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Abstract: By combining information science and differential geometry, information geometry pro-
vides a geometric method to measure the differences in the time evolution of the statistical states in a
stochastic process. Specifically, the so-called information length (the time integral of the information
rate) describes the total amount of statistical changes that a time-varying probability distribution
takes through time. In this work, we outline how the application of information geometry may permit
us to create energetically efficient and organised behaviour artificially. Specifically, we demonstrate
how nonlinear stochastic systems can be analysed by utilising the Laplace assumption to speed up the
numerical computation of the information rate of stochastic dynamics. Then, we explore a modern
control engineering protocol to obtain the minimum statistical variability while analysing its effects
on the closed-loop system’s stochastic thermodynamics.

Keywords: information geometry; non-linear stochastic systems; information length; stochastic
thermodynamics

1. Introduction

Stochastic systems are ubiquitous and include a large set of complex systems, such
as the time evolution of molecular motors [1], the stock market [2], decision making [3],
population dynamics [4] or engineering systems with parameter uncertainties [5]. The
description of stochastic dynamics commonly involves the calculation of time-varying
probability density functions (PDFs) governed by a Fokker–Planck equation and its cor-
responding stochastic differential equation [1]. Since a time-varying PDF describes all
the possible trajectories the stochastic system can take in time, such a formalism has been
advantageously applied in emergent fields as stochastic thermodynamics [6] or inference
control [7].

As time-varying PDFs contain enormous dynamical information, defining a metric
of the path’s length that a stochastic system takes through time can bring benefits when,
for example, designing “efficient” systems (for instance, see [8]). In this regard, the field
of information geometry has brought to light a true metric of the differences in the time
evolution of the statistical states in a stochastic process [9,10]. Specifically, the concept
of information length (IL) [11,12], given by the time integral of the stochastic dynamics
information rate, describes the total amount of statistical changes that a time-varying
probability distribution takes through time. The previous works showed that IL provides a
link between stochastic processes, complexity and geometry [12]. Additionally, IL has been
applied to the quantification of hysteresis in forward–backward processes [8,13], correlation
and self-regulation among different players [13], phase transitions [14], and prediction of
sudden events [15]. It is worth noting that in nonlinear stochastic systems, IL is generally
difficult to obtain because the analytical/numerical solution of the Fokker–Planck equation
and the execution of stochastic simulations are usually complicated and computationally
costly. Hence, analytical simplifications are advantageous to ease IL’s calculation while
increasing the possibility of applying IL to broader practical scenarios [16].
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Even though the information rate may seem purely like a statistical quantity, its mean-
ing can be understood in relation to the thermodynamics [11,12]. This result is of great
advantage as we may use it to quantify the effects, for example, that a minimum statis-
tical variability (constant information rate) control could have on the system’s energetic
behaviour. Note that the idea of thermodynamic informed control systems is not something
new. For instance, since the beginning of the 21st century, various works have proposed
the consideration of entropy-informed control protocols to generate “intelligent/efficient”
systems (for further details, see [17] and the references therein). Yet, describing the ef-
fects of an information geometry-informed control protocol over the system’s stochastic
thermodynamics is to be carried out.

In this regard, we consider the application of the so-called Laplace assumption (Gaus-
sian approximation of the system’s time-varying PDF) to the computation of IL and the
information rate for a set of nonlinear stochastic differential equations. By using this as-
sumption, we derive the values of the entropy rate, entropy production and entropy flow
and their relation to the information rate. Then, we formulate an optimisation problem
for the minimum information variability control and study the closed-loop stochastic dy-
namics and thermodynamics in a numerical example. Thus, creating a connection between
information geometry, stochastic thermodynamics and control engineering (Figure 1).

Figure 1. The combination of methods from information geometry, stochastic thermodynamics and
control engineering may lead to the creation of energetically efficient and organised behaviour.

To help readers, in the following, we summarise our notations. R is the set of real
numbers; x ∈ Rn represents a column vector x of real numbers of dimension n; A ∈ Rn×n

represents a real matrix of dimension n× n (bold-face letters are used to represent vectors
and matrices); Tr(A) corresponds to the trace of the matrix A; |A|, vec(A), A> and A−1

are the determinant, vectorisation, transpose and inverse of matrix A, respectively. The
value In denotes the identity matrix of order n. Newton’s notation is used for the partial
derivative with respect to the variable t (i.e. ∂y

∂t = ẏ). Finally, the average of a random
vector ζ is denoted by µ := 〈x〉, the angular brackets representing the average.

2. Model

Throughout this work, the following set of nonlinear Langevin equations is considered

ẋ = f (x, u) + ξ. (1)

Here, f : Rn → Rn is a function taking as input a vector x ∈ Rn and a bounded smooth
time-dependent deterministic function u(t) ∈ R to output a vector f (x) ∈ Rn with elements
fi (i = 1, 2, ...n); ξ ∈ Rn is a Gaussian stochastic noise given by an n dimensional vector of
δ-correlated Gaussian noises ξi (i = 1, 2, ...n), with the following statistical property

〈ξi(t)〉 = 0, 〈ξi(t)ξ j(t1)〉 = 2Dij(t)δ(t− t1), Dij(t) = Dji(t), ∀i, j = 1, . . . , n. (2)
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The Fokker–Planck equation of (1) is

ṗ = −∇ · J = −∇ · f p +∇ ·D∇p = −
n

∑
i=1

∂xi ( fi p) +
n

∑
i,j=1

Ä
∂xi Dij∂xj

ä
p, (3)

where J = [ fi p−Di∇p, . . . , fn p−Dn∇p].

2.1. The Laplace Assumption

The Laplace assumption allows us to describe the solution of (3) through a fixed
multivariable Gaussian distribution given by [4]

p(x; t) =
1√
|2πΣ|

e
1
2 Q(x;t), (4)

where Q(x; t) = − 1
2 (x− µ(t))>Σ−1(t)(x− µ(t)), and µ(t) ∈ Rn and Σ(t) ∈ Rn×n are the

mean and covariance value of the random variable x. The value of the mean µ(t) and
covariance matrix Σ(t) can be obtained from the following result.

Proposition 1 (The Laplace assumption). Under the Laplace assumption, the dynamics of the
mean µ and covariance Σ at any time t of a nonlinear stochastic differential system (1) are governed
by the following differential equations

µ̇ =

ï
f1(µ, u) +

1
2

Tr
Ä

ΣH f1

ä
, f2(µ, u) +

1
2

Tr
Ä

ΣH f2

ä
, . . . , fn(µ, u) +

1
2

Tr
Ä

ΣH fn

äò>
(5)

Σ̇ = J f Σ + ΣJ>f + D + D> (6)

where H fi
is the Hessian matrix of the function fi(x, u), and J f is the Jacobian of the function

f (x, u).

Proof. See Appendix A.

Note that when fi(x; t) in (1) is a linear function defined as

fi(x; t) := Aix(t) + Biu(t) =
n

∑
j=1

aijxj(t) +
p

∑
j

bijuj(t), (7)

i.e., we consider a set of particles driven by a harmonic potential (Aix(t)) and a deterministic
force (Biu(t), the value H fi

= 0, meaning that the mean value µ is not affected by the
covariance matrix Σ.

Limits of the Laplace Assumption

Since the Laplace assumption does not always hold, we first check on its limitation by
considering the following cubic stochastic differential equation

ẋ(t) = −γx(t)3 + u(t) + ξ(t), (8)

where 〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) and γ ∈ R+. Then, we denote q(x, t) that is based
on the Laplace Assumption, which take the following Gaussian form

q(x, t) =
1√

2πΣ
e

1
2

(x−µ)2
Σ , (9)

where µ and Σ are determined by the solution of

µ̇ = −γµ3 + u− 3γµΣ, (10)

Σ̇ = −6γΣµ2 + 2D. (11)



Phys. Sci. Forum 2022, 5, 25 4 of 12

To obtain the real system PDF p̃(x, t) of system (8), we use stochastic simulations and kernel
density estimators (for further details see [18]). Now, to highlight the limits of the Gaussian
approximation q(x, t), we apply the Kullback divergence (KL) DKL or relative entropy
between the estimated p̃ and the Gaussian approximation q of the time-varying system (8)
PDFs defined as

DKL(p̃||q) =
∫
R

p(x; t) log
Å

p(x; t)
q(x; t)

ã
dx. (12)

Figure 2 shows the KL divergence trough time between p̃ and q when changing the param-
eters γ and D in Equation (8). The result shows that a valid LA requires a small damping
(slow behaviour) and a wider noise amplitude in comparison with the initial value of Σ.
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Figure 2. KL divergence between the value p̃(x; t) and the value q(x, y) varying the values γ and D
of Equation (8). When γ changes, D = 0.01; when D changes, γ = 0.01. The initial condition is a
Gaussian distribution defined by µ(0) = 5 and Σ(0) = 0.01. See code at [19].

3. Stochastic Thermodynamics

Stochastic thermodynamics uses stochastic calculus to draw a connection between the
“micro/mesoscopic stochastic dynamics” and the “macroscopic thermodynamics” [1,6]. In
physical terms, this means that stochastic thermodynamics describes the interaction of a
micro/mesoscopic system with one or multiple reservoirs (for instance, the dynamics of
a Brownian particle suspended in a fluid in thermodynamic equilibrium described by a
Langevin/Fokker Planck equation).

3.1. Entropy Rate

Given a time-varying multivariable PDF p(x; t), we can calculate the entropy rate, a
fundamental concept of stochastic thermodynamics, as follows [20]

Ṡ(t) =
d
dt

S(t) = −
∫
Rn

ṗ(x; t)ln
(

p(x; t)
)

dx = Π−Φ. (13)

Proposition 2. Under the Laplace assumption, the value of entropy rate Ṡ, entropy production Π
and entropy flow Φ is given by

Ṡ = Tr
Ä

Σ−1D
ä
+ Tr(J f ) =

1
2

Tr
Ä

Σ−1Σ̇
ä

, (14)

Π = Tr
Ä

Σ−1D
ä
+ Tr
Ä

f (µ, u)>D−1 f (µ, u)
ä
+ Tr
Ä

J f D−1J>f Σ
ä
+ 2Tr(J f ), (15)
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Φ = Tr
Ä

f (µ, u)>D−1 f (µ, u)
ä
+ Tr
Ä

J f D−1J>f Σ
ä
+ Tr(J f ). (16)

Proof. See Appendix B.

3.2. Example

To illustrate the application of Proposition 2, consider the following Langevin form of
the Duffing equation

ẋ(t) = v(t) + ξ1(t)

v̇(t) = −δv(t)− αx(t)− βx(t)3 + γ cos(ωt) + ξ2(t)
, (17)

where x(t) is the displacement at time t, v(t) = ẋ(t) is the first derivative of x with respect
to time, i.e., velocity, ξ is a delta correlated noise, and the values δ, α, β, γ and ω are given
constants.

Figure 3 shows a simulation of (17) using the deterministic equations of the mean
vector µ = [〈x〉, 〈v〉]> and covariance matrix Σ as described by Proposition 1. Specifically,
Figure 3a includes the time evolution of the random variables x and v with its phase portrait,
and the time evolution of Σ11, Σ12 and Σ22. Figure 3b shows the time evolution of the
system’s stochastic thermodynamics including the entropy rate Ṡ, the entropy production
Π and the entropy flow Φ. In all subplots, time is scaled by the factor T = 2π/ω.

(a) Time evolution.
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(b) Stochastic thermodynamics.
Figure 3. Simulation of dynamics and stochastic thermodynamics of the Duffing equation under the
Laplace assumption.

More importantly, Figure 3 shows that via Propositions 1 and 2 it is possible to describe
the thermodynamics of any nonlinear stochastic system at every instant of time. Hence,
as will be discussed in Section 5, Propositions 1 and 2 allow us to perceive the effects of a
control protocol on the closed-loop system thermodynamics.

4. Information Length and Information Rate

For a time-varying multivariable PDF p(x; t), we define its IL L as [15,16]

L(t) =
∫ t

0

Å…∫
Rn

p(x; τ)
[
∂τ ln p(x; τ)

]2 dx
ã

dτ =
∫ t

0
Γ(τ) dτ, (18)

where Γ is called the information rate. The value of Γ2 can be understood as the Fisher
information where the time is the control parameter [12]. Since Γ gives the rate of change of
p(x; t), its time integral L quantifies the amount of statistical changes that the system goes
through in time from the initial PDF p(x; 0) to a final PDF p(x; t) [16].
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Under the Laplace assumption, i.e., when p(x; t) is a Gaussian PDF, the value of
information rate Γ of the joint PDF takes the compact form [11,16]

Γ2 = µ̇>Σ−1µ̇ +
1
2

Tr
Ä

(Σ−1Σ̇)2
ä

, (19)

where the time derivatives of µ̇ and Σ̇ are given by Equations (5) and (6), respectively.

Relation with Stochastic Thermodynamics

Considering a fully decoupled nonlinear stochastic system and using the Laplace
assumption, the value of the information rate Γ2 is related to the entropy production Π and
the entropy flow Ṡ as follows

Γ2 =
n

∑
i=1

Dii
Σii

Πi +
n

∑
i=1

Ṡ2
i +

1
2

n

∑
i=1

H fi
(µ̇i + fi(µi, u)), (20)

where Πi and Ṡi are the entropy production and entropy rate from the marginal PDF p(xi, t)
of xi. H f1 = ∂2

∂x2
i

fi(µi, t). If fi describes a harmonic potential (7), then H fi
= 0 and (20) lead

to the expression

Γ2 =
n

∑
i

Dii
Σii

Πi +
n

∑
i

Ṡ2
i . (21)

Note that Equation (21) gives us a case where a minimum information length L would
produce both a minimum entropy production/rate and a minimum statistical variability
behaviour.

5. Minimum Variability Control

To impose a minimum statistical variability when going from an initial to a desired
state (for instance, see [21]), we propose the optimisation problem with the following cost
function

c = arg min
c̃

Å
J =

∫ t f

0

Ä
(Γ(t)− Γ(0))2 + (Y(t)− Yd)>Q(Y(t)− Yd) + c̃(t)>Rc̃(t)

ä
dt
ã

(22)

where Y(t) := [µ(t), vec(Σ(t))]>, Yd := [µd, vec(Σd)]>, ˜c(t) := [u(t), vec(D(t))]>, Q ∈ Rn+n×n,
and R ∈ R1+n×n. The solution c(t) corresponds to the control vector that allows us to
obtain the minimum statistical variability. In Equation (22), the term (Γ(t)− Γ(0))2 keeps
the information variability constant. The term involving Q drives the system to reach a
given PDF defined by Yd. The term containing R in the right-hand side of (22) regularises
the control action c to avoid abrupt changes in the inputs. Note that the values of Σ, µ and Γ
can be easily computed for any nonlinear stochastic process through Proposition (1) or the
Laplace assumption. A control that comes after solving (22) would be called an information
length quadratic regulator (IL-QR).

5.1. Model Predictive Control

A solution to the proposed optimisation problem (22) can be obtained by one of the
most popular optimisation-based control techniques currently available—the so-called
model-predictive-control (MPC) scheme [22]. Generally, MPC is an online optimisation
algorithm for constrained control problems whose benefits have been recognized in appli-
cations to robotics [23], solar energy [24] or bioengineering [25]. Furthermore, MPC has
the advantage of being easily implemented owing to packages such as CasADi [26] or the
Hybrid Toolbox [27].

Figure 4 briefly details the working principle of the MPC’s optimiser in the form of
a block diagram. The MPC method consists of utilising a prediction model to solve the
optimisation problem in a finite horizon. Then, the optimal solution is applied to the system
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in real-time. Finally, the system’s output is fed back to the MPC algorithm to start the
optimisation procedure again. In this work, we ease the prediction and simulation of the
stochastic process by employing the Laplace assumption.

c[k]
Simulation model

Γ2[0], Yd Y[k]

Ỹ[k]
Prediction model

Optimizer

setpoint

JN constraints

Predicted output

Output

c̃[k]
Future input

Model-predictive-control

Figure 4. Model predictive control block diagram.

5.2. Example

We now present an example of the application of the MPC method to obtain the
minimum variability behaviour of a stochastic system. Figure 5 shows the IL-QR applied
to the cubic stochastic process given by Equation (8), where the control vector and the state
vector are given by c = [u, D]> and Y = [µ, Σ]>, respectively. In the simulation, the initial
state is Y(0) = [2+ 5/6, 1/(2× 30)]>, while the desired state is Yd(t) = [2+ 1/30, 1/(2× 3)]>.
Additionally, we consider the parameters γ = 0.1, Ts = 1× 10−3, N = 5, IL = 1× 103,
R = 1 × 10−5I2, Q12 = Q21 = 0, Q12 = 1 × 102 and Q22 = 8 × 102. Here, Ts is the
integration time step, and N is the number of future time steps considered in the prediction
model. The value of Γ(0) is imposed via the initial conditions and Equation (19).

In Figure 5a, we show the time evolution of the mean µ, the inverse temperature
β = 1

2Σ , the input force u, the noise amplitude D, the information rate Γ2 and the informa-
tion length L. We also show the PDF time evolution of the simulation model computed
via the Laplace approximation (q) or via stochastic simulations (p̃) and the corresponding
KL-divergence (12) between them. In the subplot of µ and β, the legend LA and SS stand
for the Laplace assumption and stochastic simulations, respectively. Interestingly, we can
see from this that the Laplace approximation works fine when used as a prediction model in
the MPC method. The controls have a chattering effect (oscillations having a finite frequency
and amplitude) similar to the one encountered when implementing other control methods,
such as the sliding mode control [28], when trying to keep the system in the desired state Yd.

Figure 5b demonstrates the effects of controls (22) on the closed-loop system stochastic
thermodynamics. The results show that at the desired state Yd the value of Ṡ oscillates
around zero with a small amplitude. This means Φ = −Π holds at some instants of
time when Y reaches Yd. In other words, all the energy is exchanged with the system’s
environment when the control keeps Y on the nonequilibrium state Yd.
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(a) PDF, D, u, µ, β = 1
2Σ , Γ and L time evolution.
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(b) Stochastic thermodynamics time evolution.

Figure 5. IL-QR under LA applied to system (8) with Y(0) = [2 + 5/6, 1/(2× 30)]> and
Yd(t) = [2 + 1/30, 1/(2× 3)]>. The control is applied in u(t) and D(t). Moreover, γ = 0.1,
Ts = 1× 10−3, N = 5, IL = 1 × 103, R = 1 × 10−5I2, Q12 = Q21 = 0, Q12 = 1 × 102 and
Q22 = 8× 102.

6. Conclusions

In this work, we developed a new control MPC method to derive the evolution of a sys-
tem with a minimum information variability in systems governed by nonlinear stochastic
differential equations. Specifically, we identified the limitations of the Laplace assumption
and utilised it to reduce the computational cost of calculating the time-varying PDFs and
to develop a prediction model in the MPC algorithm. We also derived the relations that
permit us to analyse the controller effects on the close-loop system’s thermodynamics.

In future work, we aim to apply our results for maximising the free-energy (minimum
entropy production) [12] and for the analysis of the closed-loop stochastic thermodynamics
in higher-order systems.
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Appendix A. Proof of Proposition 1

To prove Proposition 1, we start by defining the first two moments of the ensemble
density p(x). This is given as follows

µ̇i =
∫
Rn

xi ṗ(x; t) dnx, (A1)

Σ̇ij =
∫
Rn

xixj ṗ(x; t) dnx. (A2)

Here, xi = xi − µi. Using (A1)–(A2) and (3), while avoiding the arguments for simplicity,
we have

µ̇i =
∫
Rn

xi

[
−

n

∑
i=1

∂xi ( fi p) +
n

∑
i,j=1

Ä
∂xi Dij∂xj

ä
p

]
dnx,

= −
∫
Rn

xi∂xi ( fi p) dnx +
∫
Rn

xi∂xi

(
n

∑
j=1

Dij∂xj p

)
dnx, (A3)

=
∫
Rn

fi p dnx = 〈 fi〉.

Σ̇ij =
∫
Rn

xixj

[
−

n

∑
i=1

∂xi ( fi p) +
n

∑
i,j=1

Ä
∂xi Dij∂xj

ä
p

]
dnx,

= −
∫
Rn

xixj∂xi ( fi p) dnx−
∫
Rn

xixj∂xj ( f j p) dnx +
∫
Rn

xi

(
n

∑
j=1

Dij∂xj p

)
dnx +

∫
Rn

xj

Ç
n

∑
i=1

Dji∂xi p

å
dnx, (A4)

= 〈xj fi + xi f j〉+ Dij + Dji.

A closed-form solution to (A4)–(A5) can be obtained by exploiting the Laplace assumption;
i.e., we recover the sufficient statistics (A1)–(A2) of system (1) through the first three terms
of the nonlinear flow fi(x, u) Taylor expansion around the expected state µ. This is given as
follows

fi(x, u) = fi(µ, u) +
n

∑
j=1

∂ fi(µ, u)
∂xj

xj +
1
2

n

∑
j,k=1

∂2 fi(µ, u)
∂xj ∂xk

xjxk + . . . (A5)

Under Gaussian assumptions 〈xi〉 = 0 and 〈xixj〉 = Σij and applying (A5) to (A4)–(A5),
we have

µ̇ =

〈
fi(µ, u) +

n

∑
j=1

∂ fi(µ, u)
∂xj

xj +
1
2

n

∑
j,k=1

∂2 fi(µ, u)
∂xj ∂xk

xjxk

〉
,



Phys. Sci. Forum 2022, 5, 25 10 of 12

= fi(µ, u) +
1
2

n

∑
j,k=1

∂2 fi(µ, u)
∂xj ∂xk

Σjk. (A6)

Σ̇ij =

ÆÄ
xj + xi

äÇ
fi(µ, u) +

n

∑
k=1

∂ fi(µ, u)
∂xk

xk

å∏
+ Dij + Dji,

=
n

∑
k=1

∂ fi(µ, u)
∂xk

Σjk +
n

∑
k=1

∂ fi(µ, u)
∂xk

Σik + Dij + Dji. (A7)

Equations (A6)–(A7) are the expansion of the equations shown in Proposition 1. This
finishes the proof.

Appendix B. Proof of Proposition 2

By substituting (3) in (13), we obtain

d
dt

S(t) =
∫
Rn

Ç
∑

i

∂

∂xi
Ji(x; t)

å
ln
(

p(x; t)
)

dnx = −
∫
Rn ∑

i
Ji(x; t)

Å
∂

∂xi
ln
(

p(x; t)
)ã

dnx. (A8)

Now, after substituting the i− th term of J in (A8), we have

d
dt

S(t) = −
∫
Rn ∑

i
Ji(x; t)

Ñ
fi(x; t)

Dii
− Ji(x; t)

Dii p(x; t)
−

∑j 6=i Dij
∂

∂xj
p(x; t)

Dii p(x; t)

é
dnx. (A9)

From (A9), the entropy production rate of the system corresponds to the positive definite
part

Π = ∑
i

Πi =
∫
Rn ∑

i

Ji(x; t)2

Dii p(x; t)
dnx, (A10)

while the entropy flux (entropy from the system to the environment) is

Φ=
∫
Rn∑

i

Ñ
Ji(x; t) fi(x; t)

Dii
−

∑j 6=i Dij Ji(x; t) ∂
∂xj

p(x; t)

Dii p(x; t)

é
dnx. (A11)

In this paper, we focus on the case when Dij = 0 if i 6= j to simplify (A11) as

Φ = ∑
i

Φi =
∫
Rn ∑

i

Å
Ji(x; t) fi(x, t)

Dii

ã
dnx. (A12)

Notice that (A10)–(A11) require that Dii > 0. If Dii = 0, we have Πi = 0 and

Φi =

≠
∂ fi(x, t)

∂xi

∑
. (A13)

We start by applying the definition of entropy (A10) production and entropy flux
(A12), giving us

Πi =
1

Dii

¨
fi(x, t)2

∂
+Dii

ÆÅ
∂Q(x)

∂xi

ã2∏
+2
≠

∂ fi(x, t)
∂xi

∑
, (A14)

Φi =
1

Dii
〈 fi(x, t)2〉+

≠
∂ fi(x, t)

∂xi

∑
. (A15)

Before continuing, it is useful to note that [29]

∂Q
∂xk

= −1
2

[
∑

i
xiΣ−1

ki + ∑
j

xjΣ−1
jk

]
= −∑

i
xiΣ−1

ki = −x>Σ−1
k (A16)
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where xi = xi − µi, x := x− µ = [x1, . . . , xn]> and Σ−1
k is the k-th column of the inverse

matrix Σ−1 of Σ. Therefore, [29]Æ
Dii

Å
∂Q(x)

∂xi

ã2∏
= Dii

¨
x>Σ−1

i (Σ−1
i )>x

∂
= DiiTr(∆iΣ), (A17)

and

〈
fi(x)2〉
Dii

=
1

Dii

〈(
fi(µ, u) +

n

∑
j=1

∂ fi(µ, u)
∂xj

xj

)Ç
fi(µ, u) +

n

∑
k=1

∂ fi(µ, u)
∂xk

xk

å〉
=

1
Dii

(
fi(µ, u)2 +

n

∑
j,k=1

∂ fi(µ, u)
∂xj

∂ fi(µ, u)
∂xk

Σjk

)
=

1
Dii

Ä
fi(µ, u)2 +∇> fi(µ, u)Σ∇ fi(µ, u)

ä
, (A18)≠

∂ fi(x, t)
∂xi

∑
=

〈
∂

∂xi

(
fi(µ, u) +

n

∑
j=1

∂ fi(µ, u)
∂xj

xj +
1
2

n

∑
j,k=1

∂2 fi(µ, u)
∂xj ∂xk

xjxk

)〉
=

∂ fi(µ, u)
∂xi

. (A19)

Hence,

Π =
n

∑
i=1

Πi = Tr
Ä

Σ−1D
ä
+ Tr
Ä

D−1 f (µ, u) f (µ, u)>
ä
+ Tr
Ä

J f D−1J>f Σ
ä
+ 2Tr(J f ) (A20)

Φ =
n

∑
i=1

Φi = Tr
Ä

D−1 f (µ, u) f (µ, u)>
ä
+ Tr
Ä

J f D−1J>f Σ
ä
+ Tr(J f ) (A21)

Ṡ = Tr
Ä

Σ−1D
ä
+ Tr(J f ) (A22)
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