#
On the Field Strength of Vacuum Energy and the Emergence of Mass^{ †}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Newtonian Gravitational Parameter

## 3. Emergence of Mass

## 4. Conclusions and Future Experiment Recommendations

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Xue, C.; Liu, J.-P.; Li, Q.; Wu, J.-F.; Yang, S.-Q.; Liu, Q.; Shao, C.-G.; Tu, L.-C.; Hu, Z.-K.; Luo, J. Precision measurement of the Newtonian gravitational constant. Natl. Sci. Rev.
**2020**, 7, 1803–1817. [Google Scholar] [CrossRef] [PubMed] - Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, G.M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature
**2014**, 510, 518–521. [Google Scholar] [CrossRef] [PubMed] - Schlamminger, S. Gravity measured with record precision. Nature
**2018**, 560, 562–563. [Google Scholar] [CrossRef] [PubMed] - Gibney, E. Rivals join forces to nail down Big G. Metrologists meet to design the ultimate gravitational-constant experiment. Nature
**2014**, 514, 150–151. [Google Scholar] [CrossRef] [PubMed] - Schlamminger, S. A cool way to measure big G. Nature
**2014**, 510, 478–480. [Google Scholar] [CrossRef] [PubMed] - Al-Fadhli, M.B. Celestial and Quantum Propagation, Spinning, and Interaction as 4D Relativistic Cloud-Worlds Embedded in a 4D Conformal Bulk: From String to Cloud Theory. Preprints
**2020**, 2020100320. [Google Scholar] [CrossRef] - Kozameh, C.N.; Newman, E.T.; Tod, K.P. Conformal Einstein spaces. Gen. Relat. Gravit.
**1985**, 17, 343–352. [Google Scholar] [CrossRef] - Quinn, T.; Parks, H.; Speake, C.; Davis, R. Improved determination of G using two methods. Phys. Rev. Lett.
**2013**, 111, 101102. [Google Scholar] [CrossRef] [PubMed] - Quinn, T.J.; Speake, C.C.; Richman, S.J.; Davis, R.S.; Picard, A. A New Determination of G Using Two Methods. Phys. Rev. Lett.
**2001**, 87, 111101. [Google Scholar] [CrossRef] [PubMed] - Newman, R.; Bantel, M.; Berg, E.; Cross, W. A measurement of G with a cryogenic torsion pendulum. Philos. Trans. R. Soc. A
**2014**, 372, 20140025. [Google Scholar] [CrossRef] [PubMed] - Schlamminger, S.; Holzschuh, E.; Kündig, W.; Nolting, F.; Pixley, R.E.; Schurr, J.; Straumann, U. Measurement of Newton’s gravitational constant. Phys. Rev. D
**2006**, 74, 082001. [Google Scholar] [CrossRef] - Parks, H.V.; Faller, J.E. Simple pendulum determination of the gravitational constant. Phys. Rev. Lett.
**2010**, 105, 110801. [Google Scholar] [CrossRef] [PubMed] - Hu, Z.-K.; Guo, J.-Q.; Luo, J. Correction of source mass effects in the HUST-99 measurement of G. Phys. Rev. D
**2005**, 71, 127505. [Google Scholar] [CrossRef] - Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys.
**2016**, 88, 035009. [Google Scholar] [CrossRef]

**Figure 1.**The blue curve represents the induced curvature by the Sun, which signifies the curvature of the background with respect to the Earth and Moon. Concerning both planets, they in turn are inducing further curvature in their background as visualized beneath them by the blue curve. Conversely, when the Moon is at the away position (dotted circles), an altered induced curvature configuration is shown by the red dotted curve.

**Figure 2.**Six precision measurements of the ${G}_{\mathcal{R}}$ values among those that were adopted in the CODATA 2014 recommended value.

**Figure 3.**The deformed configuration of the 4D relativistic quantum cloud (quantum field) of metric ${q}_{\mu \nu}$ along its travel and spin through the curved background of metric ${\tilde{q}}_{\mu \nu}$. The configuration is given by, ${S}_{i}$, the inner surface of the quantum cloud that separates its continuum into two portions and encloses an arbitrary inner volume while ${S}_{o}$ is the outer surface of the cloud boundary.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Fadhli, M.B.
On the Field Strength of Vacuum Energy and the Emergence of Mass. *Phys. Sci. Forum* **2023**, *7*, 50.
https://doi.org/10.3390/ECU2023-14104

**AMA Style**

Al-Fadhli MB.
On the Field Strength of Vacuum Energy and the Emergence of Mass. *Physical Sciences Forum*. 2023; 7(1):50.
https://doi.org/10.3390/ECU2023-14104

**Chicago/Turabian Style**

Al-Fadhli, Mohammed B.
2023. "On the Field Strength of Vacuum Energy and the Emergence of Mass" *Physical Sciences Forum* 7, no. 1: 50.
https://doi.org/10.3390/ECU2023-14104