide a good fit with high prediction accuracy because our simulation
data samples describe more ideal conditions than real beam data. Unlike simulation data,
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real beam data is noisy and has background effects on measurements from known and
unknown sources.

 0               2000            4000            6000            8000           10,000

Figure 4. Horizontal beam position (left) and horn current predictions (right) using a linear regression
model on simulation data.
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Figure 5. Beam position and horn current predictions using CNN model on simulation data.
Top left and right show the horizontal and vertical beam positions. The bottom plot compares
the horn current predictions.

5. Summary and Outlook

In this paper, we summarize the progress of machine learning applications by taking
into account the downstream muon monitor signals. These ML predictions give an extra
monitoring of the beam and horn current behaviors. This will be helpful for monitoring the
beam performance and developing trends or issues during regular beam operations. ML
model building with simulation data is useful for predicting rare incidents and anomalies.
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