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Abstract: In a recent paper, a new conformally flat metric was introduced, describing an expanding
scalar field in a spherically symmetric geometry. The spacetime can be interpreted as a Schwarzschild-
like model with an apparent horizon surrounding the curvature singularity. For the above metric, we
present the complete conformal Lie algebra consisting of a six-dimensional subalgebra of isometries
(Killing Vector Fields or KVFs) and nine proper conformal vector fields (CVFs). An interesting aspect
of our findings is that there exists a gradient (proper) conformal symmetry (i.e., its bivector Fab

vanishes) which verifies the importance of gradient symmetries in constructing viable cosmological
models. In addition, the 9-dimensional conformal algebra implies the existence of constants of motion
along null geodesics that allow us to determine the complete solution of null geodesic equations.
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1. Introduction

From the era of the development of differential geometry as an inherent constituent
of the spacetime continuous, it became clear that certain important classes of spaces have
remarkable properties. Based on these properties, these spaces can be classified indepen-
dently of the coordinate system used, or the physical system that they describe. These
properties are usually called symmetries and can be divided into three basic categories
depending on the nature of the object they act upon: geometric symmetries (also known
as collineations) refer to the set of spacetime symmetries that are related to the geometric
structure of the model; kinematic symmetries refer to the set of spacetime symmetries that
interact with the kinematic quantities; and matter symmetries that act on the dynamic
quantities of the model. Furthermore, it was confirmed in later studies that, among other
things, these properties have a direct physical interpretation. A characteristic example
is the topology of the n-dimensional sphere, which has constant and positive curvature
and is characterized by three principal directions that also constitute its symmetry axes.
Geometrically, this means that the inner products remain constant, so the metric of the
sphere remains unchanged along the integral curves of the principal directions that deter-
mine its symmetry axes. In addition, like any space of maximum symmetry, it admits a Lie
algebra of conformal symmetries, which, in combination with the algebra of isometries, is
used for the complete description of the sphere in terms of collineations. The concept of
conformal symmetries is an important tool for understanding the geometric structure of
non-linear spaces, such as manifolds, and their applications in physics. In fact, sufficient
geometries that are widely used in various physical theories are intrinsically characterized
by the existence of conformal (proper or not) symmetries (e.g., [1–8]).

In the present article, the spacetime signature is assumed to be (−,+,+,+), with
lowercase Latin letters denoting spacetime indices a, b, . . . = 0, 1, 2, 3 and we use
geometrized units such that 8πG = c = 1.
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2. Methods

In a recent paper [9], a new conformally flat metric was found, describing an expand-
ing scalar bubble within a spherically symmetric geometry having a Schwarzschild-like
behaviour. The solution (up to some integration constants) is:

C(t, r) =

1− C2
1(

1 + r2−t2

c2
2

)2


1/2

(1)

where the metric of the spacetime is:

ds2 = C(t, r)2
[
−dt2 + dr2 + r2

(
dϑ2 + sin2 ϑdφ2

)]
. (2)

It is observed that the flat part of the metric (2):

ds2
FLAT = −dτ2 + dx2 + dy2 + dz2 (3)

has been expressed in a spherically symmetric form and therefore, it will be convenient to
locate the transformation between Cartesian and spherical coordinates. In addition, the full
group of conformal symmetries of (4) is represented with the vectors (X1 − X4 are spatial
and temporal translations, X5 − X7 are the space rotations, X8 − X10 represent spacetime
rotations, X11 is the generator of self-similarity and the vectors, X12 − X15 are the special
conformal Killing vectors) [10]:

X1 = ∂τ , X2 = ∂x, X3 = ∂y, X4 = ∂z

X5 = −y∂x + x∂y, X6 = z∂x − x∂z, X7 = −z∂y + y∂z

X8 = x∂τ + τ∂x, X9 = y∂τ + τ∂y, X10 = z∂τ + τ∂z

X11 = τ∂τ + x∂x + y∂y + z∂z

X12 =
(
τ2 + x2 + y2 + z2)∂τ + 2τx∂x + 2τy∂y + 2τz∂z

X13 = 2τx∂τ +
(
τ2 + x2 − y2 − z2)∂x + 2xy∂y + 2xz∂z

X14 = 2τy∂τ + 2xy∂x +
(
τ2 + y2 − x2 − z2)∂y + 2yz∂z

X15 = 2τz∂τ + 2xz∂x + 2yz∂y +
(
τ2 + z2 − x2 − y2)∂z.

(4)

Using the coordinate transformation (τ, x, y, z)→ (t, r, φ, ϑ) :

τ(t, r, φ, ϑ) = t, x(t, r, φ, ϑ) = r sin φ sin ϑ
y(t, r, φ, ϑ) = r cos φ sin ϑ, z(t, r, φ, ϑ) = r cos ϑ

(5)

we obtain:
ds2

FLAT = −dt2 + dr2 + r2
(

dϑ2 + sin2 ϑdφ2
)

(6)

and the conformal vector fields become:
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X1 = ∂t, X2 = sin ϑ sin φ∂r +
cos ϑ sin φ

r ∂ϑ +
cos φ
sin ϑ ∂φ,

X3 = sin ϑ cos φ∂r +
cos ϑ cos φ

r ∂ϑ −
sin φ
sin ϑ ∂φ

X4 = cos ϑ∂r − sin ϑ
r ∂ϑ

X5 = −∂φ, X6 = − cos φ∂ϑ + cot ϑ sin φ∂φ

X7 = sin φ∂ϑ + cot ϑ cos φ∂φ

X8 = r sin ϑ sin φ∂t + t sin ϑ sin φ∂r +
t cos ϑ sin φ

r ∂ϑ +
t cos φ
r sin ϑ ∂φ

X9 = r sin ϑ cos φ∂t + t sin ϑ cos φ∂r +
t cos ϑ cos φ

r ∂ϑ −
t sin φ
r sin ϑ ∂φ

X10 = r cos ϑ∂t + t cos ϑ∂r − t sin ϑ
r ∂ϑ

X11 = t∂t + r∂r

X12 =
(
r2 + t2)∂t + 2tr∂r

X13 = 2rt sin ϑ sin φ∂t +
(
r2 + t2) sin ϑ sin φ∂r +

(t2−r2) cos ϑ sin φ

r ∂ϑ +
(t2−r2) cos φ

r sin ϑ ∂φ

X14 = 2rt sin ϑ cos φ∂t +
(
r2 + t2) sin ϑ cos φ∂r +

(t2−r2) cos ϑ cos φ

r ∂ϑ +
(r2−t2) sin φ

r sin ϑ ∂φ

X15 = 2rt cos ϑ∂t +
(
r2 + t2) cos ϑ∂r +

(r2−t2) sin ϑ

r ∂ϑ.

(7)

The conformal vector fields of the metric (2) are also given by X1−X15 with conformal
factors derived from the relation:

LXgab = LX(C2ηab) = 2[X(ln C) + Ψ]gab (8)

where ηab, Ψ is the metric and the conformal factors of the Minkowski spacetime, respectively.
Using Equation (8), we can straightforwardly determine the conformal factors of the

metric (2):

ψ(X1) = (ln C),t ψ(X2) = sin ϑ sin φ(ln C),t ψ(X3) = sin ϑ cos φ(ln C),t

ψ(X4) = cos ϑ(ln C),t ψ(X5) = ψ(X6) = ψ(X7) = 0

ψ(X8) = sin ϑ sin φ[t(ln C),r + r(ln C),t] ψ(X9) = sin ϑ cos φ[t(ln C),r + r(ln C),t]

ψ(X10) = cos ϑ[t(ln C),r + r(ln C),t] ψ(X11) = 1 + t(ln C),t + r(ln C),r

ψ(X12) = 2t + 2tr(ln C),r + (r2 + t2)(ln C),t

ψ(X13) = sin ϑ sin φ[2r + 2tr(ln C),t + (r2 + t2)(ln C),r]

ψ(X14) = sin ϑ cos φ[2r + 2tr(ln C),t + (r2 + t2)(ln C),r]

ψ(X15) = cos ϑ[2r + 2tr(ln C),t + (r2 + t2)(ln C),r]

(9)

It is easily verified from the expressions (7), that the vectors X8, X9, X10 are reduced to
isometries for the line element (2), with metric function C(t, r) given in (1), and represent
space-time boosts. Note also that the 9-dimensional Lie Algebra of the proper conformal
symmetries given above can be used, in principle, to determine the general solution of the
null geodesic equation. In fact, the existence of a proper conformal vector field X implies
that there is a constant of motion along null geodesics (nana = 0, na; bnb = 0) [3]:

(Xana); bnb = Xa; bnanb + Xana
; bnb = ψgabnanb = 0. (10)

3. Results and Discussion

The spacetime (1)–(2) is a solution of the field equations with a minimally coupled
scalar field. It is straightforward to see that the CVF X11 = t∂t + r∂r is a gradient (proper)
conformal symmetry (i.e., its bivector Fab vanishes) that verifies the importance of gradient
symmetries in constructing viable cosmological models. Our findings also indicate an
eventually close connection between these classes of models and the existence of a gradient
CVF, that has so far been underestimated.
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