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Abstract: Modern day Bayesian imaging problems in astrophysics as well as other scientific areas
often result in non-Gaussian and very high-dimensional posterior probability distributions as their
formal solution. Efficiently accessing the information contained in such distributions remains a core
challenge in modern statistics as, on the one hand, point estimates such as Maximum a Posteriori
(MAP) estimates are insufficient due to the nonlinear structure of these problems, while on the other
hand, posterior sampling methods such as Markov Chain Monte Carlo (MCMC) techniques may
become computationally prohibitively expensive in such high-dimensional settings. To nevertheless
enable (approximate) inference in these cases, geometric Variational Inference (geoVI) has recently
been introduced as an accurate Variational Inference (VI) technique for nonlinear unimodal probability
distributions. It utilizes the Fisher–Rao information metric (FIM) related to the posterior probability
distribution and the Riemannian manifold associated with the FIM to construct a set of normal
coordinates in which the posterior metric is approximately the Euclidean metric. Transforming
the posterior distribution into these coordinates results in a distribution that takes a particularly
simple form, which ultimately allows for an accurate approximation with a normal distribution.
A computationally efficient approximation of the associated coordinate transformation has been
provided by geoVI, which now enables its application to real-world astrophysical imaging problems
in millions of dimensions.

Keywords: variational methods; Bayesian inference; Fisher information metric; Riemannian manifolds;
inverse problems

1. Introduction

Bayesian astrophysical imaging is a large and growing task within the field of as-
trophysics. It has a rather unique setting in the context of generic imaging problems.
While the information provided by the data of modern telescopes is vast and very rich
in detail, it remains almost negligible compared to the richness and complexity of the
cosmos. Accurate uncertainty quantification is therefore an absolute necessity, but facing
the real-world sizes of problems is a challenge. Numerical approximations are a common
approach to tackle this issue. Recently, the software package Numerical Information Field
Theory (NIFTy [1]) has been developed and continuously improved to provide a frame-
work for algorithmic realizations to solve real-world imaging tasks. The recent version
of NIFTy (https://gitlab.mpcdf.mpg.de/ift/nifty, accessed on 31 October 2022) provides
the geometric Variational Inference (geoVI [2]) algorithm as its standard approximation
method to solve inference problems. In this work the geoVI algorithm, its performance in
the context of imaging, and the general problem setup of Bayesian astrophysical imaging
are discussed.
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1.1. Probabilistic Reasoning

In general, reasoning under uncertainty requires application of the updating rule for
probabilities provided via the product rule. For well-defined cases, the derivation and
intuitive validity of Bayes theorem is straightforward, provided the complete set of rules of
probabilistic logic. Specifically, updating one’s belief P(s) about a signal s in light of novel
(observational) information d, given the likelihood of retrieving this information P(d|s),
yields an updating rule of the form

P(s|d) = P(d|s) P(s)
P(d)

. (1)

In the simplest case of (Bayesian) astrophysical imaging, the signal s describes an
image, e.g., the monochromatic brightness distribution of flux observable within a field
of view (FOV). In this case, s is a scalar function that assigns a brightness value to each
location within the FOV. In generic astro imaging problems, the scalar image is likely to be ex-
changed for a more complicated object such as an all-sky image in spherical coordinates [3–6],
a multi-chromatic (multi-frequency) image [7,8], a time-variable [9,10] or vector-valued func-
tion [11], a three-dimensional function describing the density distribution of objects in our
local galactic [12–14] or cosmic [15–22] neighborhood, or even a combination of multiple
functions that have to be inferred simultaneously [23].

In all cases s is a field, i.e., an object with infinitely many degrees of freedom (DOF). In
this work, the numerical approximation of distributions over images shall be discussed. A
necessary prerequisite is the existence of a consistent discretization in order to represent the
image on a computer. This results in a high—but finite—dimensional approximation of the
original infinite dimensional inference problem. For the sake of simplicity, in this work, the
existence of a consistent discretization is assumed, henceforth, only the finite dimensional
representation of s shall be considered. From now on, s describes a real-(or complex-)valued
vector that contains discretized values of a random process, and the distribution P(s) is
defined over a continuous finite-dimensional configuration space. For a detailed discussion
regarding the discretization consistency of random processes considered in this work,
please refer to [24]. In contrast, the observational information (or data) d is by definition
always finite dimensional. Nevertheless, in the context of astrophysical imaging, it is
usually also very high-dimensional, as the information gathered by modern day telescopes
is vast and extremely rich in detail in almost all areas of the field.

Finally, our prior knowledge regarding the cosmos as well as the measurement pro-
cesses involved has grown vast and detailed, which in general yields prior P(s) and
likelihood P(d|s) distributions that are non-conjugate and often give rise to non-Gaussian
and intractable joint distributions P(d, s).

1.2. Posterior Approximation

In order to access the information encoded within the updated distribution (aka
the posterior) P(s|d), integration over P(s|d) must be feasible. Intractable distributions,
however, do not allow for analytic integration; therefore, approximations are a necessity.
Fast and accurate approximation of continuous probability distributions is a longstand-
ing problem within probability theory, and the approaches to its solution are vast and
range from point estimates over variational inference methods [25–31] to direct posterior
sampling techniques, such as Markov Chain Monte Carlo [32–36] and nested sampling
methods [37–39]. In the context of astrophysical imaging a set of desired properties for any
approximation method arises:

• Accuracy: The approximation must be accurate even in the case of non-Gaussian and
non-conjugate posterior distributions.

• Scalability: Scalability in both the number of data points and the number of DOFs of s
are of utmost importance. In practice, only methods with a quasilinear scaling in both
are fast enough to cope with the sizes of realistic problems in astrophysical imaging.
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• Efficiency: Any method must allow for an efficient implementation that makes use of
available computational resources as well as possible, as linear scaling alone does not
necessarily yield a fast approximation algorithm, if the resources are not used efficiently.

In this work, the implications of the geoVI method as an approximation algorithm
for generic imaging and high-dimensional continuous inference tasks is discussed. GeoVI
builds upon a strong foundation of well known and successful VI methods such as the
mean-field (MF) approach [25], Automatic Differentiation VI (ADVI) [28], Metric Gaussian
VI (MGVI) [40], and VI with Normalizing Flows (NF) [27] and additionally shares consider-
able conceptual overlap with a recently introduced MCMC method named Riemannian
manifold Hamilton Monte Carlo (RMHMC) [41]. It aims to fulfill all the above desired
properties for astrophysical imaging and provides a tunable tradeoff between the accuracy
and the overall runtime of the approximation.

2. Geometric Variational Inference

In general, VI aims to approximate the intractable posterior distribution P via a
tractable one Q, where the approximation Q is chosen such that it minimizes the forward
Kullback–Leibler (KL) divergence between P and Q

KL[Q|P] ≡ −
∫

log
(

P
Q

)
dQ ≈ − 1

M

M

∑
i=1

log

(
P
(
ξ i)

Q
(
ξ i
)); ξ i ∼ Q(ξ) , (2)

where dQ stands for integration over the probability measure Q, and the right hand side is
an approximation of the integral using a finite set of M random realizations generated from
Q. The KL may be regarded as an information distance between probability distributions,
and minimizing it yields minimal information difference between P and Q. As shown
in [42], however, optimal approximation of information is achieved when minimizing the
backward KL, i.e., KL[P|Q], as this leads to a minimal loss of information when utilizing Q
instead of P. In contrast, minimizing the forward KL yields, in some sense, a minimal gain
of artificial information. Nevertheless, as can be seen by the Taylor expansion of the KL [2],
the forward and backward KL are equivalent up to and including second order. Therefore,
in the case where Q provides a close match for P, the result also becomes near optimal. In
practice, typically a parametric family of distributions {Qm}m is defined, and the optimal
parameter configuration m∗ is chosen via minimization of the KL with respect to m. The
success of VI methods critically depends on the closeness of the parametric family to the true
distribution. In geoVI, this closeness is achieved by deriving a coordinate transformation
from the true posterior P, in which P approximately takes the form of a single standard
normal distribution (in the case of multi-modality, it takes the form of multiple standard
normal distributions), and approximating P in this coordinate system with a standard
normal distribution Q (see Figure 1). The coordinate transformation is derived from the
Fisher–Rao information metric (FIM) [43], associated with the distribution P.

2.1. Coordinate System

The full coordinate transformation consists of two consecutive steps. First, the pos-
terior is reformulated in the standard coordinates of the prior distribution. The standard
coordinate system ξ is the one in which the prior takes the form of a standard normal
distribution; therefore, a transformation f (ξ) may be set up such that

P(s) = ( f ? P(ξ))(s) =
∫

δ(s− f (ξ))N (ξ; 0,1) dξ , (3)

where ? denotes the push-forward of a distribution represented in one coordinate system ξ
transformed into another one s via the transformation f . In the last term, we made the fact
that P(ξ) is a standard normal distribution explicit.
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Figure 1. Schematic representation of the geoVI approximation technique. The approximate coordi-
nate transformation gm is used to transform from the standard coordinate system of the prior ξ, in
which the nonlinear posterior distribution P(ξ|d) is defined, to the coordinate system y, in which the
metric becomes (approximately) the Euclidean metric. The transformed posterior distribution P(y|d)
is then approximated with a standard normal distribution, and random realizations drawn from this
normal distribution represent the approximate posterior samples (black dots) of the geoVI algorithm.
Transforming those realizations back into the original coordinates ξ via application of the inverse of
gm results in a set of approximate posterior samples for the original posterior distribution P(ξ|d). In
practice, the inverse application of gm is realized by numerically solving the equation y = gm[ξ] for ξ.

Fisher–Rao Metric and Normal Coordinates

In the standard coordinate system of the prior, the posterior takes the form

P(ξ|d) ∝ P(d|s = f (ξ)) N (ξ; 0,1) . (4)

This representation of the posterior is used to define the second transformation using
the so-called metric of the posteriorM. This metric consists of the FIM of the likelihood
Mlh, joined by the identity matrix serving as a distance measure from the curvature of the
prior.Mlh is given in terms of the likelihood as

Mlh(ξ) = −
∫

∂2 log(P(d|ξ))
∂ξ∂ξ

P(d|ξ) dd (5)

and the posterior metric is defined to be

M(ξ) ≡Mlh(ξ) + 1 =

(
∂x
∂ξ

)† ∂x
∂ξ

+ 1 , (6)

where we additionally defined x(ξ) = x(s(ξ)) as the function that maps onto the coordinate
system, where the FIM takes the form of the identity matrix. Here, † denotes the adjoint
of a matrix. See [2] for a list of common likelihood classes, their metricsMlh, and their
associated transformations x.

The metricM serves as the constructing point of the coordinate system utilized by
geoVI. Specifically, a set of normal coordinates is constructed around a point m, where the
metric becomes flat within a local neighborhood. The coordinates y and their associated
transformation gm take the form

y = gm[ξ] =
√
M

ξ −m +

(
∂x
∂ξ

)†

(x(ξ)− x)

 , (7)



Phys. Sci. Forum 2022, 5, 6 5 of 10

where • denotes a function of ξ being evaluated at m, and
√
M denotes the matrix square

root ofM. See Figure 1 for a visualization of the effect of the coordinate transformation on
probability densities.

Finally, the approximation Q is defined using the invertible transformation gm

Qm(ξ) =
(

g−1
m ? Q(y)

)
(ξ) =

(
g−1

m ?N (y; 0,1)
)
(ξ) . (8)

The VI task reduces to optimizing the KL between P and Qm with respect to the
optimal expansion point m. In practice, this optimization problem is solved using a
stochastic estimate of the KL and a set of samples generated from Q using the current best
estimate of m.

3. A Simple Imaging Example

Two of the demands in Section 1.2, namely accuracy and efficiency have already been
studied and discussed in [2] for the geoVI algorithm. For a posterior with a single suf-
ficiently dominant mode the approximation becomes fairly accurate, in particular for
distributions that deviate from a normal distribution in a monotonic fashion. It also al-
lows for an efficient algorithmic realization due to the fact that both sample generation
and model evaluation trivially parallelizes over multiple samples allowing for the usage
of high-performance computing clusters. Only evaluating the KL requires an average
over all samples (see Equation (2)) and therefore requires communication between nodes
during runtime.

What remains to be demonstrated is the linear scalability of the algorithm. To do so,
we set up a simple, yet realistic, two-dimensional imaging task and increased its resolution
and number of measurements to study the scaling of the runtime of the algorithm as a
function of resolution.

The mock imaging problem was given using a data model of the form

d = R es + n with P(n) = N (n; 0, N) , (9)

with N being the known noise covariance, and R denoting a linear measurement. For the
simplest case, we chose R to be an evaluation operator that measures es at multiple locations
in space. For the displayed examples, R was set to measure ∼1% as many locations as there
were numbers of pixels in the space on which s was discretized, which were randomly
selected. Furthermore, N was set to be a diagonal matrix with the same noise standard
deviation σN for all measurements. The log-signal s was assumed to a priori follow a
statistically homogeneous and isotropic Gaussian random process, fully specified via its
power spectrum Ps. The functional form of Ps was also assumed to be unknown a priori;
therefore, it was to be inferred from the observations as well. A suitable prior for Ps based
on an integrated Wiener process on double-logarithmic scale, as well as the reformulation
of the joint random process for s and Ps as a generative process, was discussed in detail
in [9]. Both quantities have to be inferred simultaneously, and their joint distribution was
approximated using geoVI. Figure 2 displays the measurement setup, a mock example,
and the reconstruction thereof. While the setup was simple and free from additional
measurement effects such as point-spread functions, unknown or non-Gaussian noise
statistics, and instrument calibration effects, it did cover the relevant challenges arising
in imaging, such as a sparse and irregular measurement coverage (see top right panel of
Figure 2) and missing prior information regarding relevant correlation scales. As can be
seen, geoVI appears to be able to accurately solve such imaging problems. It not only
recovered the distribution of s (and es) accurately but also the posterior distribution of Ps. A
detailed study of the overall reconstruction quality is beyond the scope of this work (see [2]
for an in depth study). Nevertheless, qualitatively, we see that the posterior standard
deviation map, shown in Figure 2, covered relevant aspects of the remaining posterior
uncertainties. At the measurements, the uncertainty was small, and the information gained
from these locations also informed their neighborhood. Multiple nearby measurements
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could also efficiently constrain a larger area together leading to a structured uncertainty map
that depended on the measurement layout in a nontrivial fashion. Finally, the recovered
posterior distribution of the prior spectra Ps also qualitatively provided meaningful results.
The uncertainty increased towards smaller scales (larger values of |k|) as the measurement
setup overall provideed less information regarding these scales compared to larger scales.

Figure 2. Visualization of the example 2D-imaging problem and its solution. The ground truth (top-
left), posterior mean (bottom-left), and two posterior samples (both middle panels) are depicted for the
observed image exp(s). The top right panel displays the reconstructed posterior pixel-wise standard
deviation, with the measurement locations (red crosses) superimposed. For the measurement setup a
noise standard deviation of σN = 0.01 was used to generate the data. In the bottom right panel, the
mock prior power spectrum (purple), the posterior mean spectrum (yellow), and a set of posterior
samples (thin gray) are depicted on a log-log scale.

Scaling Behavior

To verify the linear scaling, we repeated the same measurement setting while simul-
taneously increasing the number of pixels and number of measurements. The ratio of 1%
between pixels and measurements was held fixed. Note that increasing the number of
pixels resulted in an even larger increase in the total number of DOF that had to be inferred,
as Ps also obtained additional DOF due to the fact that previously unresolved small scales
became part of the inference problem enlarging the space on which Ps was defined.

For simplicity, we switched the setup to a one-dimensional setting and defined s on a
one-dimensional space. All other aspects (random measurements and the unknown prior
correlation structure) of the imaging problem were retained, and the task remained to
approximate the distribution of s and Ps simultaneously. Figure 3 displays the runtime
of the geoVI algorithm as a function of the number of DOF and number of data points.
All size configurations were run 10 times, and the mean and standard deviation of the
runtime are depicted. To avoid a bias towards specific configurations, all parameters of
each run were regenerated randomly. This included: the mock spectrum Ps, used to define
the prior statistics from which a random realization of the signal s was drawn, the noise
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configuration n to define the data d, and the measurement locations of the response layout
R. As can be seen in Figure 4, the variability of the spectral prior was large, leading to
a variety of different mock setups. This variability translated into the overall runtime of
geoVI. To ensure a valid comparison, we made use of the ground truth realization available
to define a set of error measures between the ground truth, the data, and the reconstruction.
Only in the case when all the error measures were within accepted ranges did we terminate
the geoVI algorithm and claim convergence. The error measures are based on the root
mean square values. Specifically,

RMSd =

√√√√ 1
]Data

]Data

∑
i=1

(d− Res)2
i

σ2
N

RMSξ =

√√√√ 1
]DOF

]DOF

∑
i=1

(
ξgt −Mean(ξ)

)2
i

Var(ξ)

RMSes =

√√√√ 1
]Pix

]Pix

∑
i=1

(esgt −Mean(es))2
i

Var(es)
, (10)

where ]Data, ]DOF, and ]Pix stands for the total number of data points, DOFs, and pixels,
respectively. Mean and Var denote the posterior mean and variance recovered by geoVI for
the respective quantities, ξ denotes the standard coordinates of the prior distribution, and
ξgt and sgt are the mock (ground truth) realizations of the prior process used to generate
the measurement data.

Figure 3. Runtime of the geoVI algorithm as a function of the number of DOF and number of data
points. All runs were performed on a single core of a 12th Gen Intel Core i7-1260P processor. For
each size configuration, 10 independent runs with different random realizations were performed.
The black dots and the gray bars denote the mean and standard deviation of these runs, respectively.
The red line is the optimal linear fit to the mean and standard deviations.

For each scaling run, convergence was defined once all three RMS values were within
the range 0.5 ≤ RMS ≤ 1.5. Together, this ensured that the algorithm’s output was com-
parable to the data within the measurement uncertainties, while simultaneously similar
to the mock input signal, within the uncertainty estimate provided by geoVI itself. In
addition, a maximal number of iteration steps was set, as for some realizations the method
did not reach convergence in terms of the three RMS values. This indicates that the actual
realization of the process also significantly affects the convergence speed in addition to
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the size of the problem. Nevertheless, given Figure 3, we may conclude that the geoVI
algorithm does scale linearly with the size of the problem. The variance between runtimes
increased as a function of size, indicating that with the increasing problem size, the config-
uration of the problem (the form of the correlation structure and measurement locations)
became increasingly relevant for the runtime until convergence. A detailed study of the
configurations and their impact on the runtime is beyond the scope of this work. For
now, we note that the variability of configurations used to determine the scaling behavior
was large, possibly beyond what is to be expected for realistic settings, as can be seen in
Figure 4.

Figure 4. Random realizations of the joint prior process of the observed signal exp(s) (left) and
corresponding power spectra Ps (right). Matching colors in both panels correspond to samples that
belong together. Specifically, each spectrum on the right is randomly generated and the used as the
prior power spectrum for a log-normal process to generate the corresponding realizations on the left.

4. Conclusions

In this work Variational Inference, in particular geoVI, was discussed in the broader
context of Bayesian astrophysical imaging. After discussing the general idea of the method,
a simple and generic, yet still practically relevant, imaging problem was set up and solved
for. GeoVI was able to accurately solve the problem by approximating the joint posterior
of the image and its correlation structure encoding the power spectrum via a set of ap-
proximate posterior samples. Furthermore, three design criteria, accuracy, efficiency, and
scalability, relevant for any approximation algorithm that aims to solve real-world astro-
physical imaging problems were discussed. In particular, for scalability it was quantitatively
demonstrated that geoVI scaled linearly with the number of measurement observations
as well as the total number of DOF to be inferred from the data. The strong variability
of the overall runtime with different problem realizations, however, which appeared to
increase as a function of DOF as well, had a significant impact on the realized runtime
given a specific problem. A more indepth study of the performance as a function of other
aspects of the imaging problems besides problem size is necessary.

Furthermore, while the current form of geoVI makes it a readily available and powerful
inference tool, there remains a variety of further developments open for the future. Accurate
error quantification of VI methods in general remains a challenge, and further investigations
regarding the impact of the various approximations within geoVI have to be performed.
In addition, its approximation capability in more general inference problems with more
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complex measurement setups and noise statistics has to be studied more quantitatively.
A further increase in accuracy might also be possible by improving the chosen set of
normal coordinates, although care must be taken not to suffer a loss in efficiency. Finally, to
enable generic posterior approximation, the limitations caused by the expansion around a
single mode have to be overcome in general multimodal settings. As of now, it remains
unclear how exactly this problem should be approached. A lot of future work and further
development in both theoretical and algorithmic directions remains to be conducted; at the
same time, the current state of geoVI enables the solution of large-scale imaging problems
to a degree of accuracy that has previously been inaccessible.
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