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Abstract: Large inconsistencies in the outcome of precise measurements of Newtonian gravitational
‘constant’ were identified throughout more than three hundred experiments conducted up to date.
This paper illustrates the dependency of the Newtonian gravitational parameter on the curvature
of the background and the associated field strength of vacuum energy. Additionally, the derived
interaction field equations show that boundary interactions and spin-spin correlations of vacuum
and conventional energy densities contribute to the emergence of mass. Experimental conditions are
recommended to achieve consistent outcomes of the parameter precision measurements, which can
directly falsify or provide confirmations to the presented field equations.
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1. Introduction

The Newtonian gravitational ‘constant’ G plays a crucial role in theoretical physics,
astronomy, geophysics, and engineering. About three hundred experiments attempted to
ascertain the value of G up to date. However, the significant inconsistencies in their results
have made it unfeasible to reach a consensus on an exact value. Many of them are precision
measurements with a relative uncertainty of only 12 to 19 parts per million [1–5].

The achievement of such a low level of uncertainty can indicate that the margin of
systematic errors in experiments is narrower than generally anticipated. At the same time,
the significant inconsistencies among measurements’ outcomes imply that there could be
phenomena that are not yet accounted for in the current framework of physics. This study
investigates the impact of the background curvature on the value of G, and the influence of
boundary interactions and spin-spin correlations on the emergence of mass.

2. Newtonian Gravitational Parameter

The Sun flows in a spatially flat spacetime background, based on General Relativity,
where its induced curvature is proportional to its energy density and flux. On the other
hand, the Earth flows in a curved background (curved bulk) due to the Sun’s presence,
where its induced curvature is affected by the bulk curvature,R, in addition to its energy
density and flux. To incorporate the bulk influence, a modulus of spacetime deformation,
ED, is utilized. The modulus can be expressed in terms of the bulk resistance to localized
curvature or in terms of the field strength of the bulk by using the Lagrangian formulation
of energy density existing in the bulk as a manifestation of vacuum energy density as

ED =
Tµν − 1

2 Tgµν

Rµν/R =
−FλρFλρ

4µ0
(1)

where Fλρ is the field strength tensor of the bulk and µ0 is vacuum permeability.
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By incorporating the bulk influence, the Einstein–Hilbert action can be extended to

S = ED

∫
C

[
R
R +

L
L

]√
−g d4ρ (2)

where R is the Ricci scalar representing a localized curvature, which is induced in the
bulk by a celestial object that is regarded as a 4D relativistic cloud-world of metric guv and
Lagrangian density L, respectively, whereasR is the scalar curvature of the 4D conformal
bulk of metric g̃µν and Lagrangian density L. Since ED is constant with regard to the
extended action; and by considering the evolution of the bulk owing to the expansion of
the Universe, a dual-action concerning the energy conservation on global (bulk) and local
(cloud-world) scales can be introduced as follows

S =
∫

B

[
−Fλρ g̃λγFγα g̃ρα

4µ0

]√
−g̃

∫
C

[
Rµνgµν

Rµν g̃µν +
Lµνgµν

Lµν g̃µν

]√
−g d4ρ d4σ (3)

Applying the principle of stationary action in Ref. [6] yields

Rµν

R − 1
2

R
R gµν −

RRµν

R2 +
R
(
Kµν − 1

2Kq̂µν

)
−R

(
Kµν − 1

2 Kq̂µν

)
R2 =

T̂µν

Tµν
(4)

The interaction field equations can be interpreted as indicating that the cloud-world’s
induced curvature, R, over the bulk’s conformal (background) curvature, R, equals the
ratio of the cloud-world’s imposed energy density and its flux, T̂µν, to the bulk’s vacuum
energy density and its flux, Tµν, throughout the expanding/contracting Universe. The
new boundary term given by the extrinsic curvatures of the cloud-world and bulk is only
significant at high energies when the difference between the induced and background
curvatures is significant. By transforming intrinsic and extrinsic curvatures of the bulk [6],
comparing Einstein field equations with Equation (1) and substituting to Equation (4), the
interaction field equations can be simplified to

Rµν −
1
2

Rĝµν −
(

Kµν −
1
2

Kq̂µν

)
=

8πGR
c4 T̂µν (5)

where ĝµν = gµν + 2Rµν/R− 2
=
gµν, or can be expressed as ĝµν = gµν + 2g̃µν− 2

=
gµν because

Rµν/R = Rµν/Rµν g̃µν = g̃µν, is the conformally transformed metric, which takes into
account contributions from the cloud-world metric, gµν, as well as the intrinsic and extrinsic

curvatures of the bulk based on its metrics, g̃µν and
=
gµν respectively, whereas Einstein

spaces are a subclass of the conformal space [7]. T̂µν is a conformal stress-energy tensor
which also includes the electromagnetic energy flux from the boundary of the cloud-world
over the conformal time. The interaction field equations could eliminate the singularities
and satisfy a conformal invariance theory. From Equations (5) and (1), the Newtonian
gravitational parameter is

GR =
c4

8πED
R (6)

where R = Rµν g̃µν is the scalar curvature of the bulk. According to Equation (6), GR is
proportional to R and reflects the field strength of vacuum energy because any changes
in the bulk’s metric, g̃µν := R, changes the field strength of the bulk, Fλρ, owing of the
constant bulk modulus, ED = −Fλρ g̃λγFγα g̃ρα/4µ0.

Regarding the Earth, the curvature of its background, the curved bulk owing to the
Sun’s presence is shown in Figure 1. In this curved background, both Earth and Moon
are further inducing different curvature configurations depending on their positions. For
instance, at Point A, the Earth’s background curvature is influenced by the Moon’s position
as shown by the blue and red-dotted curves. As the background curvature has different
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values at Point A, GR is predicted to have different values according to Equation (6). In
addition, other nearby planets can influence the background curvature configuration.
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Figure 1. The blue curve represents the induced curvature by the Sun, which signifies the curva-
ture of the background with respect to the Earth and Moon. Concerning both planets, they in turn 
are inducing further curvature in their background as visualized beneath them by the blue curve. 
Conversely, when the Moon is at the away position (dotted circles), an altered induced curvature 
configuration is shown by the red dotted curve. 

Figure 2 shows six of 𝐺𝐺ℛ  values by measurements: BIPM-14 [8], BIPM-01 [9], UCI-14 
[10], UZur-06 [11], JILA-10 [12] and HUST-05 [13]. These values were among those 
adopted in the CODATA (Committee on Data for Science and Technology) 2014 recom-
mended value of (6.67408 ± 0.00031)  × 10−11 m3 kg−1 s−2 [14]. 

 
Figure 2. Six precision measurements of the 𝐺𝐺ℛ  values among those that were adopted in the CO-
DATA 2014 recommended value. 

A one-way ANOVA test was performed on these measurements, resulting in an F-
statistic of 302.089 and a p-value of 0.000, which indicates strong evidence against the null 
hypothesis. This signifies that there is a significant difference in the variances of these 
measurements. Despite the small relative uncertainty in the measurements, the significant 
differences in their outcomes that puzzled scientists [1] can be attributed to the differences 
in the bulk curvature at the time the measurements were conducted, as stated in Equation 
(6), which can occur owing to varied positions of the Moon and other nearby planets. 

Figure 1. The blue curve represents the induced curvature by the Sun, which signifies the curvature
of the background with respect to the Earth and Moon. Concerning both planets, they in turn
are inducing further curvature in their background as visualized beneath them by the blue curve.
Conversely, when the Moon is at the away position (dotted circles), an altered induced curvature
configuration is shown by the red dotted curve.

Figure 1 shows the curvature of the Earth’s background (blue curve), the curved bulk
due to the Sun’s presence. In this curved background, the Moon is inducing different
curvature configurations depending on its position.

Figure 2 shows six of GR values by measurements: BIPM-14 [8], BIPM-01 [9], UCI-
14 [10], UZur-06 [11], JILA-10 [12] and HUST-05 [13]. These values were among those
adopted in the CODATA (Committee on Data for Science and Technology) 2014 recom-
mended value of (6.67408± 0.00031)× 10−11 m3 kg−1 s−2 [14].
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Figure 2. Six precision measurements of the GR values among those that were adopted in the
CODATA 2014 recommended value.

A one-way ANOVA test was performed on these measurements, resulting in an F-
statistic of 302.089 and a p-value of 0.000, which indicates strong evidence against the null
hypothesis. This signifies that there is a significant difference in the variances of these
measurements. Despite the small relative uncertainty in the measurements, the significant
differences in their outcomes that puzzled scientists [1] can be attributed to the differences
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in the bulk curvature at the time the measurements were conducted, as stated in Equation
(6), which can occur owing to varied positions of the Moon and other nearby planets.

3. Emergence of Mass

Analogous to the constant bulk’s modulus, the curvature of the bulk, can be considered
constant regarding quantum fields. Consequently, the action can be extended to

S =
∫

B

[
−Fλρ g̃λγFγα g̃ρα

4µ0

]√
−g̃

∫
C

[
Rµνgµν

Rµν g̃µν

]√
−g

∫
Q

[
pµ pvqµν

πµπvgµν +
LαβqαλLλγqβγ

2χ0Lµνgµν

]√
−q ϑ2d12σ (7)

where LαβLαβ/2χ0 are the Lagrangian densities of two entangled quantum fields that are
regarded as 4D relativistic quantum clouds of a metric qµν and four-momentum pµ pν,
respectively, χ0 is a proportionality constant and ϑ2 is a dimensional-hierarchy factor;
while πµπν are the four-momentum of the vacuum energy density of a Lagrangian density
Lµνgµν. By applying the principle of stationary action, separating the two entangled
quantum clouds and utilizing the dimensional analysis, give

pµ −
1
2

pνqµν − pν q̃µν −
(

Jµ Aµ −
1
2

Jµ Aνζµν

)
+

pν

πν

(
J µAµ −

1
2
J µAνςµν

)
=

}GR
2c2gR

Tµ (8)

where gR is the gravitational field strength of the parent cloud-world and Tµ is energy
density and flux of the quantum cloud of a deformed configuration as shown in Figure 3.
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Figure 3. The deformed configuration of the 4D relativistic quantum cloud (quantum field) of metric
qµν along its travel and spin through the curved background of metric q̃µν. The configuration is given
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encloses an arbitrary inner volume while So is the outer surface of the cloud boundary.

As the gravitational field strength of the cloud-world of mass M and at curvature
radius R is gR = MGR/R2, a plane wavefunction, ψ = Ae−i(ωt−kx), can be expressed
by utilizing Equation (8) as ψ = Ae−i(R2/2Mc2) Tµxµ

, consequently, the quantized field
equations are

i}γµ∂µψ− 1
2

i}γµ∂ν
(
qµν + 2q̃µν

)
ψ−

(
Jµ Aµ −

1
2

Jµ Aνζµν

)
ψ +

(
J µAµ −

1
2
J µAνςµν

)
i}γµ∂νψ/πν =

1
2
}
xµ R∂Rψ (9)

where γµ∂νψ/πν signifies the spin-spin correlation of conventional, γµ∂νψ, and vacuum
energy fields, πν. Although πµπν of the two entangled fields signifying the momentum
of vacuum energy density that could be of a total zero spin, πν signifies a single field of
vacuum energy of a possible spin, which can be conjectured as an analogue of a part of the
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singlet Cooper pair of a total zero spin. Equation (9) reveals that the spin-spin correlation
and the bulk’s boundary interactions based on its field strength, J µAµ, contribute to the
emergence of mass. Equation (9) reduces to quantum electrodynamics in Ref. [6] as

i}γµ∂µψ−mcψ = eγµ Aµψ (10)

This resembles the Dirac equation and the interaction with the electromagnetic field.

4. Conclusions and Future Experiment Recommendations

To date, about three hundred experiments have attempted to determine the value of
GR, with many of them being precision measurements. However, the significant inconsis-
tencies in their outcomes have made it unfeasible to reach a consensus on an exact value,
which puzzled scientists. The interaction field equations showed the dependency of GR on
the background curvature and the associated field strength of vacuum energy. In addition,
the equations revealed that the boundary interactions of conventional and vacuum energy
densities and their spin-spin correlations contribute to the emergence of mass.

To achieve consistent GR measurements, it is necessary to consider the positions of
the Moon and other nearby planets, as they can influence the curvature of the background.
Future experiments should aim to address this issue of inconsistent GR measurements by
accounting for the influence of these celestial bodies. One simple approach could be to
conduct measurements twice, with one set taken when the Moon is on the horizon and
another set taken when it is on the opposite side of the Earth. Finally, to ensure higher
consistency, the positions of nearby planets can be also considered as well as the influence
of variations in the background curvature on the field strength of vacuum energy which
can impact both the value of the experiment’s emergent masses and the distance between
the masses owing to the dependency of the Planck length on the value of GR.
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