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Abstract: Geometric optics approximation sufficiently describes the effects in the near-earth envi-
ronment, and Faraday rotation is purely a reference frame effect in this limit. A simple encoding
procedure could mitigate the Faraday phase error. However, the framework of geometric optics is
not sufficient to describe the propagation of waves of large but finite frequencies. So, we outline the
technique to solve the equations for the propagation of an electromagnetic wave up to the subleading
order geometric optics expansion in curved spacetimes. For this, we first need to construct a set of
parallel propagated null tetrads in curved spacetimes. Then we should use the parallel propagated
tetrad to solve the modified trajectory equation. The wavelength-dependent deviation of the elec-
tromagnetic waves is observed, which gives the mathematical description of the gravitational spin
Hall effect.

Keywords: geometric optics; spin Hall effect; gravitational Faraday rotation; spin optics; parallel
propagation; Fermi transport

1. Introduction

Wigner rotation/phase, a special relativity effect, is the dominant source of relativistic
errors during quantum communications in the near-Earth environment [1,2]. The typical
magnitude of the Wigner phase during communication with the earth orbiting-Satellite
(in some specific settings) was estimated to be of the order 10−4–10−5 [3]. Another form of
relativistic error is due to the gravitational polarization rotation (or gravitational Faraday
effect) [4–8], which manifests in various astrophysical systems, such as gravitational lensing
phenomena [9] or accretion by astrophysical black holes [10]. The Gravitational Faraday
effect has received numerous theoretical investigations, primarily within the geometric
optics approximation [4–9,11,12], and also from the perspective of quantum communi-
cations [13,14]. Even if at the leading order, the gravitational Faraday rotation is pure
gauge effect (depending on the emitter’s and observer’s orientation), one cannot simply
disregard it [3].

Electromagnetic waves from astrophysical sources might have propagated through
curved spacetimes. If the characteristic wavelength of the electromagnetic waves is small,
but cannot be neglected, compared to the scale of the inhomogeneity of spacetime cur-
vature, the necessity of the subleading order geometric optics correction arises. This
subleading order correction includes wave effects, which affect both the propagation and
polarization properties of waves [15]. Interaction of spin/polarization with external orbital
angular momentum imparted by spacetime curvature results in the gravitational spin
Hall effect [16–23]. Among various approaches to solving the wave equations in curved
spacetimes and obtaining the gravitational spin Hall effect, we are particularly interested in
generalizing the geometric optics that use WKB formalism. Ref. [19] first demonstrated this
approach for stationary spacetimes and named the subleading order geometric optics cor-
rection as “spin optics”, as it accounts for the spin-orbit coupling. Recently this formalism
has been generalized to arbitrary spacetimes [24–26].
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In Section 2, we present the WKB expansion for solving the electromagnetic wave
equation in curved spacetimes. Then, we obtain the modified ray trajectory in the sublead-
ing order in Section 3. The polarization equation is obtained in Section 4 by generalizing
the result that the solutions from the geometric optics approximation can be reduced to a
set of Fermi propagated null tetrads to the subleading order. Finally, we discuss our results
and conclude this article in Section 5.

We consider a spacetime manifold M with the metric gµν of signature (−,+,+,+) .
The phase space in that manifold is the cotangent bundle T∗M, and its points are (x, p).
We write x̃ for the complex conjugate of x. We take G = c = 1 and adopt the Einstein
summation convention. A semicolon (;) denotes the covariant derivative along the curve, λ
denotes the parameter of electromagnetic wave curves and ẋ = dx/dλ. We use the sign
convention for the curvature adopted in ref. [27].

2. WKB Formulation

We begin by writing the Maxwell equations in curved spacetime

Fαβ
;α = −Jβ, (1)

Fαβ;γ + Fγα;β + Fβγ;α = 0. (2)

Equation (2) is identically satisfied if we write the electromagnetic field tensor Fαβ in
terms of the vector potential Aα

Fαβ = Aβ;α − Aα;β. (3)

Now, let us use available gauge freedom, say the Lorenz gauge condition, in the
Maxwell equations to constrain the vector potential Aα, Aα

;α = 0. Substituting this into
Equation (1), we obtain the equation for the electromagnetic wave

− Aα;β
;β + Rα

β Aβ = Jα, (4)

where Rα
β is the Ricci tensor.

To solve the electromagnetic wave equation in the high-frequency regime, we start
with the following ansatz for the vector potential

Aα = aαeiωS , (5)

where aα is the complex amplitude that changes slowly, and ωS is the real phase that varies
rapidly. Here, ω represents the characteristic frequency of the wave. The gradient of the
phase gives the wave vector, lα = S;α. We write the polarization vector as mα = aα/a and
the square amplitude as a = (ãαaα)

1/2. After fixing notations for the wave vector and
polarization vector, let us expand them in powers of 1/ω as

lα =lα
0 +

lα
1

ω
+

lα
2

ω2 + . . . , (6)

mα =mα
0 +

mα
1

ω
+

mα
2

ω2 + . . . . (7)

First, we give the reason for separately expanding both the polarization and prop-
agation vectors in powers of ω. Unlike in conventional WKB expansion, higher order
phase factors such as S1(λ) cannot be absorbed into the amplitude mα

0 by transformation
mα → eiS1(λ)/ωmα. The reason is that this transformation property will be constrained by
the necessity to use the Fermi propagated null tetrad as follows

dS1(λ)

dλ
= 0. (8)
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Now, we substitute the vector potential from the WKB ansatz onto the Lorenz gauge
condition, which gives

lα
0 m0α +

1
ω

(
lα
0 m1α + lα

1 m0α − i
( a;α

a
mα

0 + mα
0;α

))
= 0, (9)

up to the subleading order in ω. Again, we substitute the vector potential into the source-
free wave equation (Equation (4) with Jα = 0), which up to the subleading order in ω, gives

mα
0 l0βlβ

0 +
1
ω

(
mα

1 l0βlβ
0 + 2mα

0 l1βlβ
0 − i

(
mα

0 lβ
0;β + 2mα

0;βlβ
0 + 2

a;β

a
mα

0 lβ
0

))
= 0. (10)

We now calculate m̃0α Jα + m0α J̃α, which is the identically vanishing quantity

l0βlβ
0 +

2
ω

(
l1β − bβ

)
lβ
0 = 0. (11)

This equation could be seen as the generalized dispersion relation up to the subleading
order geometric optics approximation. In obtaining this, we have substituted m̃α

0m0α = 1
and used

i
2
(
m̃αmα;β −mαm̃α;β

)
= im̃αmα;β := bβ. (12)

3. Propagation Equation up to the Subleading Order

To obtain the subleading order correction to the trajectory equation, we start with the
generalized dispersion Equation (11). This is also the Hamilton-Jacobi equation for the
phase S , such that S;α = l0α + l1α/ω. The corresponding Hamiltonian on the phase space
T∗M is

H(x, l) =
1
2

gαβl0αl0β +
1
ω

gαβ(l1α − bα)l0β =
1

2ω2 gαβ(ωl0α + l1α − bα)
(
ωl0β + l1β − bβ

)
. (13)

Hamilton’s equations of motion are

dxα

dλ
=

∂H
∂lα

= gαβ

(
lβ −

bβ

ω

)
, (14)

and
dlα
dλ

= − ∂H
∂xα

=
1
2

ẋµ ẋν ∂gµν

∂xα
+

1
ω

gµν ẋν
∂bµ

∂xα
, (15)

where Equation (14) is used to obtain the last equality. Hence, we could obtain the corre-
sponding solution of the Hamilton–Jacobi Equation (11) from [28]

S(x, l) =
∫

λ
(ẋαlα − H(x, l))dλ =

1
2

∫
ẋα ẋαdλ +

1
ω

∫
bα ẋαdλ = S0 − SB, (16)

where Equations (13) and (14) are used to obtain the third equality. Here, the additional
phase SB is polarization-dependent and could be viewed as the Berry phase, in anal-
ogy to the related phenomena in an inhomogeneous medium. The circularly polarized
modes propagating in curved spacetimes acquire this geometric phase [29–31], which
manifests dynamically, thereby giving the subleading order term in the propagation equa-
tion. This additional topological term results in non-collinear velocity and momentum
(see Equation (14)), a typical feature of waves propagating in anisotropic media (see, for
example, [32]). Refs. [24,33] considered this form of action to obtain the spin Hall effect
of electromagnetic waves. Additionally, in analogy with the spin-orbit coupling of light
in gradient-index medium and that of electrons occurring in the Dirac equation (see, for
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example, Refs. [16,33–35]), we could identify Aα = −bα = −im̃βmβ;α with the Berry gauge
field. The curvature associated with it

∂Aα

∂xβ
−

∂Aβ

∂xα
= bβ;α − bα;β := kαβ. (17)

could be identified with a field tensor associated with the vector potential Aα. Simplification
of Equation (15) gives [24]

D2xµ

Dλ2 +
1
ω

(
bµ;ν − bν;µ

)
ẋν = 0 =⇒ D2xα

Dλ2 ≈ −
i
ω

Rα
βµνlβ

0 mµ
0 m̃ν

0, (18)

where we have used

kαβ := bβ;α − bα;β = −iRαβµνmµm̃ν + i
(

m̃ν
;αmν;β − m̃ν

;βmν;α

)
, (19)

to obtain the last equality. Thus, the electromagnetic wave propagates in a null but non-
geodesic curve in the subleading order geometric optics.

4. Polarization Equation up to the Subleading Order

Equations (A7) and (A8) are evolution equations for the propagation and polarization
vectors, and to generalize them to the subleading order, let us write Fermi derivative
operator Dẋ along the ray ẋα [19]

Dẋ Aα = lγ
0 Aα

;γ − wγ Aγnα + Aγnγwα, (20)

where Aα is an arbitrary vector and wα = lγ
0 ẋα

;γ is an identically vanishing quantity in the
geometric optics approximation. We have Dẋ ẋα = 0 as ẋγ ẋγ = 0. A vector Aα is said to
be Fermi propagated if its Fermi derivative Dẋ Aα is zero, and it can be shown that if two
vectors are Fermi propagated, then their scalar product is constant. Let us consider this
statement in the context of null tetrads (ẋα, nα, mα, m̃α): this set of null tetrads satisfies the
orthogonality and completeness relations given in Equations (A4)–(A6) everywhere on the
ray, provided that they are Fermi propagated, in which case they obey

lβ
0 nα

;β = wβnβnα, lβ
0 mα

;β = wβmβnα. (21)

Next, we fix wβnβ = 0 by restricting the following transformation property of
null tetrads

ẋα → Fẋα, nα → F−1nα, (22)

where F is an arbitrary real function. This restriction in the transformation fixes the
parameter λ along the curve up to some rescaling λ → F−1λ. This way of choosing a
parameter is known as canonical parametrization [24], which leads to the following relations

lβ
0 nα

;β = 0, lβ
0 mα

;β = wβmβnα. (23)

These relations generalize Equations (A4)–(A8) of geometric optics.
The polarization vector is determined solely by the propagation direction or momen-

tum of photons, while the momentum of particles is solely a function of position in curved
spacetimes. Thus, the Berry connection determines how the polarization of a wave evolves
in curved spacetimes as it is also the function of position only. We substitute wα = lβ

0 ẋα
;β

from Equation (18) into Equation (23) to obtain the following equations for the evolution of
the polarization vector

lβ
0 nµ

;β = 0, lβ
0 mµ

;β =
i
ω

Rαβγδlα
0 mβ

0 mγ
0 m̃δ

0nµ
0 . (24)
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From these equations, one can show that null tetrads (ẋα, nα, mα, m̃α) satisfies the
normalization and orthogonality relations of Equations (A4)–(A6), up to the subleading
order in 1/ω. However, the field does not satisfy all the polarization Equations (A14)–(A16),
from which we can infer that it is not self-dual in the limit of spin optics [26].

In order to obtain a self-dual solution of the Maxwell Equations (1) and (2) in the limit
of spin optics, we define the Fermi-like derivative operator

D′ẋ Aα = lβ
0 Aα

;β − wβ Aβnα + Aβnβwα − i
ω

(
λ;µlµmβ Aβmα − λ̃;µlµm̃β Aβm̃α

)
. (25)

The vanishing of the Fermi-like derivative, D′ẋ Aα = 0, of any two tetrad components
(ẋα, nα, mα, m̃α) implies that the scalar product of these two components is preserved except
that of mα and m̃α with their self. If tetrads with vanishing Fermi-like derivatives satisfy
the following orthogonality and completeness relations at some point on the trajectory

ẋαmα = ẋα ẋα = ẋαm̃α = 0, mαm̃α = 1, (26)

nαmα = nαnα = nαm̃α = 0, nαlα = −1, (27)

then these relations hold throughout the trajectory. However, in general, the polarization
vectors are not null anymore, mαmα 6= 0 and m̃αm̃α 6= 0, along the circularly polarized
trajectory in the subleading order approximation. Moreover, these tetrad evolves as

lβ
0 nα

;β = 0, lβ
0 mα

;β = wβmβnα − i
ω

λ̃;µlµm̃α. (28)

We could solve these equations to obtain [26]

mµ
1 = (lα

1 − bα)m0αnµ
0 − iλ̃m̃µ

0 , nµ
1 = 0. (29)

These components of tetrad describe the propagation of right-handed circularly polar-
ized light rays in curved spacetime up to the subleading order geometric optics expansion.
The reason is that they are the solution of the Maxwell equation in the Lorenz gauge and
are self-dual (since they satisfy polarization Equations (A14)–(A16)).

5. Discussion and Conclusions

We have presented a WKB expansion procedure for extending the geometric optics
approximation to include subleading order correction. This procedure involves the expan-
sion of both the amplitude and phase in terms of the characteristic frequency ω, which was
necessary for the use of the Fermi-propagated tetrad. The requirement of parallel propaga-
tion of the null tetrad in the leading order generalizes to Fermi transport in the subleading
order, constraining its transformation properties and resulting in the observer-independent
spin Hall effect. Although the Hamiltonian Equation (13) includes a gauge-dependent term,
the propagation equation resulting from it is observer-independent. This is because, as ex-
plained in Equation (8), we have restricted the U(1) gauge freedom for the transformation
of the polarization vector mα to satisfy the requirement that it is Fermi propagated along
the curve.
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Appendix A. Geometric Optics Approximation

We could substitute mβ
1 = 0 = lβ

1 on Equations (9)–(11) to recover the complete
equations of geometrical optics. The Lorenz condition (9) and the wave Equation (10) in
the leading order approximation becomes

lα
0 m0α = 0 = lα

0 l0α. (A1)

Then, we calculate m̃0α Jα from Equation (10) by taking mα
1 = 0 = l1µ as they are

subleading order terms and could thus be neglected in geometric optics approximation,
which gives

lβ
0;β + 2m̃0αmα

0;βlβ
0 + 2

a;β

a
lβ
0 = 0. (A2)

As m̃0αmα
0;βlβ

0 is purely imaginary and the remaining terms

lβ
0;β + 2

a;β

a
lβ
0 ,

are purely real, they should vanish separately vanish, from which we obtain

lβ
0;β + 2

a;β

a
lβ
0 = 0, mα

0;βlβ
0 = 0. (A3)

Following Equation (A1), we can construct a set of null tetrads
(
lα
0 , nα

0 , mα
0 , m̃α

0
)
, where

lα
0 and mα

0 could be identified with the propagation and polarization vectors, satisfying the
following orthogonality and completeness relationships

lα
0 m0α = lα

0 l0α = lα
0 m̃0α = 0, mα

0m̃0α = 1, (A4)

mα
0m0α = m̃α

0m̃0α = 0, (A5)

nα
0m0α = nα

0n0α = nα
0m̃0α = 0, nα

0 l0α = −1. (A6)

Auxiliary null vectors n0α and m0α are not unique and can be chosen to satisfy Equa-
tions (A5) and (A6). In Appendix B, we will show that circularly polarized waves satisfy
Equation (A5). Furthermore, the tetrad evolves as

lα
0;βlβ

0 = 0, mα
0;βlβ

0 = 0, (A7)

nα
0;βlβ

0 = 0, (A8)

where Equation (A7) again results from geometric optics (we have used l0α;β = l0β;α to
obtain the first equation). nα

0 can be chosen such that Equation (A8) is satisfied.

Appendix B. Self-Dual and Anti-Self-Dual Fields

Let us construct the complex form of the field tensor Fαβ as

F s = F + isF∗, (A9)

where F∗ denotes the Hodge dual of Fαβ and s = ±1. As the Hodge dual satisfies (F∗)∗ =
−F, we can prove the relation (F s)∗ = −isF s. Any field satisfying this relation is called
the self-dual (or anti-self-dual) antisymmetric field for s = +1(or− 1). One could expand
a self-dual antisymmetric field in terms of the self-dual basis

(U, V, W) = (m̃ ∧ n, l ∧m, m ∧ m̃− l ∧ n), (A10)

as
F+1 = Φ0U + Φ1W + Φ2V. (A11)
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In the geometric optics approximation, Φ0 = Φ2 = 0. Substituting the expression
for the vector potential from Equation (5) onto Equation (A9), we obtain the following
expression for the field F+1

αβ

F+1
αβ = iωZαβeiS , (A12)

where
Zαβ = lαaβ − lβaα −

i
ω

(
aβ;α − aα;β

)
. (A13)

As the contraction of the self-dual field with the anti-self-dual field vanishes, we obtain

Zαβmαnβ = 0, (A14)

Zαβ

(
m̃αmβ − lαnβ

)
= 0, (A15)

Zαβlαm̃β = 0. (A16)

Complex conjugation of the amplitude Zαβ of the self-dual s = +1 field gives an
anti-self-dual s = −1 field. By substituting Zαβ from Equation (A13) to Equation (A16),
one can see that it is satisfied identically in geometric optics approximation. However, the
substitutions onto Equations (A14) and (A15) gives

mα
0m0α = 0 = l0αm0α. (A17)

These relations are presented in Equations (A4) and (A5) as the orthogonality conditions.
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