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Abstract: A locally rotationally symmetric Bianchi-I model is explored both in general relativity
and in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor.
Solutions have been found by means of a special Hubble parameter, yielding a hyperbolic hybrid
scale factor. Some geometrical parameters have been studied. A comparison is made between
solutions in general relativity and in f(R,T) gravity, where in both the theories, the models exhibit
rich behaviour from stiff matter to quintessence, phantom, then later mimicking the cosmological
constant, depending on some parameters.
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1. Introduction

Observational data from refs. [1–3] suggest that the universe is currently in an accel-
erating epoch. A plethora of attempts have been made to explain this phenomenon, but
neither of them is compelling. The first attempt is dark energy (DE), which is the hypothesis
of exotic matter with the unique feature of anti-gravity due to highly negative pressure
which hence accelerates the expansion of the universe [4]. On the other hand, there is
insufficient information about DE from the ΛCDM model in general relativity (GR). The
cosmological constant (CC) is the primary candidate for DE and the second candidate is
modified gravity. The shortcomings [5] of the ΛCDM model enable authors to consider
other alternatives to fundamental theories of astrophysics and cosmology. These include
the dynamical candidates of DE and modified theories of gravity, e.g., higher derivative the-
ories, Gauss-Bonnet f(G) gravity, f(R) theory, f(T) and f(R,T) gravity theory. Harko et al. [6]
introduced f(R,T) gravity, where f(R,T) is an arbitrary function of the Ricci scalar R, and the
trace T of the energy-momentum tensor.

Over the years, cosmologists have solved the field equations by means of assuming
some cosmological parameters, i.e., Hubble parameter, scale factor, and even some form
of deceleration parameter, based on the current understanding in cosmology that the
universe has undergone stages of evolution, i.e., inflation, radiation, matter, and late time
acceleration. Based on that, the notion of varying deceleration parameter, which changes the
signature from deceleration to acceleration, has been applied to many cosmological models.
In ref. [7], the authors developed a hyperbolic scale factor. This form of scale factor has
attracted a lot of attention over the years, where it was applied for both homogeneous and
isotropic or anisotropic space-times through various contexts in cosmology, i.e., see ref. [8].
Recently, the Bianchi-I model with a perfect fluid with various cases of cosmological
constant was considered [7].
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2. The Formalism of the Model in f (R,T) Gravity

The general action of f (R,T) gravity with units in which 8πG = c = 1 is given
by ref. [6].

S =
1
2

∫
[ f (R, T) + 2Lm]

√
−gd4x (1)

We consider f (R, T) = R + 2 f (T), and get the following field equations

Rij −
1
2

Rgij = Tij − 2
(
Tij + pgij

)
f ′(T) + f (T)gij (2)

where a prime represents an ordinary derivative of f(T) with respect to T. In this work we
have chosen f (T) = λT, i.e., f (R, T) = R + 2λT. The energy-momentum tensor (EMT)
of a perfect fluid is Tij = (ρ + p)uiuj − pgij with ρ and p the energy density and thermo-
dynamic pressure, respectively. The trace of the energy-momentum tensor is T = ρ− 3p.
Equation (8) yields

Rij −
1
2

Rgij = (1 + 2λ)Tij + λ(ρ− p)gij. (3)

In this work, we have considered the LRS Bianchi-I spacetime:

ds2 = dt2 − A2(t)dx2 − B2(t)[dy2 + dz2], (4)

where A and B are the scale factors and functions of cosmic time t. The average scale factor
for the metric (16) is defined as

a =
(

AB2
) 1

3 (5)

The average Hubble parameter is given by

H =
1
3

( .
A
A

+ 2

.
B
B

)
, (6)

where a dot denotes the derivative with respect to t.
It is crucial to mention that the coupling between geometry and matter in f (R,T)

gravity adds some additional terms visible on the RHS of the field equations. These terms
must be treated as matter that can be called “coupled matter”. Therefore, to distinguish
between the main matter and coupled matter, we replace p with pM and ρ with ρM which
represents the primary or main matter.

Using the line element (4) and the energy-momentum tensor (EMT) of a perfect fluid,
the field Equation (3), yield( .

B
B

)2

+ 2

.
A
A

.
B
B
= (1 + 3λ)ρM − λpM, (7)

( .
B
B

)2

+ 2

..
B
B
= −(1 + 3λ)pM + λρM, (8)

..
A
A

+

..
B
B
+

.
A
A

.
B
B
= −(1 + 3λ)pM + λρM. (9)

These equations consist of four unknowns, namely, A, B, pM, ρM. Therefore, to
find exact solutions, one supplementary constraint is required. We assume the following
relationship between the Hubble parameter and cosmic time [7]:

H(t) = m + nCoth(t), (10)

where m, n are positive constants.
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On solving, Equation (10) gives

a(t) = emt(Sinh(t))n, (11)

Then, the deceleration parameter (q) is given by

q = −1 +
n

(m Sinh(t) + n Cosh(t))2 , (12)

and is illustrated in Figure 1.

Phys. Sci. Forum 2023, 7, 34 3 of 7 

On solving, Equation (10) gives ( ) = ℎ( ) , (11) 

Then, the deceleration parameter ( ) is given by  = −1 +  ( )  ( ) , (12) 

and is illustrated in Figure 1. 

 
Figure 1. Deceleration parameter vs time. 

To eschew repetition, ( ), ( ), ( ) have been articulated in ref. [7]. The energy 
density and pressure are given by 

   = 31 + 4 − 3(1 + 2 ) ℎ( ) + 3 ℎ( ) ℎ( )1 + 4  

+ ( ) ( ) + ( )( )( ) , 
(13) 

= − − ( ) ( ) − ( ) ( ) −( ) ( ) + ( ) ( )( )( ) , 

(14) 

where  is a constant of integration.  
For a physically realistic cosmological model, the density  must be positive. Un-

fortunately, at early times, we find that the density  is negative. We shall comment on 
this later. The pressure is negative throughout the evolution. The equation of state param-
eter (EoS), = / , is given by: 

= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )  . (15)

2.1. The Behavior of Coupled Matter 
As elucidated above,  and  do not represent the effective matter in this model. The terms 

containing λ in the Equations (7)–(9) can be assumed to be associated with the coupled matter. By 
separating these terms, the equations can be expressed as + 2 = +  , (16) 

Figure 1. Deceleration parameter vs time.

To eschew repetition, H(t), a(t), q(t) have been articulated in ref. [7]. The energy
density and pressure are given by

ρ = 3m2

1+4λ −
Q2

3(1+2λ)[e6mt(Sinh(t))6n]
+ 3m2(Csch(t))2(Cosh(t))2

1+4λ

+ 3mn(Csch(t))2Sinh(2t)
1+4λ + 2λ(Csch(t))2

(1+2λ)(1+4λ)
,

(13)

p = − 3m2

1+4λ −
Q2

3(1+2λ)[e6mt(Sinh(t))6n]
− 3m2(Csch(t))2(Cosh(t))2

1+4λ −
3mn(Csch(t))2Sinh(2t)

1+4λ + 2m(Csch(t))2(1+3λ)
(1+2λ)(1+4λ)

,
(14)

where Q is a constant of integration.
For a physically realistic cosmological model, the density ρM must be positive. Unfor-

tunately, at early times, we find that the density ρM is negative. We shall comment on this
later. The pressure is negative throughout the evolution. The equation of state parameter
(EoS), ωM = pM/ρM, is given by:

ω =
− 3m2

1+4λ −
Q2

3(1+2λ)[e6mt(Sinh(t))6n]
− 3m2(Csch(t))2(Cosh(t))2

1+4λ − 3mn(Csch(t))2Sinh(2t)
1+4λ + 2m(Csch(t))2(1+3λ)

(1+2λ)(1+4λ)

3m2

1+4λ −
Q2

3(1+2λ)[e6mt(Sinh(t))6n]
+ 3m2(Csch(t))2(Cosh(t))2

1+4λ + 3mn(Csch(t))2Sinh(2t)
1+4λ + 2λ(Csch(t))2

(1+2λ)(1+4λ)

. (15)

2.1. The Behavior of Coupled Matter

As elucidated above, ρm and pm do not represent the effective matter in this model.
The terms containing λ in the Equations (7)–(9) can be assumed to be associated with the
coupled matter. By separating these terms, the equations can be expressed as( .

B
B

)2

+ 2

.
A
A

.
B
B
= ρM + ρ f , (16)
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( .
B
B

)2

+ 2

..
B
B
= −

(
pM + p f

)
, (17)

..
A
A

+

..
B
B
+

.
A
A

.
B
B
= −

(
pM + p f

)
, (18)

where ρ f = λ (3ρM − pM) and p f = λ(3pM − ρM), respectively, represents the energy
density and pressure of the coupled matter, and are obtained as

ρ f =
12λm2

1+4λ + 2λQ2

3(1+2λ)[e6mt(Sinh(t))6n]
+ 12λm2(Csch(t))2(Cosh(t))2

1+4λ +

12λmn(Csch(t))2Sinh(2t)
1+4λ − 2mλ(Csch(t))2

(1+2λ)(1+4λ)
,

(19)

p f = − 12λm2

1+4λ −
2λQ2

3(1+2λ)[e6mt(Sinh(t))6n]
− 12λm2(Csch(t))2(Cosh(t))2

1+4λ −
12λmn(Csch(t))2Sinh(2t)

1+4λ + 2mλ(Csch(t))2

(1+2λ)(1+4λ)
.

(20)

The EOS for the coupled matter is:

ω f =
− 12λm2

1+4λ −
2λQ2

3(1+2λ)[e6mt(Sinh(t))6n]
− 12λm2(Csch(t))2(Cosh(t))2

1+4λ − 12λmn(Csch(t))2Sinh(2t)
1+4λ + 2mλ(Csch(t))2

(1+2λ)(1+4λ)

12λm2

1+4λ + 2λQ2

3(1+2λ)[e6mt(Sinh(t))6n]
+ 12λm2(Csch(t))2(Cosh(t))2

1+4λ + 12λmn(Csch(t))2Sinh(2t)
1+4λ − 2mλ(Csch(t))2

(1+2λ)(1+4λ)

.

2.2. State-Finder Parameter, Energy Conditions and Stability
2.2.1. State-Finder Analysis

The state finder pair {r, s} allows the examining the features of DE for the model, and
to compare with the ΛCDM model. They rely on the third derivative of the scale factor, as
they were introduced in ref. [9]. In this model, they are given by

r =
...
a

aH2 =
3mn + m2 + n

(
2− 3n + 3m2)Coth(t) + 3mn(n− 1)(Coth(t))2 + n

(
2− 3n + n2)(Coth(t))3

(m + nCoth(t))3 ,

s =
r− 1

3
(

q− 1
2

) =
4n(3m + 2)Coth(t)

3(m + nCoth(t))[3n2 − 3m2 − 4n + 3(n2 + m2)Cosh(2t) + 6mnSinh(2t)]
.

We observe from the above that as t→ 0 , {r, s}→ {0, 0.6}, and as t→ ∞ , {r, s}→ {1, 0}.
In this model, initially, we have r < 1 and s > 0, which imply quintessence and phantom,
respectively. At late times, the model mimics the ΛCDM model.

2.2.2. Energy Conditions

The behaviour of the energy conditions such as the Weak Energy Condition (WEC:
ρm ≥ 0, ρm + pm ≥ 0), Dominant Energy Condition (DEC: ρm ≥ |pm|) and Strong Energy
Condition (SEC: ρm + pm ≥ 0, ρm + 3pm ≥ 0), have been studied. They are illustrated in
Figure 2.

2.2.3. Stability of the Models through the Speed of Sound

It is crucial to study the stability of the theory, and here, we make use of the technique
of speed of sound to study stability [10]. Numerous other techniques can be used to
understand the stability of the solutions/methods [11]. The speed of sound is given by
v2

s = dp
dρ . If v2

s < 0 or v2
s > 1, the system is unstable, whereas if 0 ≤ v2

s = dp
dρ ≤ 1, the

system is stable. In this model
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v2
s = −

378
[
3 + 3Coth(t) + 3(Coth(t))2

]
− 2106e−18t(Csch(t))18[1 + Coth(t)]− 18Coth(t)(Csch(t))2

[
−20 + 63

(
(Cosh(t))2 + Sinh(2t)

)]
36
[
126
(

3 + 3Coth(t) + 3(Coth(t))2
)]

+ 351e−18t(Csch(t))18[1 + Coth(t)]− 3Coth(t)(Csch(t))2
[
−1 + 126

(
(Cosh(t))2 + Sinh(2t)

)]
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We find that for the values (m = 1, n = 1, Q =1, λ = 1), (m = 2, n = 2, Q =2, λ = 2),
(m = 3, n = 3, Q =3, λ = 3), our model is stable (during the early phase of the model),
whereas, at present, it is unstable. This is illustrated in Figure 3.
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3. Discussion

We have studied an LRS Bianchi I model with a special Hubble parameter
H = m+ n Coth(t), yielding q = −1+ n

(mSinh(t)+nCosh(t))2 , where m, n are positive constants.

We find that the model transits from early deceleration (q = −1 + 1
n > 0 for 1 < n < 0)

to late time acceleration (t→ ∞, q = −1) which is in line with observations [1–3]. In any
physically realistic cosmological model, the energy density (ρM, ρ f ) ought to be positive
throughout the evolution. Here, we observe that for (m, n, Q, λ > 0) initially, both densities
are negative but later positive. Due to the complicated nature of the expressions, we have
not checked the density for all values of the parameters. Therefore, it is quite possible that
the density could be positive for some parameters, and we are investigating this further,
and hope to report elsewhere. However, our results do indicate that models have to be
checked very carefully to ensure that all reasonable conditions are met. The pressure is
negative, which is associated with late-time acceleration.

The DEC is satisfied, but not the SEC. Again, this is in keeping with the late-time
acceleration of the model (Figure 2). The other important aspect of the model is for λ = 0,
the solutions of GR are recovered. The effective matter behaves like in f (R,T) gravity due
to similar metric potentials in both theories. We can conclude that the model accelerates at
late times in f (R,T).
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