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Abstract: The MicroBooNE detector is a liquid argon time projection chamber (LArTPC) with
an 85 ton active mass that receives flux from the Booster Neutrino and the Nutrinos from the
Main Injector (NuMI) beams, providing excellent spatial resolution of the reconstructed final-state
particles. Since 2015, MicroBooNE has accumulated many neutrino and anti-neutrino scattering
events with argon nuclei enabling searches for rare interaction channels. The Cabibbo-suppressed
production of hyperons in anti-neutrino–nucleus interactions provides sensitivity to a range of effects,
including second-class currents, SU(3) symmetry violations and reinteractions between the hyperon
and the nuclear remnant. This channel exclusively involves anti-neutrinos, offering an unambiguous
constraint on wrong-sign contamination. The effects of nucleon structure and final state interactions
are distinct from those affecting the quasielastic channel and modify the Λ and Σ production cross
sections in different ways, providing new information that could help to break their degeneracy. Few
measurements of this channel have been made, primarily in older experiments such as Gargamelle.
We present the sensitivity of the MicroBooNE experiment to the cross section for direct (Cabibbo-
suppressed) Λ production in muon anti-neutrino interactions, using anti-neutrinos from the off-axis
NuMI beam.
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1. Introduction

The Cabibbo-suppressed production of hyperons is a rare neutrino interaction process
with few measurements [1–6], subject to unique nuclear effects such as hyperon-nucleus
potentials which modify the cross sections of the individual channels in different ways. This
creates potential to disentangle the physics of the initial anti-neutrino–nucleon interaction
from final-state interactions [7]. This paper presents the sensitivity of the MicroBooNE
experiment [8] to the cross section of Cabibbo-suppressed Λ production:

ν̄µ + Ar→ µ+ + Λ + X. (1)

This calculation assumes data corresponding to 2.2 × 1020 protons on target (POT) of
neutrino mode flux and 4.9× 1020 POT of anti-neutrino mode flux from the Neutrinos from
the Main Injector (NuMI) beam [9,10], which will be analyzed. The data from these periods
are combined to minimize the statistical uncertainty in the measurement.

2. Event Selection

Neutrino interactions are reconstructed using the Pandora [11] reconstruction/pattern
recognition framework, which identifies a candidate neutrino interaction vertex and re-
constructs the resulting tracks and electromagnetic showers. These objects are analyzed
by event selection, which applies a set of criteria to reject background interactions. Prior
to applying any event selection, 37 signal events are predicted, among a background of
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1.6 million events. The background comprises other neutrino interactions and cosmic rays
mistakenly tagged as particles resulting from neutrino interactions.

Any events in which the reconstructed vertex is outside of the fiducial volume used
in Ref. [12] are rejected. The selection searches for the Λ→ p + π− decay, which creates a
V-shaped signature in the detector, seen in Figure 1. There are three final-state particles that
must be identified: the µ+, p and π−, all of which produce track-like signatures. Any events
containing fewer than three reconstructed tracks or any showers are rejected. Particle iden-
tification (PID) scores [13] are employed to analyze the calorimetric information associated
with these tracks, indicating if they are muon-like or proton-like. The longest muon-like
track is the muon candidate. A pair of tracks consistent with a proton and charged pion
are identified using an array of boosted decision trees [14], leveraging variables such as
PID scores [13] and Pandora’s track/shower classification score [15]. From this pair of
tracks, two kinematic quantities are calculated: their invariant mass, displayed in Figure 2a,
and angular deviation, denoted as α in Figure 2b. The angular deviation is defined as the
angle between the reconstructed momentum vector of the Λ candidate and the line joining
the primary vertex to the decay vertex. Cuts are applied to these variables to remove
events with kinematics inconsistent with a decaying Λ baryon. Finally, the “island finding”
method, illustrated in Figure 3, is employed to determine whether the proton and pion
form a true displaced vertex.

Figure 1. Event display of simulated signal event. The different colors indicate ionization of the
argon in the detector, with green/red indicating weaker/stronger ionization.

(a) Reconstructed invariant mass. (b) Angular deviation.
Figure 2. Kinematic variables employed by the selection, with the signal strength multiplied by 20 for
visibility. Events with 1.09 < reconstructed invariant mas < 1.14 GeV/c and α < 14◦ are selected.
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(c)
Figure 3. Three stages of the island finding, applied to a signal MC simulation event. The deconvolved
wire activity is filtered, removing any pixels below a threshold value. The starting positions of the
tracks, mapped into wire-time space coordinates, are used to determine if the proton and pion form a
separate island to the muon. (a) Deconvolved wire signals. (b) After application of the threshold filter.
(c) After generating islands. The blue region is the muon island, the pink the combined proton/pion
island. Green represents unused activity.

After applying the selection, the surviving events consist of the signal, other events in
which Λ baryons are produced (such as deep inelastic scattering or resonance excitation),
other hyperons such as the Σ0, events containing secondary interactions of neutrons and
events containing reconstruction problems. The efficiency of the event selection is 7% with
a final purity of 47%, suppressing the background by a factor of ∼106.

3. Systematic Uncertainties

Four sources of systematic uncertainties are considered: the neutrino flux [16], cross
sections of background neutrino interaction processes [17], cross sections of secondary
interactions simulated by GEANT 4 [18,19] and the detector response [20]. The dominant
source of uncertainty in the predicted signal is the flux.

4. Cross-Section Extraction

The cross-section extraction procedure involves generating pseudo-experiments and
repeatedly calculating the cross section in each to estimate the effect of uncertainties,
including the asymmetric shapes of the statistical uncertainties. To propagate the MC
simulation statistical uncertainties, the Bayesian posterior distributions of the selection
efficiency ε, and the selected background, B, are calculated with uniform priors using
the TEfficiency class [21]. The data’s statistical uncertainty is modeled by applying Bayes’
theorem to the Poisson distribution, yielding the posterior distribution P(N|Nobs) when
Nobs events are observed in the data.

The systematic uncertainties are propagated by first calculating the covariance ma-
trix of the selection efficiency ε, the total muon anti-neutrino flux Φ, and the selected
background B and constructing a three-dimensional Gaussian distribution, from which
systematic fluctuations αε, αΦ and αB may be sampled. Pseudo-experiments are then gener-
ated by sampling values of ε, B, N, αε, αΦ and αB from their respective distributions and
calculating their resulting cross section with
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σ∗ =
N − (B + αB)

T(Φ + αΦ)Γ(ε + αε)
. (2)

The resulting distributions are drawn, for Nobs ranging from 0 to 7, in Figure 4,
compared with the cross section predicted by MicroBooNE’s GENIE tune [17].

 = 0ObsN  = 1ObsN  = 2ObsN  = 3ObsN
 = 4ObsN  = 5ObsN  = 6ObsN  = 7ObsN

0 2 4 6 8 10 12 14
)2 cm

40−
 (10σ

0

0.2

0.4

0.6

0.8

1

)2
 c

m
40−

P
D

F
 (

1/
10

MicroBooNE Simulation, In Progress

MicroBooNE Simulation, Preliminary

GENIE Prediction

Figure 4. Bayesian posterior probability distributions of the cross section for different values of Nobs,
compared with the value predicted by MicroBooNE’s GENIE tune [17].

5. Summary

A complete procedure for the extraction of the cross section of the Cabibbo-suppressed
production of Λ baryons has been developed, and is ready for application to MicroBooNE
data. A sophisticated event selection is employed, reducing an initial background of
1.6 million events to ∼3 events, against a predicted signal of 2.5 events. The final sensitivity
is expressed as a collection of Bayesian posterior probability distributions, calculated by
generating pseudo-experiments in which the quantities used to calculate the cross section
are varied according to their uncertainties.
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