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Abstract: A locally rotationally symmetric Bianchi-I model filled with strange quark matter is
explored in f (R, T) = R + 2 f (T) gravity, where R is the Ricci scalar, T is the trace of the energy-
momentum tensor and λ is an arbitrary constant. Exact solutions are obtained by assuming that the
expansion scalar is proportional to the shear scalar. The model is found to be physically viable for
λ < − 1

4 . Strange quark matter at early times mimics ultra-relativistic radiation whereas at late times
it behaves as dust, quintessence, or even the cosmological constant for some specified values of λ.
The effective matter acts as stiff matter irrespective of the matter content and of f (R, T) gravity. The
model is shear-free at late times but remains anisotropic throughout the evolution.
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1. Introduction

Observational data [1–3] suggest that the universe is currently in an accelerating phase.
A plethora of attempts have been made to explain this phenomenon, but neither of them is
compelling. The first attempt is dark energy (DE), which is the hypothesis of exotic matter
with the unique feature of anti-gravity due to highly negative pressure, thus accelerating
the expansion of the universe [4]. In the standard ΛCDM model, the cosmological constant
(CC) is the primary candidate for DE. Secondly, there are modified theories of gravity [5],
which attempt to resolve the shortcomings of the ΛCDM model [6–10]. Harko et al. [11]
proposed f (R, T) gravity. A noticeable feature of this theory is the late-time acceleration
due to the geometrical contribution and matter content [12]. Observations indicate that
there could be some small anisotropy present [13–19], and so, in this work, we consider the
Bianchi-I (BI) model.

In order to comprehend the early stages of the evolution of the universe, it is important
to study quark-gluon plasma. During the early stages, two-phase transitions occurred
as it cooled down, viz., the quark-gluon phase, when quark matter is thought to have
been formed, and the quark hadron phase [20,21]. Some authors [22–24] came up with
the theoretical possibility of strange quark matter (SQM) constituting the ground state
of hadronic matter. This implies that neutron stars could become strange stars [25–27].
Although SQM has not yet been detected, there are several possibilities where this type of
matter can be located [28–30].

The work is organized as follows. In the introduction, an LRS Bianchi-I (BI) space-time
model with SQM in the presence of a bag constant and f (R, T) gravity is presented. In
Section 2, solutions for f (R, T) = R + 2λT gravity in the presence of quark matter(QM)
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and SQM are calculated. In Section 3, the field equations are discussed, while the behavior
of SQM is explored in Section 4. Conclusions are made in Section 5.

2. The Formalism of f (R, T) Gravity

In 2011, Harko et al. [11], formulated f (R, T) gravity, whose general action with units
in which 8πG = 1 = c is given by

S =
1
2

∫
[ f (R, T) + 2Lm]

√
−gd4x, (1)

where the symbols have their usual meanings. We assume that f (R, T) has the form

f (R, T) = R + 2 f (T), (2)

and hence, (4) becomes

Gij = Rij −
1
2

Rgij = Tij − 2(Tij + Θij) f ′(T) + f (T)gij, (3)

where a prime represents the derivative of f (T) with respect to T.

3. Model and Field Equations

The spatially homogeneous and anisotropic BI space-time metric is given by

ds2 = dt2 − A2(dx2 + dy2)− B2dz2, (4)

where A and B are the scale factors, and are functions of the cosmic time t. The average
scale factor is defined by

a = (A2B)
1
3 . (5)

The rates of expansion along the x, y and z-axes are defined as

H1 =
Ȧ
A

= H1, H2 =
Ḃ
B

, (6)

where a dot represents a derivative with respect to time. The average expansion rate, which
is the generalization of the Hubble parameter in an isotropic scenario, is given by

H =
1
3

(
2Ȧ
A

+
Ḃ
B

)
. (7)

An expansion scalar, θ and shear scalar, σ2, respectively, are defined as

θ = ui;i = 3H, (8)

σ2 =
1
2

σijσ
ij =

1
3

(
Ȧ
A
− Ḃ

B

)2

. (9)

Since the quark gluon plasma behaves as a perfect fluid, the EMT of SQM is given by

Tij = (ρsq + psq)uiuj − psqgij, (10)

where ρsq is the energy density and psq is the thermodynamic pressure of the SQM. The
trace T of (15) yields

T = ρsq − 3psq. (11)
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In the bag model, the energy density and pressure of the SQM are given by, respectively,

ρsq = ρq + Bc, psq = pq − Bc (12)

With the assumption that quarks are non-interacting and massless particles, the pressure is
approximated by an EoS of the form

pq =
ρq

3
. (13)

Then psq = 1
3
(
ρsq − ρ0

)
is the linear equation of state of the SQM, with ρ0 the density at

zero pressure. In a bag model, ρ0 = 4Bc, and hence the EoS yields

psq =
ρsq − 4Bc

3
. (14)

The assumption of Lm = −psq is used and its variation with respect to gij yields

Θij = −2Tij − psqgij. (15)

Using (21) in (8) yields:

Gij =
[
1 + 2 f ′(T)

]
Tij +

[
2psq f ′(T) + f (T)

]
gij. (16)

These are the field equations of f (R, T) = R + 2 f (T) gravity with SQM. In considering
f (T) = λT, with λ is an arbitrary constant, using (16)–(19), T = 4Bc which is a constant.
Then f (T) = 4λBc implies f ′(T) = 0 and so:

Rij −
1
2

Rgij = Tij + 4λBcgij. (17)

If we put Λ = 4λBcgij, then the field equations are equivalent to Einstein’s field equations
with CC. Then f (R, T) = R+ 2λT becomes f (R, T) = R+ 8λBc. Hence, SQM is equivalent
to the ΛCDM model with CC as a results of the coupling of the parameter λ with the bag
constant. If λ = Bc = 0, (23) is the same as in GR. In our case, using (4) and (18), we obtain:(

Ȧ
A

)2

+ 2
ȦḂ
AB

=
(
ρq + Bc

)
+ 4λBc, (18)(

Ȧ
A

)2

+ 2
Ä
A

= −
(

pq − Bc
)
+ 4λBc, (19)

Ä
A

+
B̈
B
+

ȦḂ
AB

= −
(

pq − Bc
)
+ 4λBc. (20)

These three independent equations consist of four unknowns, namely, A, B, pq, ρq.
Therefore, in order to find exact solutions, one supplementary constraint is required.
Agrawal [31] considered the expansion scalar, θ(= 3H) to be proportional to the shear

scalar (σ2 = 1
3

(
Ȧ
A −

Ḃ
B

)2
), σ, which leads to

B = An, (21)

where n is an arbitrary constant. From (19)–(22), one obtains

Ä
A

+ (n + 1)
(

Ȧ
A

)2

= 0, (22)

which gives

A = β[(n + 2)t]
1

n+2 . (23)
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Consequently
B = α[(n + 2)t]

n
n+2 . (24)

It is observed that from (8)–(9), and by the use of (24)–(25), the isotropy condition,
(σ2/θ → 0 as t→ ∞) is satisfied in this instance. Then the energy density and pressure for
quark matter takes the form

ρq =
1 + 2n

(2 + n)2t2 − (1 + 4λ)Bc, pq =
1
3

[
1 + 2n

(2 + n)2t2 − (1 + 4λ)Bc

]
(25)

and the density and pressure of SQM, are, respectively, given by

ρsq =
1 + 2n

(2 + n)2t2 − 4λBc, psq =
1
3

[
1 + 2n

(2 + n)2t2 − 4Bc(1 + λ)

]
(26)

These are the corrected expressions for the energy density and pressure as opposed to those
obtained by Agrawal [31]. In Section 5 of his paper [31], he calculated some geometrical
parameters namely, the expansion, shear and volume scalar by the use of some of his
equations. Again, we can see that all these parameters can be defined in terms of only the
metric potentials A, B, which are different from those of the aforementioned paper. It is
also important to mention that both the metric potential and geometrical parameters are
independent of the additional terms of f (R, T) gravity. In other words, we obtain the same
results as in general relativity for the metric potential and geometrical parameters. For any
physically realistic cosmological model, the energy density must be positive, meaning that
the weak energy density condition (WEC) ought to be satisfied. Hence both ρq and ρsq

remain positive under the constraint λ < −1/4, n > − 1
2 . It is clear from (28)–(29) that both

the pressure and density depend on f (R, T) gravity and the bag constant. Then ρsq → ∞ as
t→ 0, and ρsq → −4λBc as t→ ∞. Then again we notice that for λ < − 1

4 , the bag constant
dominates at late times, and the energy density of the SQM becomes constant. Similarly
psq → ∞ as t→ 0, and psq → − 4

3 (1 + λ)Bc as t→ ∞.

4. The Behavior of Strange Quark Matter

Since quarks are considered as a bag, the EoS parameter of SQM can be expressed by
the following constraints: n > − 1

2 , λ < − 1
4 , ωsq = psq/ρsq. These yield:

ωsq =

1
3

[
1+2n

(2+n)2t2 − 4Bc(1 + λ)
]

1+2n
(2+n)2t2 − 4λBc

. (27)

The above EoS indicates that ωsq depends both on f (R, T) gravity and the bag constant.
However, if Bc = 0, the model neither depends on f (R, T) nor the bag constant, i.e., Bc = 0.
Then ωsq = 1

3 = ωq, where ωq is the EoS of QM. Hence this exhibits ultra-relativistic
radiation. Hence, for any values of λ < − 1

4 , n > − 1
2 , at the origin model started with

ωsq = 1
3 (ultra relativistic radiation). The future behavior of the model, i.e., t→ ∞ ωsq =

1
3

[
1+λ

λ

]
, depends solely on f (R, T) gravity. For particular values of λ, the model exhibits

interesting behavior, i.e., for λ = −1, ωsq = 0 (dust), λ = − 1
2 , ωsq = − 1

3 (quintessence),
and λ = − 1

4 , ωsq = −1 (cosmological constant). Thus, the overall behavior of the model
describes the evolution of the universe (ultra-relativistic matter, dust, quintessence, later
mimics CC). If λ = 0, the model exhibits a smooth transition from ωsq = 1

3 to ωsq = −∞
(phantom matter). Therefore again we can see that SQM explains the transition from the
early radiated epoch to the phantom phase.

It is mentioned in the introduction that due to the coupling of matter and geometry,
some extra terms do appear in the field equations. These terms having λ in (19)–(21) can
be associated with coupled matter. This can be distinguished as ρ f and p f , respectively,
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and then ρ f = 4λBc = −p f Hence ω f = −1. Therefore these extra terms contribute as a
cosmological constant.

Effective Matter

The energy density and the pressure of effective matter for ρe f f ≥ 0 for n > − 1
2 , is

given by:

ρe f f =
1 + 2n

(2 + n)2t2
= pe f f , (28)

Then the effective matter acts as stiff matter in this model.

5. Discussion

In this paper, f (R, T) = R + 2 f (T), where f (T) = λT, the model investigated in [31]
was considered, where a BI model in f (R, T) gravity with SQM was studied. To obtain
solutions, the assumption of the expansion scalar proportional to the shear scalar was
made [31]. The metric potentials A, B that were calculated are not correct as they can be
obtained by means of his equations “(25)–(26)” and “(27)”. The other setback of their model
is that the LHS of their field equations is also not correct. Since the assumption (θ = 3H)
has already been considered in [32,33], we can see that, surprisingly, the wrong signs do
not affect the geometrical parameters. The comparisons of the outcomes in the presence
of f (R, T) gravity and the bag constant has been carried out by us to comprehend their
roles. It is to be noted that the geometrical parameters of “model : 1” of [31] have been
carried out by [16]. The physical viability constraints of the model ignored in [31] have
been considered by us.

In this model B = An. In f (R, T) gravity, we found that the model is physically viable
for λ < −1/4, n > − 1

2 . It is also important to mention that when working with f (R, T),
there are some additional terms appearing on the right-hand side of the field equations.
Due to the coupling of matter and geometry, those terms can be treated as some additional
matter. If the coupling matter is treated as normal matter, they are physically viable for
λ > 0 as they contribute as the CC.

The overall model depends both on f (R, T) gravity and the bag constant Bc. Hence if
Bc = 0, the model starts off with ultra-relativistic radiation, hence behaving the same as
quark matter. We can also observe that Bc for future consideration of the model depends
solely on f (R, T) gravity. Then for some values of λ, the model describes a variety of
matter including dust, quintessence and CC. We can conclude that f (R, T) gravity enables
a transition from ultra-relativistic radiation to the CC. In the absence of f (R, T) gravity,
i.e., λ = 0, the model of course relies on the bag constant only. Again, we can see clearly
that the model starts off radiating, and then all the dynamical candidates including the
phantom stage. Hence, in this case, we can see that the bag constant enables the transition
from ultra-relativistic radiation to phantom matter.
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