#
Nuclear Pasta in Cold Non-Accreting Neutron Stars: Symmetry Energy Effects^{ †}

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

^{−3}, as:

^{−3}. Therefore, these functionals are well suited to study the symmetry energy effects.

## 2. Methods

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Ravenhall, D.G.; Pethick, C.J.; Wilson, J.R. Structure of Matter below Nuclear Saturation Density. Phys. Rev. Lett.
**1983**, 50, 2066–2069. [Google Scholar] [CrossRef] - Hashimoto, M.; Seki, H.; Yamada, M. Shape of nuclei in the crust of a neutron star. Prog. Theor. Phys.
**1984**, 71, 320–326. [Google Scholar] [CrossRef] [Green Version] - Dinh Thi, H.; Fantina, A.F.; Gulminelli, F. The effect of the energy functional on the pasta-phase properties of catalysed neutron stars. Eur. Phys. J. A
**2021**, 57, 296. [Google Scholar] [CrossRef] - Newton, W.G.; Gearheart, M.; Li, B.A. A Survey of the Parameter Space of the Compressible Liquid Drop Model as Applied to the Neutron Star Inner Crust. Astrophys. J. Suppl. Ser.
**2013**, 204, 9. [Google Scholar] [CrossRef] [Green Version] - Oyamatsu, K.; Iida, K. Symmetry energy at subnuclear densities and nuclei in neutron star crusts. Phys. Rev. C
**2007**, 75, 015801. [Google Scholar] [CrossRef] [Green Version] - Grill, F.; Providência, C.; Avancini, S.S. Neutron star inner crust and symmetry energy. Phys. Rev. C
**2012**, 85, 055808. [Google Scholar] [CrossRef] [Green Version] - Bao, S.S.; Shen, H. Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars. Phys. Rev. C
**2015**, 91, 015807. [Google Scholar] [CrossRef] [Green Version] - Shchechilin, N.N.; Zemlyakov, N.A.; Chugunov, A.I.; Gusakov, M.E. Pasta Phases in Neutron Star Mantle: Extended Thomas–Fermi vs. Compressible Liquid Drop Approaches. Universe
**2022**, 8, 582. [Google Scholar] [CrossRef] - Pearson, J.M.; Chamel, N.; Potekhin, A.Y. Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. II. Pasta phases in semiclassical approximation. Phys. Rev. C
**2020**, 101, 015802. [Google Scholar] [CrossRef] [Green Version] - Fattoyev, F.J.; Horowitz, C.J.; Schuetrumpf, B. Quantum nuclear pasta and nuclear symmetry energy. Phys. Rev. C
**2017**, 95, 055804. [Google Scholar] [CrossRef] [Green Version] - Gögelein, P.; Müther, H. Nuclear matter in the crust of neutron stars. Phys. Rev. C
**2007**, 76, 024312. [Google Scholar] [CrossRef] [Green Version] - Pethick, C.J.; Potekhin, A.Y. Liquid crystals in the mantles of neutron stars. Phys. Lett. B
**1998**, 427, 7–12. [Google Scholar] [CrossRef] [Green Version] - Yakovlev, D.G. Electron transport through nuclear pasta in magnetized neutron stars. Mon. Not. R. Astron. Soc.
**2015**, 453, 581–590. [Google Scholar] [CrossRef] [Green Version] - Caplan, M.E.; Horowitz, C.J. Colloquium: Astromaterial science and nuclear pasta. Rev. Mod. Phys.
**2017**, 89, 041002. [Google Scholar] [CrossRef] [Green Version] - Horowitz, C.J.; Berry, D.K.; Briggs, C.M.; Caplan, M.E.; Cumming, A.; Schneider, A.S. Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars. Phys. Rev. Lett.
**2015**, 114, 031102. [Google Scholar] [CrossRef] [Green Version] - Pons, J.A.; Viganò, D.; Rea, N. A highly resistive layer within the crust of X-ray pulsars limits their spin periods. Nat. Phys.
**2013**, 9, 431–434. [Google Scholar] [CrossRef] - Gearheart, M.; Newton, W.G.; Hooker, J.; Li, B.A. Upper limits on the observational effects of nuclear pasta in neutron stars. Mon. Not. R. Astron. Soc.
**2011**, 418, 2343–2349. [Google Scholar] [CrossRef] [Green Version] - Goriely, S.; Chamel, N.; Pearson, J.M. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C
**2013**, 88, 024308. [Google Scholar] [CrossRef] - Audi, G.; Meng, W.; Wapstra, A.; Kondev, F.; MacCormick, M.; Xu, X.; Pfeiffer, B. The Ame2012 atomic mass evaluation. Chin. Phys. C
**2012**, 36, 1287. [Google Scholar] [CrossRef] - Li, Z.H.; Schulze, H.J. Neutron star structure with modern nucleonic three-body forces. Phys. Rev. C
**2008**, 78, 028801. [Google Scholar] [CrossRef] - Brack, M.; Guet, C.; Håkansson, H.B. Selfconsistent semiclassical description of average nuclear properties—A link between microscopic and macroscopic models. Phys. Rep.
**1985**, 123, 275–364. [Google Scholar] [CrossRef] [Green Version] - Onsi, M.; Dutta, A.K.; Chatri, H.; Goriely, S.; Chamel, N.; Pearson, J.M. Semi-classical equation of state and specific-heat expressions with proton shell corrections for the inner crust of a neutron star. Phys. Rev. C
**2008**, 77, 065805. [Google Scholar] [CrossRef] [Green Version] - Pearson, J.M.; Chamel, N.; Pastore, A.; Goriely, S. Role of proton pairing in a semimicroscopic treatment of the inner crust of neutron stars. Phys. Rev. C
**2015**, 91, 018801. [Google Scholar] [CrossRef] - Pearson, J.M.; Chamel, N.; Potekhin, A.Y.; Fantina, A.F.; Ducoin, C.; Dutta, A.K.; Goriely, S. Unified equations of state for cold non-accreting neutron stars with Brussels-Montreal functionals—I. Role of symmetry energy. Mon. Not. R. Astron. Soc.
**2018**, 481, 2994–3026. [Google Scholar] [CrossRef] - Chamel, N.; Goriely, S.; Pearson, J.M. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XI Stabilizing neutron stars against a ferromagnetic collapse. Phys. Rev. C
**2009**, 80, 065804. [Google Scholar] [CrossRef] [Green Version] - Pearson, J.M.; Chamel, N. Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. III. Inclusion of microscopic corrections to pasta phases. Phys. Rev. C
**2022**, 105, 015803. [Google Scholar] [CrossRef] - Ducoin, C.; Margueron, J.; Providência, C. Nuclear symmetry energy and core-crust transition in neutron stars: A critical study. Europhys. Lett.
**2010**, 91, 32001. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Symmetry energy as a function of the baryon density for BSk functionals [18].

**Figure 2.**Horizontal bars illustrate the different phases of NS crusts as a function of the baryon density. Blue regions are for spheres, red for spaghetti, yellow for lasagna and purple for bucatini. Arrows denote the onset of proton drip for spheres. Results are obtained in ETF and ETFSIp approaches for three BSk functionals [18].

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shchechilin, N.N.; Pearson, J.M.; Chamel, N.
Nuclear Pasta in Cold Non-Accreting Neutron Stars: Symmetry Energy Effects. *Phys. Sci. Forum* **2023**, *7*, 10.
https://doi.org/10.3390/ECU2023-14017

**AMA Style**

Shchechilin NN, Pearson JM, Chamel N.
Nuclear Pasta in Cold Non-Accreting Neutron Stars: Symmetry Energy Effects. *Physical Sciences Forum*. 2023; 7(1):10.
https://doi.org/10.3390/ECU2023-14017

**Chicago/Turabian Style**

Shchechilin, Nikolai N., John M. Pearson, and Nicolas Chamel.
2023. "Nuclear Pasta in Cold Non-Accreting Neutron Stars: Symmetry Energy Effects" *Physical Sciences Forum* 7, no. 1: 10.
https://doi.org/10.3390/ECU2023-14017