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Abstract: Halo Dark Matter (DM) formation is a complex process, intertwining both gravitational
and cosmological nonlinear phenomena. One of the manifestations of this complexity is the shape of
the resulting present-day DM halos: simulations and observations show that they are triaxial objects.
Interestingly, those shapes carry cosmological information. We prove that cosmology, and particularly
the dark energy model, leaves a lasting trace on the present-day halos and their properties: the overall
shape of the DM halo exhibits a different behavior when the DE model is varied. We explain how
that can be used to literally “read” the fully nonlinear power spectrum within the halos’ shape at
z = 0. To that end, we worked with “Dark Energy Universe Simulations” DM halos: DM halos are
grewed in three different dark energy models, whose parameters were chosen in agreement with
both CMB and SN Ia data.
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1. Introduction

Among the various cosmological probes, galaxy groups and clusters occupy a key
position: the dynamics of their collapse is both sensitive to gravity and to cosmology. The
study of their properties, such as the distribution of their mass [1], allows observers to
tightly constrain the cosmological parameters of the Universe.

One of the most striking features of dark matter halos, even at z = 0, is the deviation
from sphericity that they generally present. This can be stated from N-body simulations [2],
but is also observed in particular for the Milky Way halo [3]. A review of related observa-
tional methods and theoretical considerations can be found in [4]. It is natural for this to lead
to studying the links between the shapes of halos and the underlying cosmological model.

Previously [5,6], we showed that the knowledge of mass and shape profiles of dark
matter halos allows the appropriate machine learning device to distinguish between dark
energy models. For these proceedings, our task will be to briefly present why and how much
cosmological information can be extracted from mass and shape relations. An extended
version with more detailed discussions will be available in [7].

2. Methods
2.1. Cosmological Models and Dark Matter Halos

Dark Energy Universe Simulations [8–11] are high performance N-body simulations
based on the adaptive mesh refinement RAMSES code [12]. They probe structure collapse,
assuming various dark energy models: the concordance model ΛCDM, the Ratra-Peebles
quintessence model RPCDM [13], and a phantom model that we denote wCDM. The last
ones are dynamical dark energy models, the first having e.o.s. parameter w0 > 1 and
the last w0 < −1. In addition, the parameters of the selected models (Ωm,σ8, w0, wa),
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summarized in Table 1, were chosen in accordance with both SNIa and CMB WMAP7
constraints [14]. As a consequence, the resulting present-day Universes have the interesting
feature to be realistic [8], and they are thus very similar to each other.

Table 1. Dark Energy Universe simulations parameters and characteristics. ns = 0.96 and h = 0.72.

Model ΛCDM RPCDM wCDM

Ωm 0.2573 0.23 0.275
σ8 0.83 0.68 0.88
w0 −1 −0.87 −1.2
wa 0 0.08 0

FOF halos 411,909 338,883 441,683

At both z = 0, linear P(k) and nonlinear P̃(k) power spectra of the matter density
field were also computed. The corresponding variances are given by smoothing the power
spectra with a gaussian window W[x] = exp− x2

10 so that

(M) =
1

2π2

∫ +∞

0
k2P(k)W2

[
k · (3M/(4πΩmρc))

1/3
]

dk

and similarly for σ̃(k) and P̃(k).

2.2. Dark Matter Halos and Their Shape

We consider the Universes evolved in a 648 MPc/h simulation box, containing 20483

particles. Their halos are identified by the Friends of Friends algorithm, with a linking
length b = 0.2. Finally, only well-resolved halos containing more than 1000 particles are
retained, which correspond to those whose FOF mass excesses 2.4 · 1012 MS/h. Table 1
features the number of such halos in each cosmological model.

To assess the shape of halos, we compute the 3× 3 inertia tensor of each halo:

Mij =
〈
xixj
〉

halo − 〈xi〉halo
〈
xj
〉

halo for 1 ≤ i, j ≤ 3.

Diagonalizing this tensor allows to extract the eigenvalues, denoted a2
√

5
, b2
√

5
and c2

√
5

where a ≥ b ≥ c are the three principal axis semi-lengths of the best-fitting ellipsoid of the
full halo. The triaxiality of the halo can be quantified through its prolateness:

p = (a− 2b + c)/2(a + b + c)

Note that this way of extracting the shape of halos necessarily induces resolution
sensitiveness. In [7], we explain how to adapt it to get measures that do not depend on
the size of simulation box, on the total number of particles it contains, or on the presence
of sub-structures inside the halos. We also discuss the imprint of the cosmology on other
shape parameters as ellipticity, triaxiality, and eigenvalues ratios.

3. Results and Discussion
3.1. Mass Dependence

Let us start by plotting the prolateness of halos against their FoF mass. Figure 1 features
the median prolateness in each mass bin for each cosmological model. Two observations
can be made:

- First, the heavier the halo, the greater is the p. Indeed, large mass halos are less
virialized and, therefore, less spherical [15].

- Meanwhile, RPCDM halos are about 25% more prolate than LCDM ones. This can
be explained by the fact that σ8 of RPCDM is much lower than the fiducial one. As
a result, the halos of RPCDM formed more recently and are, again, less relaxed and
more prolate.
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In a sense, this extends the results of [16], which tested redshift dependence of mass-
shape relations at a fixed cosmology.
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Figure 1. Median prolateness of z = 0 haloes as a function of their total FoF mass (in solar mass
per h).

3.2. Towards Universality

To understand exactly how cosmology intervenes in mass shape relations, we aim
to find a cosmological dependent function fc so that p( fc(M)) curves superpose. In the
light of the observations in the previous subsections, a first attempt would be fc := σ,
as already suggested by [16,17]. The resulting median prolateness curves are plotted
in Figure 2a. Surprisingly, they are closer in (σ, p) space than in (M, p) space, but very
substantial differences subsist both in slope and in intercept. In other words, the linear
power spectrum absorbs part of the cosmological dependence of the shape of halos.
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Figure 2. Median prolateness of z = 0 haloes as a function of the root mean square of (a) the linear
matter power spectrum and (b) the root mean square of the nonlinear matter power spectrum.

We conjecture that the reason for that is the existence of a (cosmologically independent)
analogy between halos’ shape (i.e., two points correlations in real space) and the power
spectrum (i.e., two points correlations in Fourier space). If true, since the shapes are
computed on the fully collapsed halo, one should rather consider the fully nonlinear variance
σ̃. Indeed, as Figure 2b shows, median prolateness curves superpose almost completely
when using σ̃ as abscissa. They are about seven times closer than in Figure 2a, so that
the common p(σ̃) relation can be taken to be universal—that is to say, independent of the
details of background cosmology. Furthermore, this result holds not only for the median
curves (that we plot here) but for the whole of the p distribution (except the most extreme
values).

In other words, we have shown that all the cosmological content of a clusters’ shape
is embedded in the (nonlinear) power spectrum. Therefore, the only reason that linear
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information explains part of prolateness cosmological dependence at a fixed mass is the
fact that the linear power spectrum is a first order approximation of the nonlinear one.

3.3. Power Spectrum Reconstruction

We have now at hand all the tools to build a new procedure to measure the non-linear
power spectrum:

1. Measure the p(M) curve in our universe.
2. Since we know the universal p(σ̃) relation, one can deduce the σ̃(M) function of our

Universe.
3. The nonlinear power spectrum is finally directly inferred from this σ̃(M).

In Figure 3a, we reproduce the reconstructed σ̃(M) functions of the tested cosmological
models from the sole measure of p(M), and in Figure 3b, the corresponding nonlinear power
spectra. The concordance with the expected σ̃(M) at z = 0 is excellent.
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Figure 3. (a) The reconstructed (continuous) nonlinear variance (as a function of mass) from the sole
measure of the mass and shape of halos, and the knowledge of the universal shape/nonlinear variance
relations is plotted against the expected (dashed) nonlinear variance computed with PowerGrid.
As before, blue, orange and green lines respectively correspond to ΛCDM, RPCDM and wCDM
cosmological models. (b) Nonlinear power spectrum coming from the reconstructed nonlinear
variance (continuous), and the expected one computed with PowerGrid (dashed). Line thickness
corresponds to five percent uncertainty on Ωm (which should, thus, be measured by another probe).

We can then also deduce σ8 at z = 0 and reconstruct the initial σ8 of each cosmological
model. The agreement with the known results of the numerical simulation is remarkable
(see Table 2).

Table 2. Estimated and expected, linear and nonlinear, variance at 8 Mpc/h. All the estimations
are given with only one significant number, with 15% of uncertainty, and a uniform prior on Ωm ∈
[0.2, 0.3].

Model ΛCDM RPCDM wCDM

σ̃8 (estimated with shapes) 0.9 0.7 1
σ̃8 (expected) 0.9 0.8 1

σ8 (estimated with shapes) 0.8 0.6 0.9
σ8 (expected) 0.8 0.7 0.9

4. Conclusions

We have shown that if the distribution of the prolateness of halos at a fixed mass
heavily depends on cosmology, this dependence is completely explained by the nonlinear
power spectrum, and, reciprocally, the nonlinear fluctuations are encoded in the shape
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distributions of DM halos. Consequently, the fact that there exists a universal relation
between the shape of halos and nonlinear variance allows one to reconstruct the power
spectrum of a given Universe from the sole mass and shape measures of the halos it
contains. A full discussion of the shape determination procedure, including the effects of
substructures and simulation resolution, will be in [7].
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