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Abstract: In this investigation, an artificial-neural-network-based mathematical model was developed
for the prediction of nickel adsorption data. As input variables, the initial concentration, adsorbent
dosage, and pH of the nickel solution were chosen, while the removal efficiency was chosen as an
output variable. The hyperparameters were optimized to determine the perfect topology for the
model. The study demonstrated that the 3-2-1 ANN architecture was the most suitable topology. The
determination coefficient of 0.98 and the mean squared error of 0.02 indicated the high performance
of the developed model, which was successfully applied for isotherm data prediction.
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1. Introduction

Nowadays, due to the rapid increase in industrial production, a massive amount of
industrial effluent is being created and released into the aquatic system. Heavy metal
contaminants found in wastewater and industrial effluent include cobalt, nickel, lead,
and copper. A high concentration of these heavy metals can induce acute or chronic
poisoning [1–3]. Nickel is a toxic, non-biodegradable, and carcinogenic metal that can
cause several health problems, including chronic asthma, dermatitis, and cancer. The
permissible limit set by WHO for drinking water is 0.01 mg/L, whereas for wastewater it is
2 mg/L [3–5].

Several chemical and physical methods are used for heavy metals removal, such as
chemical precipitation, ion exchange, electro-coagulation, and solvent extraction. However,
most of these methods have been shown to have several drawbacks, i.e., a high cost and
high energy consumption. Adsorption, on the other hand, has proven to be a more effective,
simple, and less expensive method for heavy metals removal [1,6].

For heavy metal adsorption, several low-cost adsorbents have been studied. One of
the most promising materials in this sector is natural zeolite. Natural zeolite is a porous
hydrated aluminosilicate mineral with a three-dimensional structure. The fundamental
building blocks of zeolite are SiO4 and AlO4, and the isomorphic substitution of Si+4 by Al+3

provides a net negative charge on the framework surface, which is balanced by alkaline
and alkali-earth metals, such as Na+, Ca+, K+, and Mg+2 [4,7].

An artificial neural network (ANN) is a reliable, rebuttable, and powerful mathemat-
ical tool of the artificial intelligence (AI) family. It correlates the non-linear relationship
between input and output variables for complex problems [8,9]. The principal objective
of this paper was to develop a mathematical model based on ANN simulation for nickel-
adsorption data prediction. Fifteen data sets were collected from our previous work [4]
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and divided into training and validation sets (70/30). The ANN architecture and the
hyperparameters were optimized to find the best topology. In addition, the performance
of the model was evaluated by minimizing the Mean Squared Error (MSE) for both the
training and validation sets. The ANN model was validated by predicting the removal
efficiency of nickel adsorption, and finally, it was tested for isotherm prediction to confirm
the adequacy of the model.

2. Materials and Methods
2.1. Data Collection

The data used in the current paper for the development of a mathematical model
based on an ANN for the prediction of nickel removal in aqueous solutions came from our
previous work [4]. In our previous paper, we studied the adsorption of nickel using a NaCl-
activated natural zeolite where the adsorption parameters, such as the initial concentration,
adsorbent dosage, and pH of the nickel solution, were optimized using the Box–Benkhen
design as a response surface methodology. The adsorption process was comprehensively
described in [4]. The same data were used for the development of an ANN model where
the initial concentration, adsorbent dosage, and pH of the nickel solution were selected as
the input variables. On the other hand, nickel removal was chosen as the output variable.
The selected data are summarized in Table 1.

Table 1. Data ranges used for ANN model development (modified after [4]).

Input Data Range Output

Min Max Mean

Nickel removal (R %)
Initial concentration (mg/L) 10 150 80
Adsorbent dosage (mg/g) 0.1 0.5 0.3

pH 3 6 4.5

2.2. ANN Model

An artificial neural network is a powerful tool of artificial intelligence that is inspired
by the human brain concept. This tool simulates the working principles of human intel-
ligence in the human brain, which makes it a very powerful approach for solving many
complex problems, such as regression or classification problems. The ANN architecture
consists of three layers, namely input, hidden, and output. Each layer has a number of
neurons, which are linked to each other, forming different architectures of the ANN [9,10].
In this paper, a 3-12-1 ANN architecture was adopted with three input variables (initial
concentration, adsorbent dosage, and pH), twelve neurons in the hidden layer, and one
output layer (nickel removal). The best architecture is shown in Figure 1.

In general, the data is divided into three sets, such as training, validation, and testing.
But in this research, 15 data points are not enough to satisfy this condition. As a result,
the data were randomly divided into two sets: training and validation. A total of 70% of
the data was used for training and the remaining for validation. The ANN model was
performed using Matlab software. A trainlm function based on Levenberg–Marquardt
was applied for back-propagation training. The tan-sigmoid (tansing) and linear (purelin)
transfer functions were applied at the hidden and output layers, respectively.

The equation that defines the process of ANN work is presented as follows [10]:

yj = f

(
Bj +

n

∑
i=1

wjiXi

)
(1)

where yj is the output variable, f is the transfer function, Bj is the bias in the hidden layer, n
is the number of neurons in the hidden layer, wji is the connection weights between the
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input and hidden layers, and Xi is the input variable. To avoid overfitting or underfitting,
the data were normalized in the scaled range of −1 to 1, using Equation (2) [11]:

Rnor =
(Mmax − Mmin)(yi − Min(yi))

(Max(yi)− Min(yi))
+ Mmin (2)

where Rnor is the normalized data, and Mmax and Mmin are the maximum and minimum
values of the scaling range, respectively. yi is the actual data. Max(yi) and Min(yi) are the
maximum and minimum values of the actual data, respectively.
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Figure 1. 3-12-1-ANN model architecture.

2.3. ANN Optimization

To find the best architecture for the ANN model, the hyperparameters, such as neuron
numbers, transfer function type, and learning rate, should be optimized. In this work,
the hidden neurons varied from 1 to 15, as shown in Figure 2. The best architecture was
selected based on relative mean square error (RMSE) values for both the training and
validation sets [12,13]. The optimum number of neurons was 12, where the RMSE values
for the training and validation sets were as minimal as possible and converged to almost
the same value.

Phys. Sci. Forum 2023, 6, 4 4 of 9 
 

 

 

Figure 2. Evaluation of training and validation RMSE values against hidden layer numbers. 

3. Results 
3.1. ANN Performance 

The performance of the model was evaluated based on the variation of the mean 
squared error (MSE) as a function of the number of training cycles. As shown in Figure 3, 
the training stopped after three epochs, and the best validation performance was 0.02 at 
epoch 1. In addition, Figure 4 shows the regression plot for the model. R2 values for both 
the training and validation sets are above 90%, which indicates the high accuracy of the 
ANN model [14]. 

 
Figure 3. Performance of the ANN model. 

Figure 2. Evaluation of training and validation RMSE values against hidden layer numbers.



Phys. Sci. Forum 2023, 6, 4 4 of 8

3. Results
3.1. ANN Performance

The performance of the model was evaluated based on the variation of the mean
squared error (MSE) as a function of the number of training cycles. As shown in Figure 3,
the training stopped after three epochs, and the best validation performance was 0.02 at
epoch 1. In addition, Figure 4 shows the regression plot for the model. R2 values for both
the training and validation sets are above 90%, which indicates the high accuracy of the
ANN model [14].
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3.2. Mathematical Model Development

For the development of a mathematical model for data prediction, the simulated ANN
was transformed into a mathematical equation that relies on the input variables with the
output variable, based on the weights and biases extracted from the model in conjunction
with the transfer function. The overall equation can be written as follows [10]:

y = b0 +
n

∑
k=1

[
wk × fsig

(
bnk +

m

∑
i=1

wik × Xi

)]
(3)
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where b0 is the bias in the output layer, n is the number of neurons in the hidden layer,
wk is the connection weights between the hidden and output layers, fsig is the transfer
function, bnk is the bias at each neuron in the hidden layer, m is the number of neurons in
the input layer, wik is the connection weights between the input and hidden layers, Xi is the
normalized input data, and y is the normalized output data.

In the present paper, the mathematical model was constructed based on the weights
and biases extracted from the 3-12-1 ANN model. The extracted values of biases and
weights are presented in Table 2.

Table 2. Extracted weights and biases of the ANN model.

n 1 Weights Biases

Ic 2 Ad 3 pH R (%) bnk b0
n = 1 2.53 1.63 0.87 0.09 −3.26

−0.18

n = 2 2.40 1.44 −1.56 −0.05 −2.61
n = 3 1.73 1.06 −2.48 −0.79 −2.03
n = 4 2.59 1.10 −1.49 0.47 −1.52
n = 5 −0.17 −2.19 −2.29 0.65 0.89
n = 6 2.16 −0.13 2.36 −0.38 −0.28
n = 7 −0.89 2.17 2.41 0.72 −0.33
n = 8 −1.52 −1.39 −2.43 −0.17 −0.94
n = 9 −0.01 −3.05 0.98 −0.50 −1.43
n = 10 −2.21 −1.02 −2.10 0.20 −2.00
n = 11 2.51 2.01 −0.56 −0.78 2.54
n = 12 −2.56 −1.85 0.23 −0.33 −3.23

1 Neurons number. 2 Initial concentration. 3 Adsorbent dosage.

Using the information mentioned in Table 2, the Equation (3) is transformed into the
Equation (4) as follows:

Rnor = b0 +
n

∑
i=1

Bn (4)

Bn is unknown and can be calculated using Equation (5):

Bn = wn−outptanh(An) (5)

An is also unknown and can be calculated using Equation (6):

An = bnk + wn−inp IC + wn−inp Ad + wn−inp pH (6)

where IC is the initial concentration, Ad is the adsorbent dosage, n is the number of
neurons, and wn-in p and wn-outp are the connection weights in the input and output layers,
respectively. The final equation used for predicting the nickel removal after de-normalizing
the data is presented as follows:

R(%) = 21.635Rnor + 74.365 (7)

4. Discussion
4.1. ANN Validation

In order to validate this model, it was tested for predicting the adsorption efficiency
and compared to the original data. Figure 5 shows the original data compared to the
predicted data, and Figure 6 shows their error histogram. It is observed that the data follow
a straight line with an R2 value of 0.98, indicating the validation and high accuracy of the
model. Furthermore, the error between the output and the target is very low. Therefore,
the model can be chosen as appropriate for predicting future data.
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4.2. Isotherm Prediction

To confirm the accuracy of the model for an important study on the adsorption process,
the model was tested for predicting the data for an isotherm study, and the obtained
results were compared to the original results. Figure 7 shows the predicted isotherm plot
(Figure 7b) against the original isotherm plot (Figure 7a), and Table 3 summarizes the
predicted isotherm parameters.
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Table 3. Predicted isotherm parameters using ANN model.

Isotherm Model Isotherm Parameters R2 adjR2 RMSE ARE

Langmuir isotherm Qm K1
0.993 0.991 0.85 0.54

28.92 (mg/g) 0.08
(L/mg)

Freundlich isotherm
Kf nf

0.94 0.92 2.47 0.815.74 2.95

Redlich–Peterson isotherm
arp krp β

0.996 0.993 0.74 0.500.15 3.05 0.91

One can see from Figure 7 and Table 3 that the best isotherm model to fit the pre-
dicted data by the ANN model was the Redlich–Peterson isotherm, which has the highest
correlation coefficient of 0.996, an adjusted R2 of 0.993, and the lowest ARE and RMSE
values. These results are very consistent with the experimental results. In addition, the
predicted maximal adsorption capacity (Qm = 28.92) was very close to the experimental
value (Qm = 28.79), with a standard deviation of−0.13. As a result, the developed ANN
model was a valid and appropriate model for nickel-adsorption data prediction.

5. Conclusions

In this work, an ANN model was developed for nickel-adsorption data prediction. The
latter was transformed into a simple mathematical equation that correlated the input with
the output data using the weights and biases extracted from the model. The ANN model
showed a high R2 of 0.98, which indicates the high accuracy of the model. In addition, the
model was tested for isotherm data prediction, where the prediction data were in agreement
with the experimental data. The developed ANN model was accurate and appropriate for
nickel-adsorption data prediction.
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