#
On Extensions of the Starobinsky Model of Inflation^{ †}

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. $\mathit{F}\left(\mathit{R}\right)$ Models and the Corresponding Scalar Potentials

## 3. One-Parametric Generalizations of ${\mathit{V}}_{\mathrm{Star}.}\left(\mathit{y}\right)$ and the Corresponding $\mathit{F}\left(\mathit{R}\right)$ Models

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Barrow, J.D.; Cotsakis, S. Inflation and the Conformal Structure of Higher Order Gravity Theories. Phys. Lett. B
**1988**, 214, 515–518. [Google Scholar] [CrossRef] - Berkin, A.L.; Maeda, K.I. Effects of R**3 and R box R terms on R**2 inflation. Phys. Lett. B
**1990**, 245, 348–354. [Google Scholar] [CrossRef] - Saidov, T.; Zhuk, A. Bouncing inflation in nonlinear R
^{2}+ R^{4}gravitational model. Phys. Rev. D**2010**, 81, 124002. [Google Scholar] [CrossRef] [Green Version] - Huang, Q.G. A polynomial f(R) inflation model. J. Cosmol. Astropart. Phys.
**2014**, 2, 035. [Google Scholar] [CrossRef] [Green Version] - Sebastiani, L.; Cognola, G.; Myrzakulov, R.; Odintsov, S.D.; Zerbini, S. Nearly Starobinsky inflation from modified gravity. Phys. Rev. D
**2014**, 89, 023518. [Google Scholar] [CrossRef] [Green Version] - Motohashi, H. Consistency relation for R
^{p}inflation. Phys. Rev. D**2015**, 91, 064016. [Google Scholar] [CrossRef] [Green Version] - Broy, B.J.; Pedro, F.G.; Westphal, A. Disentangling the f(R)—Duality. J. Cosmol. Astropart. Phys.
**2015**, 3, 029. [Google Scholar] [CrossRef] [Green Version] - Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry
**2015**, 7, 220–240. [Google Scholar] [CrossRef] [Green Version] - Odintsov, S.D.; Oikonomou, V.K. Unimodular Mimetic F(R) Inflation. Astrophys. Space Sci.
**2016**, 361, 236. [Google Scholar] [CrossRef] [Green Version] - Miranda, T.; Fabris, J.C.; Piattella, O.F. Reconstructing a f(R) theory from the α-Attractors. J. Cosmol. Astropart. Phys.
**2017**, 9, 041. [Google Scholar] [CrossRef] [Green Version] - Motohashi, H.; Starobinsky, A.A. f(R) constant-roll inflation. Eur. Phys. J. C
**2017**, 77, 538. [Google Scholar] [CrossRef] [Green Version] - Cheong, D.Y.; Lee, H.M.; Park, S.C. Beyond the Starobinsky model for inflation. Phys. Lett. B
**2020**, 805, 135453. [Google Scholar] [CrossRef] - Rodrigues-da Silva, G.; Bezerra-Sobrinho, J.; Medeiros, L.G. Higher-order extension of Starobinsky inflation: Initial conditions, slow-roll regime, and reheating phase. Phys. Rev. D
**2022**, 105, 063504. [Google Scholar] [CrossRef] - Ivanov, V.R.; Ketov, S.V.; Pozdeeva, E.O.; Vernov, S.Y. Analytic extensions of Starobinsky model of inflation. J. Cosmol. Astropart. Phys.
**2022**, 3, 058. [Google Scholar] [CrossRef] - Odintsov, S.D.; Oikonomou, V.K. Running of the spectral index and inflationary dynamics of F(R) gravity. Phys. Lett. B
**2022**, 833, 137353. [Google Scholar] [CrossRef] - Modak, T.; Röver, L.; Schäfer, B.M.; Schosser, B.; Plehn, T. Cornering Extended Starobinsky Inflation with CMB and SKA. arXiv
**2022**, arXiv:2210.05698. [Google Scholar] - Pozdeeva, E.O.; Vernov, S.Y. F(R) gravity inflationary model with (R + R
_{0})^{3/2}term. arXiv**2022**, arXiv:2211.10988. [Google Scholar] - Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.; Barreiro, R.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys.
**2020**, 641, A10. [Google Scholar] [CrossRef] [Green Version] - Ade, P.A.R.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R.; Bischoff, C.A.; Beck, D.; Bock, J.J.; Boenish, H.; Bullock, E.; et al. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett.
**2021**, 127, 151301. [Google Scholar] [CrossRef] - Ketov, S.V. Chaotic inflation in F(R) supergravity. Phys. Lett. B
**2010**, 692, 272–276. [Google Scholar] [CrossRef] [Green Version] - Ketov, S.V.; Starobinsky, A.A. Embedding (R + R
^{2})-Inflation into Supergravity. Phys. Rev. D**2011**, 83, 063512. [Google Scholar] [CrossRef] [Green Version] - Ketov, S.V.; Tsujikawa, S. Consistency of inflation and preheating in F(R) supergravity. Phys. Rev. D
**2012**, 86, 023529. [Google Scholar] [CrossRef] [Green Version] - Farakos, F.; Kehagias, A.; Riotto, A. On the Starobinsky Model of Inflation from Supergravity. Nucl. Phys. B
**2013**, 876, 187–200. [Google Scholar] [CrossRef] [Green Version] - Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R
^{2}inflation in non-local UV-complete gravity. J. High Energy Phys.**2016**, 11, 067. [Google Scholar] [CrossRef] [Green Version] - Koshelev, A.S.; Sravan Kumar, K.; Mazumdar, A.; Starobinsky, A.A. Non–Gaussianities and tensor-to-scalar ratio in non-local R
^{2}-like inflation. J. High Energy Phys.**2020**, 6, 152. [Google Scholar] [CrossRef] - Ketov, S.V. Starobinsky–Bel–Robinson Gravity. Universe
**2022**, 8, 351. [Google Scholar] [CrossRef] - Koshelev, A.S.; Kumar, K.S.; Starobinsky, A.A. Generalized non-local R
^{2}-like inflation. arXiv**2022**, arXiv:2209.02515. [Google Scholar] - Rodrigues-da Silva, G.; Medeiros, L.G. Second-order corrections to Starobinsky inflation. arXiv
**2022**, arXiv:2207.02103. [Google Scholar] - Ketov, S.V.; Pozdeeva, E.O.; Vernov, S.Y. On the superstring-inspired quantum correction to the Starobinsky model of inflation. J. Cosmol. Astropart. Phys.
**2022**, 12, 032. [Google Scholar] [CrossRef] - Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. JETP Lett.
**2007**, 86, 157–163. [Google Scholar] [CrossRef] [Green Version] - Appleby, S.A.; Battye, R.A.; Starobinsky, A.A. Curing singularities in cosmological evolution of F(R) gravity. J. Cosmol. Astropart. Phys.
**2010**, 6, 005. [Google Scholar] [CrossRef] [Green Version] - Maeda, K.I. Towards the Einstein–Hilbert Action via Conformal Transformation. Phys. Rev. D
**1989**, 39, 3159. [Google Scholar] [CrossRef] [PubMed] - Ketov, S.V. On the equivalence of Starobinsky and Higgs inflationary models in gravity and supergravity. J. Phys. A
**2020**, 53, 084001. [Google Scholar] [CrossRef] [Green Version] - Ferrara, S.; Kallosh, R.; Linde, A.; Porrati, M. Minimal Supergravity Models of Inflation. Phys. Rev. D
**2013**, 88, 085038. [Google Scholar] [CrossRef] [Green Version]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ivanov, V.; Ketov, S.; Pozdeeva, E.; Vernov, S.
On Extensions of the Starobinsky Model of Inflation. *Phys. Sci. Forum* **2023**, *7*, 6.
https://doi.org/10.3390/ECU2023-14044

**AMA Style**

Ivanov V, Ketov S, Pozdeeva E, Vernov S.
On Extensions of the Starobinsky Model of Inflation. *Physical Sciences Forum*. 2023; 7(1):6.
https://doi.org/10.3390/ECU2023-14044

**Chicago/Turabian Style**

Ivanov, Vsevolod, Sergei Ketov, Ekaterina Pozdeeva, and Sergey Vernov.
2023. "On Extensions of the Starobinsky Model of Inflation" *Physical Sciences Forum* 7, no. 1: 6.
https://doi.org/10.3390/ECU2023-14044