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Abstract: The inverse Ising model is used in computational neuroscience to infer probability distri-
butions of the synchronous activity of large neuronal populations. This method allows for finding
the Boltzmann distribution with single neuron biases and pairwise interactions that maximize the
entropy and reproduce the empirical statistics of the recorded neuronal activity. Here, we apply this
strategy to large populations of retinal output neurons (ganglion cells) of different types, stimulated
by multiple visual stimuli with their own statistics. The activity of retinal output neurons is driven
by both the inputs from upstream neurons, which encode the visual information and reflect stimulus
statistics, and the recurrent connections, which induce network effects. We first apply the standard
inverse Ising model approach and show that it accounts well for the system’s collective behavior
when the input visual stimulus has short-ranged spatial correlations but fails for long-ranged ones.
This happens because stimuli with long-ranged spatial correlations synchronize the activity of neu-
rons over long distances. This effect cannot be accounted for by pairwise interactions, and so by the
pairwise Ising model. To solve this issue, we apply a previously proposed framework that includes a
temporal dependence in the single neurons biases to model how neurons are driven in time by the
stimulus. Thanks to this addition, the stimulus effects are taken into account by the biases, and the
pairwise interactions allow for the characterization of the network effect in the population activity
and for reproducing the structure of the recurrent functional connections in the retinal architecture. In
particular, the inferred interactions are strong and positive only for nearby neurons of the same type.
Inter-type connections are instead small and slightly negative. Therefore, the retinal architecture
splits into weakly interacting subpopulations composed of strongly interacting neurons. Overall, this
temporal framework fixes the problems of the standard, static, inverse Ising model and accounts for
the system’s collective behavior, for stimuli with either short or long-range correlations.

Keywords: inverse problems; maximum entropy; computational neuroscience; retinal ganglion cells;
neuronal recordings; multi-electrode array experiments; time-dependent stimulus statistics

The inverse Ising model (IM) is a modeling strategy to infer Boltzmann distribution
with pairwise interactions from data. In systems biology, it has been applied to model the
behavior of large systems with many units that interact one with another, ranging from
neuronal ensembles in both early sensory systems [1–4], to cortex [5–10] and neuronal
cultures [1,11], proteins [12–15], antibodies [16] and even flocks of birds [17]. To better
understand the effectiveness of the inverse IM in modeling biological data, empirical
benchmarks [18] and several theoretical investigations [19–22] have also been performed.

The inverse IM approach neglects any temporal evolution of the system and assumes
that its activity can be described as a stationary state [1]. Although this simplification works
well in many practical applications, it cannot lead to a satisfying model when the system is
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strongly driven by external stimuli [4,10,23,24]. In this study, we consider the activity of
retinal output neurons in response to visual stimuli with different statistics and show that
the inverse IM approach fails in accounting for the empirical statistics when the stimulus
has strong and long-ranging correlations. To solve this issue, the inverse IM framework
has been extended to include the effects of time-varying external stimuli into the activity of
the retinal output neurons [23]. More recently [4,25], this time-dependent framework has
been empowered by focusing on a population of retinal neurons of the same type. Here,
we perform a step further and consider the case of a population of neurons of two different
types, subject to two external stimuli with very different statistics. Then, in accordance with
previous results [4], we show that the temporal framework also provides a very effective
model when the visual stimulus has strong and long-ranged correlations.

We conclude our work by analyzing the properties of the inferred functional inter-
actions between retinal neurons. Neurons of the same type are evenly spaced over a
two-dimensional triangular lattice, forming regular mosaics [26]. The inferred interactions
are strong and positive only for nearby neurons of the same type, whereas distant neu-
rons do not interact directly. Connections between neurons of a different type are instead
small (or sometimes slightly negative), as they are for nearby cells . Therefore, the retinal
architecture splits into weakly interacting subpopulations of strongly interacting neurons.

1. Recording of Retinal Ganglion Cells

We focus on the activity of two populations of 18 ON and 25 OFF rat retinal output
neurons (known as ganglion cells) [27], recorded during one ex-vivo multi-electrode array
experiment [28]. These experiments allow one to measure the times at which each neuron
emits a spike in response to an ongoing visual stimulation. ON and OFF neurons have
opposite polarities, meaning that they respond preferentially to, respectively, an increase
or decrease of light intensity [26]. Additionally, thanks to standard techniques [28], it is
possible to locate the position of each neuron within the two-dimensional retinal output
layer (Figure 1A). To validate our results, we also consider a second experiment where
21 ON and 32 OFF retinal output neurons were stimulated with the same videos.

During the experiments, the retina was stimulated by two different black-and-white
videos repeated multiple times (Figure 1B,C): a white-noise checkerboard stimulus with
strong but short-ranged spatial correlations, and a full-field video whose luminosity flick-
ers over different grey values, i.e., with strong spatial correlations that extend over the
entire scene.

After binning the spiking activity with small windows of ∆t = 20 ms, we can associate
to each neuron i in each time-bin t during repetition r a binary variable σr

i (t) equal to +1
if the neuron spiked in the time-bin or −1 if not. Thanks to this preprocessing, we end
up with a sequence of snapshots of neuronal activity {σr

i (t)}N
i=1, which can be seen as

observations of system configurations. At first, we estimated each neuron’s mean activity,
that is, the average of σr

i (t) over the recordings. Mean activities in response to the two
stimuli were very similar (Figure 1D,E), for both type of neurons. However, covariances
were different across stimuli: the checkerboard induced strong, short-ranged correlations,
whereas the full field induced strong correlations over longer distances (Figure 1F,G).
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Figure 1. Retinal multi-electrode array experiments. OFF neurons and OFF–OFF pairs are in red, ON
and ON–ON pairs are in blue, and OFF–ON pairs in yellow. (A) Physical positions of the recorded
neurons within the two-dimensional retinal output layer. Each dot correspond to a neuron. (B,C) Two
considered stimuli are checkerboard and full-field flicker. (D,E) Distribution of single neuron mean
activities. (F,G) Pairwise covariances as a function of the physical distance between the neurons.

2. Inverse Disordered Ising Model

In order to analyze the retinal spiking activity, Schneidman et al. [1] has proposed
to consider the probability distribution P(σ) of observing a given activity snapshot σ,
regardless of the time at which it has been observed. As shown before (Figure 1F,G),
neuronal activities show strong correlations, suggesting that neurons are not independent.
Therefore, P(σ) cannot be modelled as a collection of independent distributions; it requires
an interacting model. For this scope, the principle of maximum entropy suggests it is
necessary to consider all of the probability distributions reproducing the empirical mean
of all of the single variable terms (σi) and their pairwise products (σiσj), the covariances,
to then select the one with the largest entropy. This leads to the construction of the well
known pairwise disordered Ising model (IM) [1,29]:

P(σ) ∼ exp
{

∑
i

hiσi + ∑
i<j

Jijσiσj

}
, (1)

with yet unknown biases h and couplings J, which have to be inferred from data. To
estimate these parameters, we can compute the model (log-)likelihood over the dataset and
search for the set of parameters that maximises it [29]. Additionally, in order to limit the
noise effects, we added an L2 regularization over the biases h and an L1 regularization over
the couplings J [29]. Finally, because the considered systems are too large for performing
an exact inference, we used a pseudo-Newton Markov-chain Monte-Carlo algorithm [30].

As expected by model construction [29], the inferred distributions were able to repro-
duce the neurons’ mean activities and covariances (Figure 2A,B), showing that we solved
the inference problem for both stimuli with high accuracy. Both biases (Figure 2C,D) and
couplings (Figure 2E,F) inferred from the response to the two stimuli are different. In
particular, for the checkerboard stimulus, which has short-ranged stimulus correlations,
we observe strong positive or negative couplings only between nearby neurons, while
couplings between distant ones are very small. For the full-field video, which instead has
long-ranged stimulus correlations, we observe strong couplings, even at large distances.
Overall, these results show that the inferred couplings depend on the correlation structure
of the stimulus: by acting as correlated input to the neurons, the stimulus induces strong
correlations among certain pairs of neurons and consequently strong couplings among
them [4].
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Figure 2. Inverse disordered Ising model. OFF neurons and OFF–OFF pairs are in red, ON and
ON–ON in blue, OFF–ON pairs in yellow. The first line shows the results for the checkerboard
stimulus, the second for the full-field one (Figure 1B,C). (A,B) Inferred IM reproduces the neurons’
mean activities and covariances with high precision. (C,D) Distribution of the inferred biases h.
(E,F) Inferred pairwise couplings J as a function of the physical distance between the neurons.
(G,H) Empirical (plus signs) and model-predicted (lines) probability distributions of the network
activity of the two neuronal populations. Inset: zoom in linear scale.

Lastly, we notice how the inferred inverse disordered IM is capable of predicting
the empirical probability distribution of the network activity (∑i σi) for the checkerboard
stimulus, but it fails to do so for the full-field flicker (Figure 2F,G). This distribution reflects
the collective behavior of the whole system and therefore depends on the high-order
statistics of the neuronal activities. As such, the pairwise structure of the checkerboard
video, due to the short-ranged correlations, can be accounted for by a model with pairwise
couplings. However, for the full-field flicker, the stimulus synchronizes the whole neuronal
population altogether. As a consequence, the correlation’s structure is not pairwise and the
pairwise inverse IM struggles to reproduce such higher-order neuronal statistics. A similar
effect has been reported previously for the activity of cortical neurons during slow-wave
sleep [10].

3. Time-Dependent Model

Instead of constructing a single probability distribution P(σ) for the whole recording,
in the time-dependent Ising model framework [4,23], we build a collection of probability
distributions {Pt(σ)}T

t=1, one for each time-bin. Following the maximum entropy principle,
we search for the probability distribution that has the maximum entropy among those that
reproduce the mean single neuron activities in each time-bin 〈σi(t)〉 = 1/R ∑r σr

i (t), where
r runs over the R repetitions of the stimulus. We also require that the model reproduces the
total pairwise correlations

〈
σiσj

〉
= 1/(RT)∑r,t σr

i (t)σ
r
j (t) computed over both time and

repetitions, the same observables imposed for the inverse IM (Equation (1)). This leads us
to the following model:

Pt(σ) ∼ exp
{

∑
i

hi[t]σi + ∑
i<j

Jijσiσj

}
. (2)

In model (2), the biases h[t] carry the temporal dependence that accounts for the
time-evolution of the stimulus drive. However, because we have not asked the model to
reproduce the pairwise correlations in each temporal window but only the averaged one, the
couplings J are constant in time. This choice is biologically motivated: the couplings reflect
the internal connections between neurons within the retinal architecture and therefore
should be independent of the stimulus [4]. Additionally, this also limits the number
of parameters avoiding the risk of overfitting. As in the inverse IM, we include an L2
regularization on the biases and an L1 on the couplings with the same strength.
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As expected by model construction, the inferred time-dependent distributions re-
produce the empirical mean activities and covariances (Figure 3A,B), showing that we
solved the inference problem for both stimuli with high accuracy. As before (Figure 2C,D),
the inferred biases show different distributions for the two stimuli (Figure 2C,D). The
inferred couplings instead have much more similar behavior (Figure 3E,F), showing a
fast decay with the distance between the neuron pairs, for both the checkerboard and
the full-field stimulus. In particular, those between neurons of different types are zero or
slightly negative, whereas those between nearby neurons of the same type are large and
positive. Lastly, in the case of the time-dependent IM, the inferred model is capable of
predicting the empirical probability distribution of the network activity for both stimuli
with high accuracy (Figure 3G,H). Consistently with previous findings [4], these results
show that by using time-dependent IM we are capable of disentangling the collective
behaviors that arise because neurons receive correlated inputs, from those that are instead
due to network effects.
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Figure 3. Time-dependent Ising model. OFF neurons and OFF–OFF pairs are in red, ON and ON–ON
in blue, and OFF–ON pairs in yellow. The first line show results for the checkerboard stimulus,
the second for the full-field one (Figure 1B,C). (A,B) Inferred time-dependent IM reproduces the
neurons’ mean activities and covariances with high precision. (C,D) Distribution of the inferred
biases h[t]. (E,F) Inferred pairwise couplings J as a function of the physical distance between the
neurons. (G,H) Empirical (plus signs) and model-predicted (lines) probability distributions of the
network activity of the two neuron populations. Inset: zoom in linear scale.

4. The Geometry of the Functional Connectivity

The behavior of the inferred couplings with the distance from the response to the
full-field stimulus (Figures 2F and 3F) are very different. In the case of the inverse IM,
the couplings are also strong for distant pairs and seem to reflect the correlation structure
of the stimulus. In the case of the time-dependent IM, instead, interactions decrease fast
with distance and seem not to reflect the correlation structure of the stimulus. To test
for this, we compare the couplings inferred from the two stimuli (Figure 4A,B). In the
case of the time-dependent IM, the couplings are indeed much more similar (Pearson
correlation ρ = 0.935, against ρ = 0.699 for the inverse IM). We conclude that the inferred
couplings of the time-dependent IM only reflect the functional connectivity between retinal
output neurons.

Retinal output neurons lie on a two-dimensional layer, and their positions can easily
be determined by standard methods as their receptive field centres [28] (Figure 1A). In
order to better visualize the structure of the inferred couplings of the time-dependent IM,
we can introduce an arbitrary but robust small threshold, set to zero for all the smaller
couplings (|J| < 0.05), and draw an interaction lattice (Figure 4C,D). After thresholding, the
lattice splits into two subcomponents, one for each type, with mostly nearest-neighbour
interactions. Unfortunately, during these experiments, it is difficult to detect all of the
neurons of a given type within the recorded retinal patch. Therefore, some neurons are
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missing, and this prevents a solid study of the lattice connectivity. However, given the
well-known results on the retinal mosaics of the literature [26], and by looking at the
most complete region of (Figure 4C,D), we expect that if we were able to record all of the
neurons, the resulting lattice would be an irregular honeycomb, with connectivity equal
to six. Inferred interactions are strong and positive only for nearby neurons of the same
type (Figure 3E,F). Consequently, only couplings between nearby neurons are above the
threshold, and the functional connectivity lattice shows the nearest neighbour interactions.
Additionally, because inter-type connections are very small or slightly negative, the retinal
architecture splits into weakly interacting subpopulations—each composed of strongly
interacting neurons.

0.2 mm

A B C D

E F G H

Figure 4. Structure of the inferred couplings. OFF–OFF couplings are in red, ON–ON in blue, and
OFF–ON in yellow. (A) Scatterplot of the inferred couplings for the two stimuli in the inverse IM.
(B) As (A), but for the time-dependent IM. ρ is the Pearson correlation. (C,D) Interaction lattice after
thresholding the inferred couplings of the time-dependent IM for the checkerboard (C) and full-field
stimuli (D). (E–H) the same as (A–D), but for a second example experiment where retinal neurons
responded to the same visual stimulations.

In order to corroborate these results, we have performed the same analysis on a second
example dataset where retinal neurons were stimulated with the same visual stimulations
(both checkerboard and full-field). The results are fully consistent and very similar to those
of the first experiment (Figure 4E–H).

5. Conclusions

In this work, we focused on modeling the activity of two large populations of retinal
output neurons of different types. We inferred two different models: the widely used
disordered IM [1], and its more recent development, the time-dependent IM [4,23,25]. For
each model, we compared the inferred parameters obtained from the retinal response to
two very different visual stimulations: the checkerboard, with short spatial correlations,
and the full-field with long ones. In particular, we showed that the inferred couplings of the
disordered IM, but not those of the time-dependent IM, depend strongly on the stimulus
statistics (Figure 4A,E against Figure 4B,F). Consistently, the inferred couplings of the
second model are very similar across visual stimulations (Figure 4B,F). The time-dependent
model is therefore capable of disentangling the collective behaviors induced by the cor-
related inputs to the retinal output neurons, from those arising from network effects [4].
As a consequence, we can interpret the inferred couplings as functional connections and
characterize the structure of the retinal output-layer architecture. The inferred interactions
are strong and positive only for nearby neurons of the same type, whereas distant neurons
do not interact directly. Connections between neurons of different types are instead small
(or slightly negative), as they are for nearby cells. Therefore, the retinal architecture splits
into weakly interacting subpopulations composed of strongly interacting neurons.
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In principle, functional connectivity could also be obtained from the disordered IM
inferred from spontaneous activity where a constant, full-field stimulus is played. In this
case, the stimulus has no spatial correlations and the inferred couplings will only reflect the
structure of the retinal connectivity. However, in wild-type retinas, spontaneous activity
is usually very weak (few Hz) compared to stimulated activity (up to 50–60 Hz in our
case). As a consequence, in order to have the same empirical statistics, one would need a
much longer recording, which, however, is very difficult to obtain because of experimental
instabilities and limitations.

The inferred functional connectivity matches with the known properties of biological
networks. Depending on the type, output retinal neurons can be connected by the direct
gap-junction between nearby pairs, or by an indirect connection through multiple gap-
junctions passing through amacrine cells [31]. In both cases, only nearby neurons are
strongly interacting, and this is nicely reproduced by the functional connections inferred
from the time-dependent model. Network effects can also arise from shared noise coming
from presynaptic neurons in the retina, mostly photoreceptors noise. This effect can explain
the negative correlations between neurons of different types (and polarities) [32], and in
turn the slightly negative couplings inferred for nearby neurons.

The time-dependent IM takes into account the stimulus effects with the temporal
dependence of the single neuron biases h[t]. Instead of modeling the stimulus processing
performed by the retina directly, it only reproduces the response behavior in time. Con-
sistently, in order to infer the model, we only used the response to repeated stimulations,
without the need of the actual videos. As a consequence, the time-dependent IM cannot
generalize to new unseen (during training) stimuli, and this might limit its possible appli-
cations. To overcome these limitations, the time-dependent IM has been extended to its
stimulus-dependent generalization [4,23], where the biases become actual functions of the
stimulus. This allows one to infer deep convolutional neural networks [27,33–35] to predict
the mean response to stimulus, combined with IM couplings to account for network effects.

Lastly, we could have excluded couplings between distant neurons directly from the
inference and constructed a model without long-range interactions. This approach might
have reduced the number of parameters from O(N2) to O(N) and could have provided an
even simpler framework to account for the network effects .
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4. Ferrari, U.; Deny, S.; Chalk, M.; Tkačik, G.; Marre, O.; Mora, T. Separating intrinsic interactions from extrinsic correlations in a
network of sensory neurons. Phys. Rev. E 2018, 98, 042410. [CrossRef]

5. Marre, O.; El Boustani, S.; Frégnac, Y.; Destexhe, A. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise
Correlations. Phys. Rev. Lett. 2009, 102, 138101. [CrossRef] [PubMed]

6. Hamilton, L.S.; Sohl-Dickstein, J.; Huth, A.G.; Carels, V.M.; Deisseroth, K.; Bao, S. Optogenetic Activation of an Inhibitory
Network Enhances Feedforward Functional Connectivity in Auditory Cortex. Neuron 2013, 80, 1066–1076. [CrossRef]

7. Tavoni, G.; Ferrari, U.; Battaglia, F.; Cocco, S.; Monasson, R. Functional Coupling Networks Inferred from Prefrontal Cortex
Activity Show Experience-Related Effective Plasticity. Netw. Neurosci. 2017, 1, 275–301. [CrossRef]

8. Meshulam, L.; Gauthier, J.L.; Brody, C.D.; Tank, D.W.; Bialek, W. Collective behavior of place and non-place neurons in the
hippocampal network. Neuron 2017, 96, 1178–1191. [CrossRef]

9. Donner, C.; Obermayer, K.; Shimazaki, H. Approximate inference for time-varying interactions and macroscopic dynamics of
neural populations. PLoS Comput. Biol. 2017, 13, e1005309. [CrossRef]

10. Nghiem, T.A.; Telenczuk, B.; Marre, O.; Destexhe, A.; Ferrari, U. Maximum-entropy models reveal the excitatory and inhibitory
correlation structures in cortical neuronal activity. Phys. Rev. E 2018, 98, 012402. [CrossRef]

11. Shimazaki, H.; Sadeghi, K.; Ishikawa, T.; Ikegaya, Y.; Toyoizumi, T. Simultaneous silence organizes structured higher-order
interactions in neural populations. Sci. Rep. 2015, 5, 9821. [CrossRef] [PubMed]

12. Weigt, M.; White, R.; Szurmant, H.; Hoch, J.; Hwa, T. Identification of direct residue contacts in protein–protein interaction by
message passing. Proc. Natl. Acad. Sci. USA 2009, 106, 67–72. [CrossRef] [PubMed]

13. Santolini, M.; Mora, T.; Hakim, V. A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription
Factor Binding Sites. PLoS Comput. Biol. 2014, 9, E99015. [CrossRef] [PubMed]

14. De Leonardis, E.; Lutz, B.; Ratz, S.; Cocco, S.; Monasson, R.; Schug, A.; Weigt, M. Direct-Coupling Analysis of nucleotide
coevolution facilitates RNA secondary and tertiary structure prediction. Nucleic Acids Res. 2015, 43, 10444–10455. [CrossRef]
[PubMed]

15. Figliuzzi, M.; Jacquier, H.; Schug, A.; Tenaillon, O.; Weigt, M. Coevolutionary landscape inference and the context-dependence of
mutations in beta-lactamase tem-1. Mol. Biol. Evol. 2016, 33, 268–280. [CrossRef] [PubMed]

16. Mora, T.; Walczak, A.M.; Bialek, W.; Callan, C.G. Maximum entropy models for antibody diversity. Proc. Natl. Acad. Sci. USA
2010, 107, 5405–5410. [CrossRef]

17. Bialek, W.; Cavagna, A.; Giardina, I.; Mora, T.; Silvestri, E.; Viale, M.; Walczak, A.M. Statistical mechanics for natural flocks of
birds. Proc. Natl. Acad. Sci. USA 2012, 109, 4786–4791. [CrossRef]

18. Ferrari, U.; Obuchi, T.; Mora, T. Random versus maximum entropy models of neural population activity. Phys. Rev. E 2017,
95, 042321. [CrossRef]

19. Roudi, Y.; Nirenberg, S.; Latham, P.E. Pairwise maximum entropy models for studying large biological systems: when they can
work and when they can’t. PLoS Comput. Biol. 2009, 5, e1000380. [CrossRef]

20. Obuchi, T.; Cocco, S.; Monasson, R. Learning probabilities from random observables in high dimensions: The maximum entropy
distribution and others. J. Stat. Phys. 2015, 161, 598–632. [CrossRef]

21. Obuchi, T.; Monasson, R. Learning probability distributions from smooth observables and the maximum entropy principle: Some
remarks. J. Phys. Conf. Ser. 2015, 638, 012018. [CrossRef]

22. Merchan, L.; Nemenman, I. On the Sufficiency of Pairwise Interactions in Maximum Entropy Models of Networks. J. Stat. Phys.
2016, 162, 1294–1308. [CrossRef]

23. Granot-Atedgi, E.; Tkacik, G.; Segev, R.; Schneidman, E. Stimulus-dependent Maximum Entropy Models of Neural Population
Codes. PLoS Comput. Biol. 2013, 9, 1–14. . [CrossRef] [PubMed]

24. Priesemann, V.; Shriki, O. Can a time varying external drive give rise to apparent criticality in neural systems? PLoS Comput. Biol.
2018, 14, e1006081. [CrossRef]

25. Sorochynskyi, O.; Deny, S.; Marre, O.; Ferrari, U. Predicting synchronous firing of large neural populations from sequential
recordings. PLoS Comput. Biol. 2021, 17, e1008501. [CrossRef]

26. Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 2004, 5, 747–757. [CrossRef]
27. Deny, S.; Ferrari, U.; Mace, E.; Yger, P.; Caplette, R.; Picaud, S.; Tkačik, G.; Marre, O. Multiplexed computations in retinal ganglion

cells of a single type. Nat. Commun. 2017, 8, 1964. [CrossRef]
28. Marre, O.; Amodei, D.; Deshmukh, N.; Sadeghi, K.; Soo, F.; Holy, T.; Berry, M. Recording of a large and complete population in

the retina. J. Neurosci. 2012, 32, 1485973. [CrossRef]
29. Cocco, S.; Monasson, R. Adaptive cluster expansion for inferring Boltzmann machines with noisy data. Phys. Rev. Lett. 2011,

106, 090601. [CrossRef]
30. Ferrari, U. Learning maximum entropy models from finite-size data sets: A fast data-driven algorithm allows sampling from the

posterior distribution. Phys. Rev. E 2016, 94, 023301. [CrossRef]
31. Brivanlou, I.; Warland, D.; Meister, M. Mechanisms of Concerted Firing among Retinal Ganglion Cells. Neuron 1998, 20, 527–539.

[CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pcbi.1003408
http://www.ncbi.nlm.nih.gov/pubmed/24391485
http://dx.doi.org/10.1103/PhysRevE.98.042410
http://dx.doi.org/10.1103/PhysRevLett.102.138101
http://www.ncbi.nlm.nih.gov/pubmed/19392405
http://dx.doi.org/10.1016/j.neuron.2013.08.017
http://dx.doi.org/10.1162/NETN_a_00014
http://dx.doi.org/10.1016/j.neuron.2017.10.027
http://dx.doi.org/10.1371/journal.pcbi.1005309
http://dx.doi.org/10.1103/PhysRevE.98.012402
http://dx.doi.org/10.1038/srep09821
http://www.ncbi.nlm.nih.gov/pubmed/25919985
http://dx.doi.org/10.1073/pnas.0805923106
http://www.ncbi.nlm.nih.gov/pubmed/19116270
http://dx.doi.org/10.1371/journal.pone.0099015
http://www.ncbi.nlm.nih.gov/pubmed/24926895
http://dx.doi.org/10.1093/nar/gkv932
http://www.ncbi.nlm.nih.gov/pubmed/26420827
http://dx.doi.org/10.1093/molbev/msv211
http://www.ncbi.nlm.nih.gov/pubmed/26446903
http://dx.doi.org/10.1073/pnas.1001705107
http://dx.doi.org/10.1073/pnas.1118633109
http://dx.doi.org/10.1103/PhysRevE.95.042321
http://dx.doi.org/10.1371/journal.pcbi.1000380
http://dx.doi.org/10.1007/s10955-015-1341-7
http://dx.doi.org/10.1088/1742-6596/638/1/012018
http://dx.doi.org/10.1007/s10955-016-1456-5
http://dx.doi.org/10.1371/journal.pcbi.1002922
http://www.ncbi.nlm.nih.gov/pubmed/23516339
http://dx.doi.org/10.1371/journal.pcbi.1006081
http://dx.doi.org/10.1371/journal.pcbi.1008501
http://dx.doi.org/10.1038/nrn1497
http://dx.doi.org/10.1038/s41467-017-02159-y
http://dx.doi.org/10.1523/JNEUROSCI.0723-12.2012
http://dx.doi.org/10.1103/PhysRevLett.106.090601
http://dx.doi.org/10.1103/PhysRevE.94.023301
http://dx.doi.org/10.1016/S0896-6273(00)80992-7
http://www.ncbi.nlm.nih.gov/pubmed/9539126


Phys. Sci. Forum 2022, 5, 31 9 of 9

32. Völgyi, B.; Chheda, S.; Bloomfield, S. Tracer Coupling Patterns of the Ganglion Cell Subtypes in the Mouse Retina. J. Comp.
Neurol. 2009, 512, 664–687. [CrossRef] [PubMed]

33. McIntosh, L.; Maheswaranathan, N.; Nayebi, A.; Ganguli, S.; Baccus, S. Deep learning models of the retinal response to natural
scenes. Adv. Neural Inf. Process. Syst. 2016, 29, 1369–1377. [PubMed]

34. Mahuas, G.; Isacchini, G.; Marre, O.; Ferrari, U.; Mora, T. A new inference approach for training shallow and deep generalized
linear models of noisy interacting neurons. Adv. Neural Inf. Process. Syst. 2020, 33, 5070–5080.

35. Goldin, M.A.; Lefebvre, B.; Virgili, S.; Ecker, A.; Mora, T.; Ferrari, U.; Marre, O. Context-dependent selectivity to natural scenes in
the retina. Nat. Commun. 2021, 13, 5556. [CrossRef]

http://dx.doi.org/10.1002/cne.21912
http://www.ncbi.nlm.nih.gov/pubmed/19051243
http://www.ncbi.nlm.nih.gov/pubmed/28729779
http://dx.doi.org/10.1038/s41467-022-33242-8

	Recording of Retinal Ganglion Cells
	Inverse Disordered Ising Model
	Time-Dependent Model
	The Geometry of the Functional Connectivity
	Conclusions
	References

