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Abstract: In this work, we synthesized solutions of un-doped ZnO and ZnO doped with tin (Sn)
by the sol-gel method. From these solutions, we deposited thin layers on glass substrates by the
spin-coating technique. The main purpose of this work is to study the influence of the incorporation
of Sn into the ZnO matrix on the photocatalytic properties of the latter. The crystal structure is
hexagonal with a preferential orientation of the crystallites (002), and the reduction in the size of
the grains is observed from 21 nm for the un-doped ZnO to 15 nm for the doped ZnO. For both
samples, the transparency in the visible region is high and exceeds 75%, and a slight change in the
band gap is from 3.22 to 3.23 eV, i.e., it is attributed to a combination of the Burstein–Moss effect
and electron-impurity scattering. The methylene blue UV photocatalysis test gives a degradation
rate of 40% for un-doped ZnO and 60% for Sn-doped ZnO (2%). This study confirms the remarkable
influence of Sn doping on the photocatalytic properties of ZnO and also on its morphological and
optical properties.

Keywords: ZnO; Sn; thin film; methylene blue; photocatalysis; degradation

1. Introduction

Photocatalysis is of significant practical interest to intensive research efforts to develop
new photocatalyst materials to improve pollutant degradation efficiency. Various semi-
conductor materials are considered as photocatalytic materials, such as CdS, ZnO, TiO2,
Bi2O3, etc. [1,2]. The most commonly used semiconductor materials are TiO2 and ZnO.
Due to these good characteristics and its exceptionally high UV absorption from the solar
spectrum, ZnO is considered one of the best oxide photocatalysts. Zinc oxide is a binary
Group II-VI semiconductor in the intrinsic state that is an n-type semiconductor with a
hexagonal wurtzite structure, wide direct bandgap (3.3 eV), high energy exciton binding
(60 meV) at 300 K, high carrier mobility, and high transparency in the visible spectrum.
These properties make ZnO a favorite material for a wide range of applications such as UV
lasers/detectors, UV detectors, field effect transistors, the surfaces of dye-sensitized solar
cells, lighting applications, gas sensors, and photocatalysis [3]. Due to its advantages, its
chemical stability, non-toxicity, simplicity of preparation, and low cost, ZnO is suggested
as one of the preferred photocatalysts in the industrial field, To modify the properties
(structural, morphological, optical, and electrical) of materials, there are several techniques.
Among them, we find that doping by a wide range of metallic dopants, such as Ga, Al, In,
and Sn, improves the photocatalytic properties of ZnO [4].

Several studies were carried out and proved to be the best under the photocatalytic
activity of Sn-doped ZnO (regardless of the method of preparation) under UV irradiation.
The work of Li et al. proved the photocatalytic properties of Sn-doped ZnO with different

Phys. Sci. Forum 2023, 6, 7. https://doi.org/10.3390/psf2023006007 https://www.mdpi.com/journal/psf

https://doi.org/10.3390/psf2023006007
https://doi.org/10.3390/psf2023006007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psf
https://www.mdpi.com
https://doi.org/10.3390/psf2023006007
https://www.mdpi.com/journal/psf
https://www.mdpi.com/article/10.3390/psf2023006007?type=check_update&version=1


Phys. Sci. Forum 2023, 6, 7 2 of 7

doping concentrations. In their study, Li et al. found that doping by a concentration of 1%
gave good photocatalytic characteristics for ZnO concentrations [5]. Research has shown
morphological changes in ZnO with changing doping and its concentration. In their study,
Jia et al. observed increased methyl orange degradation by UV irradiation for Sn-doped
ZnO (repaired by solid state reaction technique at room temperature) compared to un-
doped ZnO [6]. In this work, thin layers of ZnO-Sn were developed by the spin-coating
technique and their structural, morphological, optical and photocatalytic properties were
verified. According to our best information about the published works on photocatalysis,
which is very broad field, the spin-coating method is chosen because of its excellent
advantages over other film deposition technique [7].

2. Experimental

Thin layers of pure and Sn-doped ZnO were deposited by spin coating. The raw
materials were zinc acetate dihydrate (Zn(CH3COO)2·2H2O) as a precursor material, tin
chloride (SnCl2) as a dopant, ethanol (C2H5OH) as a solvent, and monoethanolamine
(C2H7NO) as a stabilizer. The working protocol is reported in reference [8]. Finally, the
prepared layers were annealed for 1.5 h at a temperature of 500 ◦C in a Nabertherm muffle
furnace. The prepared layers had a thickness of about 200 nm. The study of the crystalline
structures of the layers was made by a Bruker D8 Advance X-ray diffractometer, with
the use of a CuKα X-ray source (λ = 1.54 Å). The study of the transmission in the visible
spectrum of our samples was carried out by a UV/visible Thermo spectrometer. For the
observation of the surface morphology of the layers, we used a JEOL JSM-6610LA scanning
electron microscopy (SEM) model. A Bruker SENTERRA R200L spectrometer was used to
record the Raman spectra of our samples.

Photocatalytic Measurements

To verify the photocatalytic activities of our samples, we studied the degradation of
methylene blue (MB) by UV light sources and fluorescent lamps. About the experimental
conditions, the un-doped ZnO and Sn-doped ZnO catalyst (deposited on glass substrates)
were immersed in an aqueous solution of methylene blue (MB) (15 mL) with a concentration
of 1 × 10−4 M. It started with a magnetic agitation of 30 min and a light of 120 mtr/min.
The radiation source used was a UV lamp. In this experiment, the lamp used was a Philips
GT 15 w, producing UV light of 253 nm. This lamp was placed above the substrate at a
distance of 10 cm. The calculation of the rate (percentage) of photodegradation of the MB
solutions was made by the following formula [9]:

De =

(
At − A0

A0

)
× 100 (1)

where At is the absorbance after time t, and A0 is the initial dye concentration before fading.

3. Results and Discussion
3.1. Structural Proprieties

In Figure 1, we show the X-ray diffraction patterns found for un-doped and Sn-doped
ZnO. These diffractograms confirm a hexagonal wurtzite crystal system for our films [10].
The observed X-ray patterns clearly indicate that the un-doped and Sn-doped ZnO films
exhibit good crystalline natures. The diffractograms of the un-doped and Sn-doped ZnO
obtained confirm the good crystallization of the latter. Sn doping decreases preferential
peak (002) intensity. Compared to the previous report [11], no other reflection peaks
from impurities, such as other Sn oxides, are detected, indicating high purity of the Sn-
doped ZnO product. Our results give a good crystallinity. These results confirm the better
quality of the thin layers obtained. Calculations of the interplanar distance of un-doped
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and Sn-doped ZnO were made by Bragg’s relation [11]; the results found are displayed
in Table 1:

d =
λ

2Sin θ
(2)
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Figure 1. XRD diagram of un-doped and 2% Sn-doped ZnO thin films.

Table 1. Structural parameters.

2θ (◦) d (Å) (hkl) D (nm) Lattice Parameter (Å)

Un-doped ZnO 34.36 2.60 (002) 21.69 a = b = 3.24, c = 5.2
2% Sn-doped 34.48 2.59 (002) 15.78 a = b = 3.25, c = 5.18

Grain Size

The average crystallite size of ZnO was estimated according to the Debye–Scherrer
formula [10]:

D =
0.9λ
βcos θ

(3)

where “D” is crystallite size, λ is the X-ray wavelength used, β is the “full width at half
maximum (FWHM)” of the diffraction peak, and θ is the angle measured (Braggs’ angle).
The values obtained for the crystallites of the films are given in Table 1.

According to the table, a reduction in the size of the crystallites is observed between
the undoped ZnO and the 2% Sn-doped ZnO from 21.69 nm to 15.78 nm. This decrease
is due to the effect of the ionic radius of Sn4+ (RSn4+ = 0.071 nm), which is lower than that
of Zn2+ (RZn2+ = 0.074 nm). Crystallite size varies with Sn doping, and this variation can
be attributed to the disorder of the lattice at the pellets due to the difference between the
ionic radii of ZnO and Sn [11,12]. For the hexagonal crystal, the calculations of the lattice
parameters are given by relation (3) [13]:

1
d2 =

4
3

(
h2 + hk + k2)

a2 +
l2

c2 (4)

A slight increase in unit cell parameters was observed with doping by Sn. Possibly,
this may occur due to the strong covalent bond in the a-b plane and the difference in ionic
radii between the Zn2+ and Sn4+ ions.

3.2. Morphological Properties

Figure 2 presents the SEM images of the layers of un-doped and Sn-doped ZnO, de-
posited by spin coating from a solution produced by the sol-gel method. For the observation
of the morphologies of the surfaces of the films, we used a scanning electron microscope
(SEM), and the latter provided us with a large amount of information on the surfaces of
undoped ZnO and ZnO doped with 2% Sn. The observed images show that the surfaces
are continuous, dense, and made up of spherical-shaped nanoparticles [14].
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Figure 2. SEM images of thin films of (a) = undoped and (b) ZnO doped with 2% Sn.

3.3. Optical Characterization
3.3.1. UV-Visible

The optical transmission spectra of un-doped and 2% Sn-doped ZnO thin films are
shown in Figure 3. It is observed that the transmittance is good for the two films, and the
latter varies between 75 to 96% in the visible spectrum (between 350 and 800 nm of the
optical spectrum). The transparency of thin films increases with Sn doping. This increase is
associated with the structural homogeneity and good crystallization of the prepared.
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Figure 3. Transmission curves of un-doped and Sn-doped ZnO thin films.

3.3.2. Determination of the Optical Gap

The optical band gap Eg is obtained by extrapolating the linear part of the graph
(αhν)2 with respect to (hν) to α = 0, according to the following equation [15]. It is shown
in Figure 4:

(αhν) = A(hν− Eg)n (5)

where hν is the photon energy, Eg is the band gap, and A is the absorption edge parameter.
The “n” was taken equal to 1/2 because the deposited material had a direct band gap.
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Figure 4. Optical bandgap plots for un-doped ZnO and Sn-doped ZnO thin films.

The optical band gap increased slightly when doped with Sn, and the gap values of
the un-doped and doped ZnO layers were 3.22 3.23 and 3.23 3.27 eV, respectively. This
increase may have been due to the increased carrier concentration introduced by Sn doping,
known as the Moss–Burstein effect [16]. The presence of Sn impurities in the ZnO crystal
lattice induced new recombination centers with lower emission energies, thus reducing the
bandgap energy [17].

3.4. Raman Spectroscopy

Figure 5 shows the thin layer of the Raman spectra of the un-doped and Sn-doped
ZnO obtained by the spin-coating technique. We observe two small peaks around 109 cm−1

and 439.5 cm−1, respectively, representing the two active modes E2Low and E2High [18],
and these are typical Raman peaks of ZnO. Two predominant peaks, one at 560–562 cm−1,
of the E1(LO) mode are caused by the defects of the oxygen O vacancy, Zn-interstitial
defect states, or these complexes and free carriers [19]. Researchers have suggested that
these modes relate to modes induced by point defects and can be used as indicators to
verify the incorporation of dopants introduced into the host matrix. These results obtained
from RAMAN were consistent with the results from XRD, where both samples contained
ZnO in the crystalline phase. We also noted the absence of any SnO band in the Raman
spectrum [20].
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Figure 5. Raman spectra of un-doped and Sn-doped ZnO thin films.

3.5. Photocatalysis

The photocatalytic activities of un-doped and Sn-doped ZnO prepared with various
concentrations were tested for the degradation of methylene blue (MB) under UV light
illumination, as shown in Figure 6. In the figure, we see that the absorption peak of the
methylene blue (MB) solution at 554 nm decreased along with other small peaks, which
were also decreased, indicating the decolorization process. All the samples revealed a
common trend, i.e., the concentration of methylene blue MB gradually decreased with the
lengthening of the irradiation time. Under irradiation, ZnO absorbs photons and generates
electrons and holes. Figure 6a,b demonstrated the enhancement of the photocatalytic
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performances of the ZnO thin films by Sn doping and also accelerated the photodegradation
reaction process [21].
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Figure 6. UV-Vis absorption spectra of (a) un-doped ZnO and (b) Sn-doped ZnO thin film for MB
degradation at different times.

The variation in the absorbance of methylene blue was plotted as a function of exposure
time (Figure 7). With an efficient dye photodegradation, it was observed that there was an
increasing tendency for degradation faster than un-doped ZnO for the Sn-doped ZnO sample.
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Figure 7. MB dye degradation rate at different UV irradiation times using ZnO and Sn-ZnO films
treated at 500 ◦C.

4. Conclusions

The thin layers of un-doped and Sn-doped ZnO were deposited by the spin-coating
technique. In this work, we studied the variations in the structural, optical, morphological,
and photocatalytic properties of ZnO layers by the addition of Sn doping. For the two
samples, ZnO un-doped and ZnO doped Sn, it was shown that the structures comprised
hexagonal wurtzite with preferential orientations according to (002). The microstructures
of the two samples (ZnO doped Sn at 2% and un-doped ZnO) turned out to be quite
similar with the presence of spherical grains. Given that the optical transmission was 75%
within the visible region, Sn doping gave excellent transparency in the visible range for
ZnO and an optical gap in the order of 2.23 eV. The results indicated the possibility of the
application of un-doped ZnO and ZnO-Sn (2%) as photocatalysts for the photodegradation
of methylene blue.
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