#
Quantum Gravitational Non-Singular Tunneling Wavefunction Proposal^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. k = 1 Loop Quantum Cosmology: Effective Dynamics

## 3. Effective Minisuperspace Potential

#### 3.1. $\tilde{B}\left(v\right)=1$

#### 3.2. $\tilde{B}\left(v\right)\ne 1$

## 4. Summary and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Geroch, R.P. What is a singularity in general relativity? Ann. Phys.
**1968**, 48, 526–540. [Google Scholar] [CrossRef] - Hawking, S.W.; Penrose, R. The Singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A
**1970**, 314, 529–548. [Google Scholar] - Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Borde, A.; Guth, A.H.; Vilenkin, A. Inflationary space-times are incompletein past directions. Phys. Rev. Lett.
**2003**, 90, 151301. [Google Scholar] [CrossRef] [Green Version] - Vilenkin, A. Creation of Universes from Nothing. Phys. Lett. B
**1982**, 117, 25–28. [Google Scholar] [CrossRef] - Vilenkin, A. Quantum Creation of Universes. Phys. Rev. D
**1984**, 30, 509–511. [Google Scholar] [CrossRef] - Hartle, J.B.; Hawking, S.W. Wave Function of the Universe. Phys. Rev. D
**1983**, 28, 2960–2975. [Google Scholar] [CrossRef] - Hawking, S.W. The Quantum State of the Universe. Nucl. Phys. B
**1984**, 239, 257. [Google Scholar] [CrossRef] - Vilenkin, A. Quantum Cosmology and the Initial State of the Universe. Phys. Rev. D
**1988**, 37, 888. [Google Scholar] [CrossRef] - Hartle, J.B.; Hawking, S.W.; Hertog, T. No-Boundary Measure of the Universe. Phys. Rev. Lett.
**2008**, 100, 201301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Motaharfar, M.; Singh, P. Tunneling wavefunction proposal with loop quantum geometry effects. arXiv
**2022**, arXiv:2212.14065. [Google Scholar] - Brahma, S.; Yeom, D.H. No-boundary wave function for loop quantum cosmology. Phys. Rev. D
**2018**, 98, 83537. [Google Scholar] [CrossRef] [Green Version] - Brahma, S.; Yeom, D.H. On the geometry of no-boundary instantons in loop quantum cosmology. Universe
**2019**, 5, 22. [Google Scholar] [CrossRef] [Green Version] - Gupt, B.; Singh, P. Contrasting features of anisotropic loop quantum cosmologies: The Role of spatial curvature. Phys. Rev. D
**2012**, 85, 44011. [Google Scholar] [CrossRef] [Green Version] - Foster, S. Scalar field cosmologies and the initial space-time singularity. Class. Quant. Grav.
**1998**, 15, 3485–3504. [Google Scholar] [CrossRef] - Graham, P.W.; Horn, B.; Kachru, S.; Rajendran, S.; Torroba, G. A Simple Harmonic Universe. J. High Energy Phys.
**2014**, 2, 29. [Google Scholar] [CrossRef] [Green Version] - Mithani, A.T.; Vilenkin, A. Collapse of simple harmonic universe. J. Cosmol. Astropart. Phys.
**2012**, 1, 28. [Google Scholar] [CrossRef] - Mithani, A.; Vilenkin, A. Did the universe have a beginning? arXiv
**2012**, arXiv:1204.4658. [Google Scholar] - Graham, P.W.; Horn, B.; Rajendran, S.; Torroba, G. Exploring eternal stability with the simple harmonic universe. J. High Energy Phys.
**2014**, 8, 163. [Google Scholar] [CrossRef] [Green Version] - Mithani, A.T.; Vilenkin, A. Instability of an emergent universe. J. Cosmol. Astropart. Phys.
**2014**, 5, 6. [Google Scholar] [CrossRef] [Green Version] - Corichi, A.; Montoya, E. Coherent semiclassical states for loop quantum cosmology. Phys. Rev. D
**2011**, 84, 44021. [Google Scholar] [CrossRef] [Green Version] - Diener, P.; Gupt, B.; Megevand, M.; Singh, P. Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology. Class. Quant. Grav.
**2014**, 31, 165006. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Gupt, B. Generalized effective description of loop quantum cosmology. Phys. Rev. D
**2015**, 92, 84060. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. D
**2006**, 74, 84003. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the big bang. Phys. Rev. Lett.
**2006**, 96, 141301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. I. Phys. Rev. D
**2006**, 73, 124038. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Pawlowski, T.; Singh, P.; Vandersloot, K. Loop quantum cosmology of k = 1 FRW models. Phys. Rev. D
**2007**, 75, 24035. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Corichi, A.; Singh, P. Robustness of key features of loop quantum cosmology. Phys. Rev. D
**2008**, 77, 24046. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Singh, P. Loop Quantum Cosmology: A Status Report. Class. Quant. Grav.
**2011**, 28, 213001. [Google Scholar] [CrossRef] [Green Version] - Taveras, V. Corrections to the Friedmann Equations from LQG for a Universe with a Free Scalar Field. Phys. Rev. D
**2008**, 78, 64072. [Google Scholar] [CrossRef] [Green Version] - Diener, P.; Gupt, B.; Singh, P. Numerical simulations of a loop quantum cosmos: Robustness of the quantum bounce and the validity of effective dynamics. Class. Quant. Grav.
**2014**, 31, 105015. [Google Scholar] [CrossRef] - Hertog, T.; Tielemans, R.; Riet, T.V. Cosmic eggs to relax the cosmological constant. J. Cosmol. Astropart. Phys.
**2021**, 8, 64. [Google Scholar] [CrossRef]

**Figure 1.**Effective minisuperspace potential for Wheeler–DeWitt quantum cosmology. We set $G=1$ and $\mathrm{\Lambda}=0.03$.

**Figure 2.**Effective minisuperspace potential, including holonomy and inverse scale factor corrections (just $\tilde{A}\left(v\right)$ term), and schematic behavior of Hartle-Hawking wavefunction for $\mathrm{\Lambda}=0.03$ and ${p}_{\varphi}=600$ (

**top**), and $\mathrm{\Lambda}=11$ and ${p}_{\varphi}=35$ (

**bottom**). Points B and R denote the bounce and recollapse turnaround points, respectively.

**Figure 3.**Effective minisuperspace potential, including holonomy and inverse scale factor corrections (just $\tilde{A}\left(v\right)$ term), and the schematic behavior of the Hartle–Hawking wavefunction for $\mathrm{\Lambda}=0.2$ and ${p}_{\varphi}=110$ (

**top**), and $\mathrm{\Lambda}=11$ and ${p}_{\varphi}=20$ (

**bottom**). Points B and R denote the bounce and recollapse turnaround points, respectively.

**Figure 4.**Effective minisuperspace potential, including both holonomy and inverse scale factor corrections (both $\tilde{A}\left(v\right)$ and $\tilde{B}\left(v\right)$ terms), and the schematic behavior of the Hartle–Hawking wavefunction (

**top**) and the Vilenkin wavefunction (

**bottom**) for $\mathrm{\Lambda}=0.03$ and ${p}_{\varphi}=2$. Point B denotes the classical bounce turnaround point.

**Figure 5.**Effective minisuperspace potential, including both holonomy and inverse scale factor corrections (both $\tilde{A}\left(v\right)$ and $\tilde{B}\left(v\right)$ terms), and the schematic behavior of the Hartle–Hawking wavefunction (

**top**) and the Vilenkin wave–function (

**bottom**) for $\mathrm{\Lambda}=13$ and ${p}_{\varphi}=3$. Points B and R denote the classical bounce and recollapse turnaround points, respectively.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Motaharfar, M.; Singh, P.
Quantum Gravitational Non-Singular Tunneling Wavefunction Proposal. *Phys. Sci. Forum* **2023**, *7*, 44.
https://doi.org/10.3390/ECU2023-14101

**AMA Style**

Motaharfar M, Singh P.
Quantum Gravitational Non-Singular Tunneling Wavefunction Proposal. *Physical Sciences Forum*. 2023; 7(1):44.
https://doi.org/10.3390/ECU2023-14101

**Chicago/Turabian Style**

Motaharfar, Meysam, and Parampreet Singh.
2023. "Quantum Gravitational Non-Singular Tunneling Wavefunction Proposal" *Physical Sciences Forum* 7, no. 1: 44.
https://doi.org/10.3390/ECU2023-14101