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Abstract: Dark matter in the Milky Way is explained by the F-type of vacuum polarization, which
could represent dark radiation. A nonsingular solution for dark radiation exists in the presence of
eicheon (i.e., black hole in old terminology) in the galaxy’s center. The model is spherically symmetric,
but an approximate surface density of a baryonic galaxy disk is taken into account by smearing the
disk over a sphere.
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Observation of the stellar orbits around the center of the Milky Way [1] is considered
as evidence of an extremely compact astrophysical object existence with a radius of an
order of a Schwarzschild one. Conversely, an exact Schwarzschild solution of the general
relativity (GR) equations exists [2]. A principal question is whether the Schwarzschild
solution describes reality. This question is also related to the need for dark matter to
explain the galactic rotational curves [3]. Modification of GR explaining rotational curves
without dark matter as the MOND was suggested [4]. However, could we go without
extraordinary physics but take vacuum polarization into account correctly [5]? The answer
is no in the frame of renormalizable quantum field theory on a curved background. Still, this
approach demands covariance of the mean value of the energy-momentum tensor over the
vacuum state. This demand has no hard background because it is known that vacuum stare
invariant relative general transformation of coordinates does not exist. On the contrary, an
argument is put forward that the preferred reference frame exists based on the conformally
unimodular metric for describing vacuum polarization [6].

The conformally unimodular metric for a spherically symmetric space-time is writ-
ten as

s2 = a2
(

dη2 − γ̃ijdxidxj
)
= e2α

(
dη2 − e−2λ(dx)2 −

(
e4λ − e−2λ

)
(xdx)2/r2

)
, (1)

where r = |x|, a = eα, and λ are the functions of η, r. The matrix γ̃ij with the unit deter-
minant expressed through λ(η, r). The interval (1) rewritten in the spherical coordinates
is [7]:

ds2 = e2α
(

dη2 − e4λdr2 − e−2λr2
(

dθ2 + sin2 θdφ2
))

(2)

As it was shown [5,7], a nonsingular solution exists in this metric for the compact
object of any mass (see, e.g., Figure 1a), for example, consisting of incompressible fluid. In
the metric of the Schwarzschild type of

ds2 = B(R)dt2 − A(R)dR2 − R2dΩ2. (3)
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These objects look like hollow spheres that prevent the appearance of infinite pressure.
The inner Ri and the outer R f radiuses (see Figure 1b) of this spherical shell exceed the
Schwarzschild radius and the Buchdahl’s bound [8] m < 4R/9G is not reached.

Considering vacuum polarization for the arbitrary curved space-time background
is a highly complex problem. Instead, one could consider scalar perturbations of the
conformally unimodular metric:

ds2 = (1 + Φ(η, x))2

(
dη2 −

((
1 +

1
3

3

∑
m=1

∂2
mF(η, x)

)
δij − ∂i∂jF(η, x)

)
dxidxj

)
(4)

and calculate a spatially nonuniform energy density and pressure arising due to vacuum
polarization in the eikonal approximation [5].

As was shown [5], this energy density and pressure of vacuum polarization corre-
sponding to the F-type of metric perturbations (4) have the radiation equation of state. That
gives a hypothetical possibility to use dark radiation in some nonlinear models. One could
use it in the Volkov–Tolman–Oppenheimer (TOV) equation as a heuristic picture. For a
radiation substance alone, a singular solution of a TOV equation exists, thus, having no
physical meaning [9].
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Figure 1. Nonsingular eicheon surrounded by dark radiation in conformally unimodular metric (2) 
has nonsingular core (a). In the Schwarzschild type metric (3), this core looks like a hollow sphere 
(b). 

Figure 1. Nonsingular eicheon surrounded by dark radiation in conformally unimodular metric (2)
has nonsingular core (a). In the Schwarzschild type metric (3), this core looks like a hollow sphere (b).

However, the situation changes cardinally in the conformally unimodular metric,
in the presence of the nonsingular eicheon, which gives a possibility to set a boundary
condition for radiation fluid at r = 0 and obtain nonsingular solution including the dark
radiation. In the Schwarzschild type metric (3), the boundary condition is set at the radial
coordinate of an inner shell R = Ri, which corresponds to the point r = 0 in the conformally
unimodular metric. As a result, such radiation fluid models a dark matter in the Milky
Way as it is shown in Figure 2a, where one could see the contribution of the eicheon at a
small distance and the contribution of a dark radiation at large distances. This is spherically
symmetric model, where an amount of dark radiation is adjusted to fit the observations.
To take the baryonic matter into account, one could smear a baryonic galactic disk on a
sphere and consider the resulting mass density as some external non-dynamical density
in the TOV equations for the eicheon and dark radiation. This external density creates an
additional gravitational potential.
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Let us have a surface density of matter in a galactic disk:

℘ =
MD

2πR2
D

e−R/RD (5)

and write the mass dM corresponding to the radial distance dR

dM =
MD

R2
D

e−R/RD RdR =
MD

R2
DR

e−R/RD R2dR. (6)

According to (6), the smeared 3-dimensional density has the form

ρ =
MD

4πR2
DR

e−R/RD (7)

The result of the calculations for the Milky Way rotational curve is shown in Figure 2b.
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Figure 2. (a) Calculated rotational curve from Ref. [5], which includes contributions of the eicheon 
and dark radiation. (b) Rotational curve taking into account the baryonic matter by (5)–(7). The 
result of observations with the error bars are taken from Ref. [3]. 

As one can see, the simple model with smeared disk describes baryonic matter 
roughly, but the observed rotational curve has a more complicated structure. Let us re-
mind the principles of calculation. We have considered the vacuum polarization of 
F-type in the conformally unimodular metric (4) and find that it has a radiation equation 
of state. Then, solve the TOV equation for incompressible fluid and dark radiation and 
obtain a nonsingular solution. To consider the baryonic matter, we smear a galactic disk 
and use the resulting density as some external density. 
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Figure 2. (a) Calculated rotational curve from Ref. [5], which includes contributions of the eicheon
and dark radiation. (b) Rotational curve taking into account the baryonic matter by (5)–(7). The result
of observations with the error bars are taken from Ref. [3].

As one can see, the simple model with smeared disk describes baryonic matter roughly,
but the observed rotational curve has a more complicated structure. Let us remind the
principles of calculation. We have considered the vacuum polarization of F-type in the
conformally unimodular metric (4) and find that it has a radiation equation of state. Then,
solve the TOV equation for incompressible fluid and dark radiation and obtain a nonsingu-
lar solution. To consider the baryonic matter, we smear a galactic disk and use the resulting
density as some external density.
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