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Abstract: Gravitational wave (GW) astronomy provides an independent way to estimate cosmological
parameters. The detection of GWs from a coalescing binary allows a direct measurement of its
luminosity distance, so these sources are referred to as “standard sirens” in analogy to standard
candles. We investigate the impact of constraining cosmological models on the Einstein Telescope,
a third-generation detector which will detect tens of thousands of binary neutron stars. We focus
on non-flat ΛCDM cosmology and some dark energy models that may resolve the so-called Hubble
tension. To evaluate the accuracy down to which ET will constrain cosmological parameters, we
consider two types of mock datasets depending on whether or not a short gamma-ray burst is
detected and associated with the gravitational wave event using the THESEUS satellite. Depending
on the mock dataset, different statistical estimators are applied: one assumes that the redshift is
known, and another marginalizes it, taking a specific prior distribution.

Keywords: cosmological parameters; gravitational waves; neutron star mergers; Einstein Telescope

1. Introduction

The observation of GWs from the coalescence of merging binary black holes (BBH) [1,2] and
binary neutron stars (BNS) [3] gives an alternative tool to test general relativity, relativistic
astrophysics, and cosmology. We usually refer to GWs as “standard sirens” because, in
analogy to standard candles, they bring direct information on the luminosity distance of
sources [4,5].

Contrary to most common electromagnetic (EM) distance measurements, the distance
estimate with GWs is an absolute measurement. Hence, standard sirens do not rely on the
so-called cosmic distance ladder. Therefore, they are free from possible systematics arising
from the calibration on other cosmic distance indicators.

In the Friedmann–Robertson–Walker cosmology, the most general form of the distance–
redshift relation reads [6]:

dL(z) =
c

H0

1 + z√
Ωk,0

sin h
[ √

Ωk,0

∫ z

0

dz′

E(z′)

]
, (1)

where c is the speed of light, H0 is the Hubble constant, Ωk,0 is the normalized energy
density of the spatial curvature of the Universe, and E(z) is a function of redshift, which
in general depends on all the cosmological parameters that describe the background
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expansion of the Universe in any given cosmological model. The data (dL, z) allow us
to constrain the cosmological parameters in the distance–redshift relation. In particular,
one can infer the Hubble constant H0 to the leading order, and beyond that the dark
matter and dark energy fractions Ωm, ΩΛ of ΛCDM cosmology, or the dark-energy (DE)
equation-of-state parameters.

Although GWs offer an alternative method to obtain distances in cosmology, they
are not free of issues. In particular, the redshift parameter in the waveform is completely
degenerate with the system masses. We can break the degeneracy by extrapolating the
information on the redshift from an electromagnetic signal. The main techniques are based
on the statistical identification of the host galaxy of the GW source [4,7] or the seeking of
electromagnetic emissions following the GWs, such as short gamma-ray burst (GRB) [3].
Another possibility relies on assuming the redshift probability distribution of GW events
known from population synthesis simulations [8,9].

Nowadays, the LIGO/Virgo/KAGRA collaboration best estimation of the Hubble
constant is H0 = 68+6

−8 km s−1 Mpc−1, at a 68% of confidence level with the statistical
identification of the host galaxy [7]. However, so far, the GWs do not help solve the so-
called Hubble tension because the accuracy is still too high, and the estimations agree with
both the late-time and the early-time measurements [10–13].

Nevertheless, the next generation of GW detectors, e.g., the Einstein Telescope (ET),
will offer the possibility to achieve an accuracy of the Hubble constant below 1% [14]. Here,
we will focus on the simulation ET standard sirens. Moreover, we assume that the redshift
of the coincident short GRB will be detected using the Transient High Energy Sources and
Early Universe Surveyor (THESEUS) [15–17]. We forecast the accuracy of cosmological
parameters for a non-flat ΛCDM and a set of DE models introduced to solve the Hubble
tension [18,19]. We consider the following parametrizations of the E(z) function:

• Non-flat ΛCDM, with the E(z) function defined by [6]

E2(z) = Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0 ; (2)

• Non-flat ωCDM, with the E(z) function defined by [20]

E2(z) = Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0(1 + z)3(1+ωDE) ; (3)

• Interacting DE, [21–25]

E2(z) = Ωm,0(1 + z)3 + ΩΛ,0

[
(1 + z)3(1+ωeff

DE) +
ξ

3ωeff
DE

(
1− (1 + z)3ωeff

DE
)
(1 + z)3

]
, (4)

whereωeff
DE = ωDE + ξ/3 and ξ is the coupling constant;

• Time-Varying Gravitational Constant, [26]

E2(z) = Ωm,0(1 + z)(3−δG) + ΩΛ,0(1 + z)
δG

Ωm,0
ΩΛ,0 , (5)

with δG representing the parametrization of Gravitational Constant evolution;

• Emergent DE, [27–29]

E2(z) = Ωm,0(1 + z)3 + ΩΛ,0

1− tanh
(

∆ log10

(
1+z
1+zt

))
1 + tanh

(
∆ log10(1 + zt)

)
, (6)

where ∆ is a free parameter and zt is the epoch where the matter energy density and the
DE density are equal.

In the following sections, we briefly summarize the procedure used to build up the
mock data catalog (Section 2) and the statistical analysis techniques (Section 3). Finally, in
Section 2, we discuss our results.



Phys. Sci. Forum 2023, 7, 20 3 of 7

2. Mock Data Generation

Following the procedure illustrated in [30,31], we simulated the GW events to forecast
the precision down to which ET would be able to constrain the cosmological parameters.
We wanted to consider only the BNS mergers because we could detect their EM counterpart.
To generate the synthetic dataset, we assumed, as a fiducial cosmological model, a ΛCDM
with best-fit values given by [13], which were H0 = 67.66 km s−1 Mpc−1, Ωm,0 = 0.31,
ΩΛ,0 = 0.69 and Ωk,0 = 0.0. Then, we extracted the redshift of the source from a probability
distribution, p(z), defined from the star formation rate (SFR) and the time delay distribution.
The function p(z) is

p(z) = N Rm(z)
1 + z

dV(z)
dz

(7)

whereN is a normalization factor, dV(z)/dz is the comoving volume element, and Rm(z) is
the merger rate per unit of volume in the source frame. We can parametrize the rate Rm(z)
in terms of the SFR Rf(z) [32], and the time delay distribution P(td) ∝ t−1

d as suggested by
population synthesis models [33].

Then, using the latest power spectral density of ET, we simulated the detector response
to estimate the number and the parameters of GW events. Hence, we selected the events
above a given of the signal-to-noise ratio (SNR). We adopted a SNR threshold equal to
9. Finally, we added a Gaussian noise component, N

(
dfid

L ,σdL

)
to our estimations of the

luminosity distances dfid
L . based on the fiducial cosmological model. The variance counts

for different sources of uncertainties:

σdL =
√
σ2

inst + σ
2
lens + σ

2
pec (8)

The first term is the most relevant due to the instrumental part. At leading order, σinst
is strictly related to the SNR through the relation σinst = 2dL/SNR [34]. The second and
the last ones are related to some extra contributions in the noise due to the observational
features. We considered the lensing [35] and the peculiar velocity of the host galaxy
contribution [36]. Setting a duty cycle for ET equal to 80%, we built our mock catalogs
containing GWs events for one, five, and ten years of observational runs. We estimated a
rate of 0.5× 104 events per year.

Since the number of combined events is strictly affected by the features of the satellite,
we had to set the duty cycle of the THESEUS satellite to 80% [15] and the sky coverage to
1/2. Furthermore, since the THESEUS satellite can localize a source within five arcminutes
of its central field of view, we recorded only 1/3 of the total number of combined events in
the realistic case [15,37]. We found a rate of 10 combined events per year.

3. Analysis and Results

We analyzed each mock catalog using an MCMC algorithm. We considered both
events with a detected electromagnetic counterpart (bright sirens) and those without the
direct redshift information (dark sirens). When we knew the redshift from the detection of
GRB, the single event likelihood was [9,38]

p(di |Θ ) =

∫
p(di |D L)ppop(DL |z , Θ)p(z, zi)dzdDL∫
pdet(DL)ppop(DL |z , Θ)p(z, zi)dzdDL

, (9)

where p(z, zi) = δ(z− zi) with zi being the redshift associated with the GRB. Θ is the set
of cosmological parameters, and ppop(DL |z , Θ) = δ

(
DL − dth

L (z, Θ)
)

. Furthermore, the
denominator is a normalization factor that takes into account the selection effects [38]. To
study the dark sirens case, we assumed to know prior redshift information related to the
distribution p(z), and then we marginalized over this distribution [8,9]. In this case, the
likelihood is

p(di | Θ ) =
∫ zmax

0
p
(

di |d th
L (zi, Θ)

)
pobs(zi |Θ )dzi (10)
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where the probability of the prior distribution of the redshift, pobs(zi |Θ ), is obtained from
the observed events and already includes detector selection effects [8].

In Table 1, we report the results obtained after ten observation years for all the models
considered and for the bright and dark sirens, respectively.

Table 1. The median value and the 68% confidence level of the posterior distributions of the parame-
ters of our models for SNR equal to 9 and ten years of observations, as obtained from the MCMC
analyses carried out on mock catalog collecting the bright and dark sirens, respectively.

Non-Flat ΛCDM

H0 Ωk,0 ΩΛ,0 -

Bright Sirens 67.49+0.70
−0.87 −0.11+0.16

−0.15 0.74+0.12
−0.15 -

Dark Sirens 67.68+0.04
−0.03 0.00+0.01

−0.01 0.69+0.01
−0.01 -

Non-Flat ωCDM

H0 Ωk,0 ΩΛ,0 ωDE

Bright Sirens 67.49+0.70
−0.87 −0.05+0.19

−0.17 0.66+0.20
−0.16 −1.35+0.84

−0.98
Dark Sirens 67.68+0.06

−0.05 −0.01+0.02
−0.02 0.68+0.03

−0.03 −0.95+0.09
−0.11

Interacting Dark Energy

H0 Ωm,0 ξ -

Bright Sirens 67.55+1.02
−1.03 0.24+0.13

−0.14 −0.76+0.83
−0.92 -

Dark Sirens 67.70+0.05
−0.05 0.32+0.01

−0.01 −0.02+0.06
−0.06 -

Time-Varying Gravitational Constant

H0 Ωm,0 δG -

Bright Sirens 67.81+0.97
−0.93 0.29+0.10

−0.07 −0.26+0.42
−0.46 -

Dark Sirens 67.65+0.04
−0.04 0.31+0.01

−0.01 −0.02+0.02
−0.02 -

Emergent Dark Energy

H0 Ωm,0 ∆ -

Bright Sirens 67.51+0.81
−0.92 0.36+0.05

−0.06 0.21+0.89
−0.83 -

Dark Sirens 67.66+0.03
−0.03 0.310+0.002

−0.002 0.00+0.01
−0.01 -

It is worth stressing that we always recovered our fiducial cosmological model within
the 68% confidence interval. Independently of the model used in the statistical analysis,
we obtained an accuracy of ∼1% with bright sirens and reached ∼0.1% with dark sirens.
This accuracy will be competitive with respect to the other cosmological probes to solve
the Hubble tension [39]. However, when we consider the constraints on the additional
parameters, in the non-flatωCDM and interacting DE models, the parametersωDE and ξ
will be constrained with an accuracy worse than current bounds [21,22,24]. In the case of
the time-varying gravitational constant model, the bound on the parameter δG was one
order of magnitude higher than current constraints [22], whereas we showed that ET would
also be able to improve the bounds in the emergent DE model. In particular, we had an
improvement of a factor 46 in the additional cosmological parameter ∆ with respect to the
current analysis [28]. For a more detailed comparison see [30].

4. Discussion and Conclusions

We used mock catalogs of GW events from BNSs to test the capabilities of ET on
constraining the ΛCDM cosmological model and provide insight into dark energy models.
Namely, we investigated the non-flat ΛCDM, the non-flat ωCDM, the interacting dark
energy, the emergent dark energy, and the time-varying gravitational constant models. The
third generation GW detector promises to constrain the Hubble constant with sub-percent
accuracy [15], offering a possible solution to the Hubble tension.
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We built mock catalogs containing GW events considering one, five, and ten years
of observational runs, and SNR thresholds equal to 9. Additionally, starting from each of
those three mock catalogs, we extracted a mock catalog of GW events with an associated
GRB detected using the THESEUS satellite.

In the analysis, we distinguished the catalogs depending on whether the redshift
information comes from the GRB (bright sirens) or the BNS merger rate (dark sirens). We
assumed the rate is a priori known to follow the SFR. Although, realistically, the redshift
evolution of the merger rate will be uncertain, prior knowledge of the SFR from other
astrophysical observations will provide valuable information for standard siren analyses.

Our results show the huge capability of ET to solve the Hubble tension independently
of the theoretical framework chosen, but also point out that, to strongly constrain the DE
models we have considered, ET will need to be complemented with other datasets. The
ET standard sirens will represent an alternative approach to constrain the cosmological
parameters and the DE models; moreover, they will be affected by different systematics
compared to the analyses based on classical electromagnetic standard candles.
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