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Abstract: In this paper, we investigate the four classical tests of general relativity in the non-
commutative (NC) gauge theory of gravity. Using the Seiberg–Witten (SW) map and the star product,
we calculate the deformed metric components ĝµν(r, θ) of the Schwarzschild black hole (SBH). The
use of this deformed metric enables us to calculate the gravitational periastron advance of mercury,
the red shift, the deflection of light, and time delays in the NC spacetime. Our results for the NC
prediction of the gravitational deflection of light and time delays show a newer behavior than the
classical one. As an application, we use a typical primordial black hole to estimate the NC parameter
θ, where our results show θphy ≈ 10−34 m for the gravitational red shift, the deflection of light, and
time delays at the final stage of inflation, and θphy ≈ 10−31 m for the gravitational periastron advance
of some planets from our solar system.
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1. Introduction

General relativity (GR) is considered one of the major scientific discoveries at the
beginning of the 20th century; it describes an excellent relativistic description of gravity,
which is one of the fundamental interactions that describe all phenomena in nature at the
macroscopic scale. This theory was successful due to the prediction of experimental results
in the first three tests, proposed by Albert Einstein in 1915, i.e., the periastron advance
of Mercury’s orbit, the deflection of light, and the red shift [1]. Later, in 1964, I. Shapiro
discovered and observed the time delay due to the presence of massive objects, which
became another successful test of GR, also known as the fourth classical test of GR [2].

However, this theory is still unable to describe gravity signals at the quantum scale;
this problem led to the emergence of many new ideas. One of them adopts the same concept
of quantum mechanics in quantization concerning the relations of commutation between
the observables, known as

[
x̂i, p̂j

]
= −i}δij. In this theory, the coordinates of spacetime

x̂µ are considered a non-commutative observation, subject to the commutation relation
between the coordinates themselves, namely:[

x̂µ, x̂ν

]
= iθµν, (1)

where θµν is an anti-symmetric real matrix of the NC parameter, which describes the
fundamental cell discretization within spacetime, while the general idea of the NC geometry
suggests that the quantization of spacetime can lead to the quantization of gravity.

Moreover, in this theory, the scalar product between two arbitrary functions f (x) and
g(x) changes to the star product.

( f ∗ g)(x) = f (x)e
i
2 θµν

←
∂µ

→
∂ν g(x). (2)
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Recently, there has been a lot of research in determining a lower bound of the NC
parameter and studies on quantum gravity effects, with several approaches [3–21]. Our aim
is to estimate a lower bound on the NC parameter using the four classical experimental tests
of GR inspired by the NC geometry based on the gauge theory of gravity and compared
to the other results obtained by another approach of NC geometry [12,16]. In this study,
we give the NC corrections based on the four classical predictions of GR in the NC gauge
theory of gravity. Firstly, we obtain the NC periastron advance of orbit and we choose some
planets within our solar system as examples for the numerical value of θ; for the deflection
of light, the red shift, and the time delay, we use data of a typical primordial black hole at
the early universe, and we use the scale factor to obtain the physical distance measured at
any time [12,16]. Our results show that the NC property of spacetime appears before the
Planck scale.

In this paper, we discuss the bound in the NC parameter in the NC gauge theory of
gravity using the four classical tests of GR. A brief review of the NC gauge theory of gravity
for the SBH metric is presented in Section 2. The NC parameter for different experimental
tests of GR in NC spacetime is estimated and discussed in Section 3. In Section 4, we
present our conclusions.

2. Non-Commutative Corrections for the Schwarzschild Black Hole

In our previous studies [21], we used the tetrad formalism and both the star product
and the SW map [22] to construct the NC gauge theory for a static metric with spherical
symmetry. A perturbation form for the SW map can also be used to describe the deformed
tetrad fields êa

µ as a development in the power of θ up to the second order, which can be
obtained by following the same approach mentioned in Ref. [23]:

êa
µ = ea

µ − i
4 θvρ

[
ωab

v ∂ρed
µ +

(
∂ρωac

µ + Rac
ρµ

)
ed

ν

]
ηcd +

1
32 θvρθλτ

[
2
{

Rτv, Rµρ

}abec
λ −ωab

λ

(
DρRcd

τν+

∂ρRcd
τν

)
em

v ηdm −
{

ων

(
DρRτν + ∂ρRτν

)}abec
λ − ∂τ

{
ων,
(
∂ρωµ + Rρµ

)}abec
λ −ωab

λ

(
ωcd

v ∂ρem
µ +(

∂ρωcd
µ + Rcd

ρµ

)
em

ν

)
ηdm + 2∂vωab

λ ∂ρ∂τec
µ − 2∂ρ

(
∂τωab

µ + Rab
τµ

)
∂vec

λ −
{

ωv,
(
∂ρωλ + Rρλ

)}ab
∂τec

µ−(
∂τωab

µ + Rab
τµ

)(
ωcd

ν ∂ρem
µ +

(
∂ρωcd

λ + Rcd
ρλ

)
em

ν ηdm

)]
ηbc,,

(3)

where êa
µ and ωab

µ are the tetrad field and the spin connection (gauge field):

{α, β}ab =
(

αacβdb + βacαdb
)

ηcd, [α, β]ab =
(

αacβdb − βacαdb
)

ηcd

DµRab
ρσ = ∂µRab

ρσ +
(

ωac
µ Rdb

ρσ + ωbc
µ Rda

ρσ

)
.

(4)

The deformed metric can be written as:

ĝµν =
1
2

(
êa

µ ∗ êb
ν

† + êa
ν ∗ êb

µ
†
)

ηab. (5)

For the SBH solution, we choose the following tetrad fields:

e0
µ =

(√
1− 2m

r , 0, 0, 0
)

, e1
µ =

(
0, 1√

1− 2m
r

sin θ cos φ , r cos θ cos φ , −r sin θ sin φ

)
,

e2
µ =

(
0, 1√

1− 2m
r

sin θ sin φ , r cos θ sin φ , r sin θ cos φ

)
, e3

µ =

(
0, 1√

1− 2m
r

cos θ, −r sin θ, 0

)
.

(6)

The deformed tetrad fields are calculated in Ref. [21]; thus, we follow the same step to
compute the deformed metric components of SBH in the equatorial plane θ = π

2 ,

−ĝ00 =

(
1− 2m

r

)
+


m
(

88m2 + mr
(
−77 + 15

√
1− 2m

r

)
− 8r2

(
−2 +

√
1− 2m

r

))
16r4(r− 2m)

θ2 + O(θ4), (7)
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ĝ11 =
1(

1− 2m
r
) −


m
(

12m2 + mr
(
−14 +

√
1− 2m

r

)
− r2

(
5 +

√
1− 2m

r

))
8r2(r− 2m)3

θ2 + O(θ4), (8)

ĝ22 = r2 −


m
(

m
(

10− 6
√

1− 2m
r

)
− 8m2

r + r
(
−3 + 5

√
1− 2m

r

))
16(r− 2m)2

θ2 + O(θ4), (9)

ĝ33 = r2 −


5
8
− 3

8

√
1− 2m

r
+

m

(
−17 + 5√

1− 2m
r

)
16r

+
m2
√

1− 2m
r

(r− 2m)2

θ2 + O(θ4), (10)

where m = GM denotes the mass of the SBH. It is clear that in the limit of θ → 0 , we can
obtain the commutative SBH solution.

3. Experimental Test of GR in NC Spacetime

In this section, we present the NC corrections to the four classical tests of GR, using
the deformed SBH metric as the background.

3.1. Gravitational Periastron Advance

In our previous study [21], we derive the expression of the angle deviation after one
revolution in the NC SBH metric (7)–(10) using the perturbation form of the geodesic
equation outlined in Ref. [24]. Then, we find:

∆φ =
6πGM

c2α(1− e2)
+ πθ2


(

E0
2 −m2

0c4
)

2GMα(1− e2)
+

6
(

m2
0c2 − (E0/c)2

)
α2(1− e2)

2 +
m2

0c2

2α2(1− e2)
2

, (11)

where α, e denote the major semi-axis and the eccentricity of the movement, respectively.
For a numerical application, we choose the problem of Mercury’s orbit, where the NC
parameter is in the order:

θphy =
√
}θ ≈ 5.7876× 10−31 m. (12)

Here, the NC parameter θphy is very small for the solar system, which means that our solar
system is very sensitive to the NC parameter. For the other planets, the lower bound on
θphy is shown in Table 1.

Table 1. Some observable values of orbital precession for different planets of our solar system are
shown in column 2. The prediction of the orbital precession in general relativity is given in column 3,
and we give the lower bound for the non-commutative parameter θphy in the final column.

Planet ∆φobs( arc−sec
centry ) ∆φGR( arc−sec

centry )
L.b of θphy

(×10−31 m)

Mercury 42.9800± 0.0020 42.9805 ≤ 05.7876
Venus 8.6247± 0.0005 8.6283 ≤ 04.5239
Earth 3.8387± 0.0004 3.8399 ≤ 04.0976

The experimental data can be found in Refs. [25,26].

As shown in Table 1, the lower bound of θphy is in the same order for the planet’s orbit
of our solar system θphy ∼ 10−31 m.
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3.2. Deflection of Light

Another successful experimental test of GR is the gravitational deflection of light, as
predicted by Albert Einstein in his theory of gravity, where the light is deflected from its
original path when it passes near a strong gravitational field. The formula that describes
this phenomenon is given by [1], and the NC expression can be read as:

∆φ̂ = 2
∫ ∞

b

1
r
√

ĝ00(r)

(
r2

b2

∣∣∣∣ ĝ00(b)
ĝ00(r)

∣∣∣∣− 1
)

dr− π. (13)

This integral can be computed after expanding our expression on the first order in m/r and
we stop to the second order in θ, with the following calculations:

∆φ̂ =
4GM
c2b

− 5GM
6c2b3 θ2. (14)

As we can see, the first term represents the GR prediction and the second term
represents the NC corrections to the gravitational deflection of light, where this correction
should be smaller than the accuracy of the measurements [27]. To estimate θ for this
phenomenon, we use the radius (r ∼ b ≈ 1.5× 10−3 m

)
and the mass ( GM ∼ 5× 10−4 m)

of a typical micro black hole, so we obtain

θphy =
√

α2θ2 ≤ 5.7× 10−34 m, (15)

where α is the scale factor at the end of inflation. We then multiply our results by α2 because
we use the space–space (θ ij) NC parameter [12] to obtain physical results. It is worth noting
that the NC geometry can change the behavior of the angle deviation; as we see when
b→ 0 , the NC term is dominant and the behavior of ∆φ̂ ∝ − 1

b3 becomes negative.

3.3. Gravitational Red Shift

The third succus experimental test of GR, i.e., the gravitational red shift, where the
spectral of light shifts due to gravity, is given in [1], and this NC form can be computed
using the NC-deformed metric (7):

ẑ =

√∣∣∣∣ ĝ00(r2)

ĝ00(r1)

∣∣∣∣− 1. (16)

For an asymptotic observer r2 → ∞ , the measured red shift for the NC SBH is given
by ẑ:

ẑ = z

1−
(

z + 1
z

)
(

88GM2 + GMr1

(
−77 + 15

√
1− 2GM

r1

)
− 8r2

1

(
−2 +

√
1− 2GM

r1

))
32r3(r1 − 2GM)2

θ2

, (17)

where z =

((
1− 2GM

r1

)−1/2

− 1
)

is the red shift that is predicted by GR. We use the same

data of micro-black holes with accurate measurements [28], and we then obtain the bound
on the θphy parameter:

θphy =
√

α2θ2 ≤ 2.09× 10−34 m. (18)

3.4. Time Delay (Shapiro Effect)

The fourth successful classical test of GR is discovered by I. Shapiro [1,2], also called
the gravitational time delay and the Shapiro effect, and is a phenomenon which studies
the time that is necessary for a radar signal to be emitted from one point to another one,
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travel near a massive object, and return to the emitting point. Radar traveling can also be
supposed from point

∆t̂ = 2
[
t̂(r1, b) + t̂(r2, b)−

√
b− r1 −

√
b− r2

]
, (19)

where

t̂(r, b) =
∫ r

b

1
ĝ00(r′)

(
1− b2 ĝ00(r′)

r′2 ĝ00(b)

)
dr′, (20)

we expand our expression on the first order in m and stop at the second order in θ. After
some calculations, we obtain:

t̂(r, b) =
√

r2 − b2 + 2GMln

(
r +
√

r2 − b2

b

)
+ GM

(
r− b
r + b

) 1
2
− GM(3b− 4r)

√
r2 − b2

4b2r(r + b)
θ2. (21)

We consider that r1 � b and r2 � b, and we obtain the full expression of the time delay in
the NC spacetime:

∆t̂ ≈ 4GM
[

ln
(

4r1r2

b2

)
+ 1
]
− 4GM

b2 θ2. (22)

The same can be noted in the behavior of the time delay in the NC spacetime, when
b→ 0 , and the dominant NC correction term and the behavior of ∆φ̂ ∝ − 1

b2 become
negative, meaning that the NC geometry removes the divergent behaviors.

For a numerical application, we take the same micro black hole data and the ratio
4r1r2

b2 is considered in the same order as in our solar system scale, with accurate measure-
ments [29]. Thus, we obtain:

θphy =
√

α2θ2 ≤ 2.57× 10−34 m. (23)

4. Conclusions

This paper investigates the four classical tests of GR in the NC spacetime. As a
background for our calculation, we use a deformed SBH metric via the NC geometry using
the SW maps and the star product.

As a first step, we obtain a correction to the periastron advance of mercury up to the
second order in θ [21], where our results show that the NC parameter is close to the Planck
scale θphy ∼ 10−31 m, and the reach of this application to other planets of our solar system
shows that θphy is of the same order and acts as a fundamental constant of the solar system.
Then, we compute the correction to the light deflection, the red shift, and the time delay in
the NC spacetime. For application purposes, we choose the data of a microscopic black
hole at the early universe.

Our results show that the experimental test uses a radio wave or a light bound on
the NC parameter in the order of θphy ∼ 10−34 m, where our results are smaller than
those obtained in Refs. [12,16] as a different approach is used in this study. However,
for the orbital motion of a massive particle (planet), the bound on θ is in the order of
θphy ∼ 10−31 m, and is remarkable so that our result is close to the one obtained using the
classical mechanics in NC flat spacetime, as mentioned in Refs. [4,5]. This result indicates
that the macroscopic system is very sensitive to the NC parameter. It is important to
mention that through the study of black holes and thermodynamics in NC spacetime,
the bound on the NC parameter

√
θ has been obtained in some papers, e.g., [6–9], and is

expected to be
√

θ ∼ 10−1.lp using the point-like structure for the matter with the NC
Gaussian distribution. However, in this study and our privious works [21,30], we show
that the lower bound of θphy is limited before the Planck scale in the range of (10−31 m–
10−34 m

)
, where we use the four classical tests of GR, confirming that the NC property of

spacetime appears before the Planck scale.
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The use of the NC gauge theory of gravity allows us to obtain good results on the
bound of the NC parameter. This theory needs more attention, and so it may be beneficial
to describe quantum gravity in the future.
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