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Abstract: In this tutorial paper the Gull–Skilling kangaroo problem is revisited. The problem is used
as an example of solving an under-determined system by variational principles, the maximum entropy
principle (MEP), and Information Geometry. The relationship between correlation and information is
demonstrated. The Kullback–Leibler divergence of two discrete probability distributions is shown to
fail as a distance measure. However, an analogy with rigid body rotations in classical mechanics is
motivated. A table of proper “geodesic” distances between probability distributions is presented.
With this paper the authors pay tribute to their late friend David Blower.

Keywords: kangaroo problem; variational principle; maximum entropy principle; information
geometry; Kullback–Leibler divergence; metric tensor; Bhattacharyya angle; Wolfram Mathematica

1. Introduction

On my (RB) first meeting with Dr. John Skilling and Dr. Steve Gull in Cambridge in
1987, I was posed the following problem [1–3]:

In Australia, 3/4 of the kangaroos are right-handed and 1/3 have blue eyes. Can
you construct the 2× 2 probability table?

Having no clue about the use of their shorter forelegs, let alone any handedness, nor of the
colour of their eyes, I assumed that:

1. a kangaroo is right-handed or left-handed; and
2. a kangaroo has blue eyes or green eyes.

This means that there are four distinct possibilities: right-handed with blue eyes, right-
handed with green eyes, left-handed with blue eyes, and left-handed with green eyes.
The statement space is of dimension 2 × 2 and has 4 cells, and a bare probability table looks
like Table 1, showing the two given marginal values and the sum.

Table 1. Probability table: version 1.

Probability Table
Blue eyes Green eyes

Right-handed 3/4

Left-handed
1/3 1

The two other marginal values result from normalizing the sum of the joint probabili-
ties. Filling in the table a little more, we obtain Table 2. The notation Qi for probabilities
originates with David Blower, who avoids the overused P-symbol. In this paper we follow
Blower’s notation closely [4].
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Table 2. Probability table: version 2.

Probability Table
Blue eyes Green eyes

Right-handed Q1 Q2 3/4

Left-handed Q3 Q4 1/4

1/3 2/3 1

I thought about this problem for a short while and filled in the table by multiplying
the row and column marginal values, as in Table 3.

Table 3. Probability table, version 3.

Probability Table
Blue eyes Green eyes

Right-handed 1/4 1/2 3/4

Left-handed 1/12 1/6 1/4

1/3 2/3 1

However, then I was presented with the following set of equations

Q1 + Q2 = 3/4

Q1 + Q3 = 1/3 (1)

Q1 + Q2 + Q3 + Q4 = 1.

There are only three equations in four unknowns, leaving any other (consistent) equations
relating to the Qi redundant. This is an under-determined system. In my proposed solution,
I must have used a fourth equation. So, where did this fourth equation come from? My
answer was that I assumed that handedness and eye colour are independent, and thus
the marginal probabilities could be multiplied. “Aah”, they said, “you have applied the
Maximum Entropy Principle!”

Jaynes discussed and extended the kangaroo problem in the Fourth Maximum Entropy
Workshop in 1984 [3].

This under-determined system has one free variable. Choosing Q1 as the free variable,
the equations reduce to

Q2 = 3/4−Q1

Q3 = 1/3−Q1

Q4 = −1/12 + Q1.

(2)

A symbolic solution can be obtained by using Wolfram Mathematica’s Reduce[] function [5]
as shown in Figure 1.

Reduce[{q1 + q2 == 3/4, q1 + q3 == 1/3, q1 + q2 + q3 + q4 == 1, 
        0 <= q1 <= 1, 0 <= q2 <= 1, 0 <= q3 <= 1, 0 <= q4 <= 1},
  {q1, q2, q3, q4} ]

Figure 1. Wolfram Mathematica code for solving the under-determined problem (2).

In this code snippet, the three equations can be recognized as well as the positivity
condition. The solution is

1/12 ≤ Q1 ≤ 1/3. (3)

With this solution the probability table can be filled in as in Table 4.
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Table 4. Probability table, version 4.

Probability Table
Blue eyes Green eyes

Right-handed 1/12 ≤ Q1 ≤ 1/3 3/4−Q1 3/4

Left-handed 1/3−Q1 −1/12 + Q1 1/4

1/3 2/3 1

Figure 2 shows a range of solutions to this problem. This figure illustrates the cor-
relation and anti-correlation between the various Qi-s. Since Q1and Q2 have to maintain
their sum as 3/4, they must be anti-correlated. Therefore the coloured lines cross each other
between Q1 and Q3. Similarly, Q1 is anti-correlated with Q3. Therefore, Q2 and Q3 have to
be correlated, and the coloured lines between them do not cross. Finally, Q1 is correlated
with Q4, which can be seen from the repeated Q1-axis at the right.
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Figure 2. Parallel-axis plot of the Q1, Q2, Q3, and Q4, for Q1 between 1/12 (red) and 1/3 (purple) in
equidistant steps of 1/16. For clarity, the Q1 axis is repeated on the right.

2. Variational Principles

A possible solution for an under-determined problem can be found by adopting a
variational principle. This is a function of the joint probabilities to be optimized (maximized
or minimized) under some constraints, whose free parameters correspond to the missing
equations. Sivia considers four variational functions: the entropy, the sum of squares,
the sum of logarithms, and the sum of square roots, as shown in Table 5 [1].

Table 5. Sivia’s four variational functions: entropy, sum of squares, sum of logarithms, sum of square
roots.

Variational Functions

Function

Maximum entropy −∑n
i=1 Qi log Qi

Least squares ∑n
i=1 Q2

i

Maximum logarithms ∑n
i=1 log Qi

Maximum square roots ∑n
i=1
√

Qi

In the case of the Least Squares variational function we have

f (Q) = Q2
1 + Q2

2 + Q2
3 + Q2

4

= Q2
1 + (3/4−Q1)

2 + (1/3−Q1)
2 + (−1/12 + Q1)

2

= 4 Q2
1 − 7/3 Q1 + 49/72.

(4)
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This is a quadratic function and has a unique minimum at

Q1 = 7/24, (5)

which yields the exact solution of MVP,LeastSq

Qi = (7/24, 11/24, 1/24, 5/24). (6)

For the Maximum Entropy, the variational function

f (Q) = −Q1 log Q1 −Q2 log Q2 −Q3 log Q3 −Q4 log Q4 (7)

has to be maximized, subject to the constraints. This function has a unique maximum at

Q1 = 1/4, (8)

which yields the exact solution of MVP,MaxEnt

Qi = (1/4, 1/2, 1/12, 1/6). (9)

The solutions for Q1 for the Maximum logarithms and Maximum square roots variational
equations only can be obtained via numerical optimization. For each solution Q1, the other
three Qi values follow directly from (2). The Variational Principle solutions are tabulated in
Table 6 and visualized in Figure 3.

Table 6. The Variational Principle solutions.

Variational Functions

Model Function Qi

MVP,MaxEnt −∑n
i=1 Qi log Qi (0.25, 0.50, 0.08, 0.17)

MVP,LeastSq ∑n
i=1 Q2

i (0.29, 0.46, 0.04, 0.21)

MVP,MaxLog ∑n
i=1 log Qi (0.23, 0.52, 0.11, 0.14)

MVP,MaxSqrt ∑n
i=1
√

Qi (0.24, 0.51, 0.10, 0.15)
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Figure 3. Parallel axis plot of the Variational Principle solutions: MVP,MaxEnt is blue, MVP,LeastSq is
green, MVP,MaxLogs is orange, and MVP,MaxSqrt is red.

However, given these four different solutions to the kangaroo problem, we need a
rationale for choosing one of them. Which one is ’best’? Sivia states that barring some evi-
dence about a gene-linkage between handedness and eye colour for kangaroos, the MaxEnt
model is preferred because this model provides the only uncorrelated assignment of the Qi.
This is shown in Section 4.
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3. State Space and Constraint Functions

In the kangaroo problem, we have two traits: handedness and eye colour. Each trait
has a set of features; for the handedness they are “right-handed” and “left-handed”; for the
eye colour “blue” and “green”. Mixtures of features are not allowed. Therefore, for every
trait, one, and only one, feature applies; the features are mutually exclusive.

More abstractly, the features can be represented as statements. The combined features
from different traits form joint statements. The joint statements define a state space of
dimension n = 4. The n cells uniquely number the joint statements. Table 7 shows the
general setup.

Table 7. The n cells of the state space uniquely number the joint statements.

State Space Table
Blue eyes Green eyes

Right-handed (X = x1) (X = x2) 3/4

Left-handed (X = x3) (X = x4) 1/4

1/3 2/3 1

Any joint statement about a kangaroo can be placed in one and only one cell of the
state space. For example, a left-handed and blue-eyed kangaroo is uniquely defined by the
joint statement (X = x3). In this notation, the X denotes the two traits, and the x3 specifies
the features in cell 3. The state space is congruent to the probability table of Table 1, but
it has a different role. The joint statements, (X = xi), are logical statements which can be
either True or False.

A constraint function is defined over the state space, as shown in Table 8. The function
F assigns a Boolean value to each joint statement and returns a vector of values ([4], Ch. 21)

(F(X = x1), F(X = x2), F(X = x3), F(X = x4)). (10)

The constraint function vector specifies the operation of a constraint.

Table 8. The constraint function F(X = xi) is a function defined on the space of joint statements.

State Space Table
Blue eyes Green eyes

Right-handed F(X = x1) F(X = x2) 3/4

Left-handed F(X = x3) F(X = x4) 1/4

1/3 2/3 1

The constraint function F1 for our first constraint, “In Australia 3/4 of the kangaroos
are right-handed ...,” is shown in Table 9. Writing out the constraint function vector for F1,
we have

(F1(X = x1), F1(X = x2), F1(X = x3), F1(X = x4)) = (1, 1, 0, 0). (11)

The corresponding constraint function vector for the left-handed kangaroos is its comple-
ment, (0, 0, 1, 1).

Table 9. The constraint function F1 for the constraint “3/4 of the kangaroos are right-handed.”

State Space Table
Blue eyes Green eyes

Right-handed F1(X = x1) = 1 F1(X = x2) = 1 3/4

Left-handed F1(X = x3) = 0 F1(X = x4) = 0 1/4

1/3 2/3 1
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The constraint function F2 for the second constraint, “... and 1/3 have blue eyes,” is
shown in Table 10. Writing out the constraint function vector F2, we obtain

(F2(X = x1), F2(X = x2), F2(X = x3), F2(X = x4)) = (1, 0, 1, 0). (12)

The constraint function vector for the blue-eyed kangaroos is (1, 0, 1, 0), and (0, 1, 0, 1) for
the green-eyed ’roos.

Table 10. The constraint function vector for the second constraint (1/3 of the kangaroos have blue
eyes).

State Space Table
Blue eyes Green eyes

Right-handed F2(X = x1) = 1 F2(X = x2) = 0 3/4

Left-handed F2(X = x3) = 1 F2(X = x4) = 0 1/4

1/3 2/3 1

The probability distribution is normalized, which means that the sum of all joint
probabilities is unity. This is also a constraint. The overall normalization is a universal
constraint function vector

(F0(X = x1), F0(X = x2), F0(X = x3), F0(X = x4)) = (1, 1, 1, 1). (13)

This whole business of creating constraint function vectors for assigning probabilities
may seem overly elaborate but conceptually, and operationally, we need a way to connect a
statement (X = xi) with a numerical value. Technically, F is an operator that accepts a joint
statement as its variable and returns a Boolean value. Furthermore, the constraint function
vectors Fj become the basis vectors ej in the vector space of the information geometry in
Section 6.

4. Correlation, Covariance, and Entropy

What do correlation and covariance actually mean, and what is the difference? Some-
times the two terms are used interchangeably.

We all have an intuitive interpretation. For instance, people’s heights and weights are
correlated, which means that generally, tall persons weigh more than short ones. The two
variables vary together; they are co-varying. However, this does not necessarily reflect a
causal relationship. Gaining weight does not automatically imply becoming taller, as we
all know.

4.1. Expectation

Suppose that a function V(X = xi) is defined over the state space and returns a
numerical value for each joint statement. The expectation of V is

〈V〉 =
n

∑
i=1

V(X = xi) Qi. (14)

The sum is over all V(X = xi) values in the state space, whereas the Qi are from the
probability table. The expectation value, 〈V〉, is a numerical quantity.
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With this definition, let’s compute the expectation for "right-handedness". The con-
straint function vector for right-handedness, F1 = (1, 1, 0, 0), acts as the quantity V

〈F1〉 =
n

∑
i=1

F1(X = xi) Qi

= F1(X = x1) Q1 + F1(X = x2) Q1 + F1(X = x3) Q1 + F1(X = x4) Q1

= 1 Q1 + 1 Q2 + 0 Q3 + 0 Q4

= Q1 + Q2

= 3/4.

(15)

In the last step, we have used the information given in Table 2. The expectation for
right-handedness thus equals its marginal value.

Similarly for “blue eyes”, with F2 = (1, 0, 1, 0)

〈F2〉 =
n

∑
i=1

F2(X = xi) Qi

= 1 Q1 + 0 Q2 + 1 Q3 + 0 Q4

= Q1 + Q3

= 1/3.

(16)

Furthermore, the expectation value for blue eyes again equals its marginal value.

4.2. Variance

The variance of the V(X = xi) values is defined as

var(V) =
n

∑
i=1

(V(X = xi)− 〈V〉)2 Qi

=
〈
(V(X = xi)− 〈V〉)2

〉
.

(17)

Notice that there are two nested sets of brackets 〈.〉 involved. The 〈V〉 is defined by (14).
By expanding the square, this can be rewritten as

var(V) =
〈
(V(X = xi)− 〈V〉)2

〉
=
〈

V(X = xi)
2 − 2 V(X = xi) 〈V〉+ 〈V〉2

〉
=
〈

V(X = xi)
2
〉
− 2 〈V(X = xi) 〈V〉〉+

〈
〈V〉2

〉
=
〈

V(X = xi)
2
〉
− 2 〈V(X = xi)〉 〈V〉+ 〈V〉2

=
〈

V(X = xi)
2
〉
− 2 〈V〉 〈V〉+ 〈V〉2

=
n

∑
i=1

V(X = xi)
2 Qi − 〈V〉2.

(18)

We have used the properties 〈〈V〉〉 = 〈V〉 and
〈
〈V〉2

〉
= 〈V〉2 in the above derivation,

because 〈V〉 is a constant.
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So what is the variance of "right-handedness"? Taking V = F1, we obtain

var(F1) =
n

∑
i=1

F1(X = xi)
2 Qi − 〈F1〉2

= 12 Q1 + 12 Q2 + 02 Q3 + 02 Q4 − 〈F1〉2

= Q1 + Q2 − 〈F1〉2

= 3/4− (3/4)2

= 3/16.

(19)

The variance of “blue eyes” is

var(F2) =
n

∑
i=1

F2(X = xi)
2 Qi − 〈F2〉2

= 12 Q1 + 02 Q2 + 12 Q3 + 02 Q4 − 〈F2〉2

= Q1 + Q3 − 〈F2〉2

= 1/3− (1/3)2

= 2/9.

(20)

We conclude that both variances are independent of Q1.

4.3. Covariance

The covariance between two variables V(X = xi) and W(X = xi) is defined by

cov(V, W) = 〈(V(X = xi)− 〈V〉) (W(X = xi)− 〈W〉)〉. (21)

By a similar expansion as above, the product can be written as

cov(V, W) = 〈V(X = xi)W(X = xi)−V(X = xi) 〈W〉 −W(X = xi) 〈V〉+ 〈V〉 〈W〉〉
= 〈V(X = xi)W(X = xi)〉 − 〈V(X = xi)〉 〈W〉 − 〈W(X = xi)〉 〈V〉+ 〈V〉 〈W〉
= 〈V(X = xi)W(X = xi)〉 − 〈V〉 〈W〉

=
n

∑
i=1

V(X = xi)W(X = xi) Qi − 〈V〉 〈W〉.

(22)

What does this give for the cov(F1, F2)? Expanding the sum and substituting the
constraint function vectors F1 = (1, 1, 0, 0) and F2 = (1, 0, 1, 0), we obtain

cov(F1, F2) = 1 ∗ 1 Q1 + 1 ∗ 0 Q2 + 0 ∗ 1 Q3 + 0 ∗ 0 Q4 − 〈F1〉 〈F2〉
= Q1 − 3/4 ∗ 1/3

= Q1 − 1/4.

(23)

We find that cov(F1, F2) does depend on Q1.
The variances and covariances can be combined in the variance-covariance matrix,

which is defined by

Σ(F1, F2) =

(
var(F1) cov(F1, F2)

cov(F1, F2) var(F2)

)
=

(
3/16 Q1 − 1/4

Q1 − 1/4 2/9

)
.

(24)

The variance-covariance matrix is related to the metric tensor g from information geometry
in Section 6.
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4.4. Correlation

The correlation coefficient is a single value derived from the variance and covariance
values. It is defined as

ρ(V, W) =
cov(V, W)√

var(V) var(W)
. (25)

Therefore the correlation between the eye colour and the handedness of the kangaroos is

ρ(F1, F2) =
cov(F1, F2)√

var(F1) var(F2)

=
Q1 − 1/4√

3/16 ∗ 2/9

= 2
√

6 (Q1 − 1/4).

(26)

This finally confirms that indeed, the MaxEnt solution, with Q1 = 1/4, has zero
correlation. We agree with Sivia that the other variational functions yield a positive or
negative correlation between handedness and eye colour. (Notice that our correlation
coefficients have the opposite sign, because Sivia correlates the left-handedness with blue
eyes [1].) Table 11 shows the model solutions Qi and the corresponding correlation values.

Table 11. The numerical details for the variational principle solutions.

Variational Functions

Model Function Qi ρ(F1, F2) H(Q) (bits)

MVP,MaxEnt −∑n
i=1 Qi log Qi (0.25, 0.50, 0.08, 0.17) 0.00 1.730

MVP,LeastSq ∑n
i=1 Q2

i (0.29, 0.46, 0.04, 0.21) 0.20 1.697

MVP,MaxLog ∑n
i=1 log Qi (0.23, 0.52, 0.11, 0.14) −0.11 1.721

MVP,MaxSqrt ∑n
i=1
√

Qi (0.24, 0.51, 0.10, 0.15) −0.07 1.727

One may have gotten the impression that the constraint function values are always
0 or 1, but these are specific for the problem treated in this paper. In general, a constraint
function may yield any numerical value. The construction of a constraint function can be
intricate; see, for example, Blower ([4], p. 63).

4.5. Entropy

The information entropy is a measure of the amount of missing information in a probability
distribution. The information entropy H(Q) of a discrete probability distribution is

H(Q) = −
n

∑
i=1

Qi log Qi. (27)

Of all possible probability distributions, the discrete uniform distribution has the maximum
missing information. Thus for n = 4, we have q = (1/4, 1/4, 1/4, 1/4) with

H(q) = −
n

∑
i=1

1
4

log
1
4

= log 4

≈ 1.39.

(28)
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When the natural logarithm loge is used, the units of entropy are nats. However, the entropy
can also be defined in terms of the more familiar bits when log2 is used. The conversion of
H(Q) to bits by multiplying by log2 e ≈ 1.44 gives

H(q) = log 4 ∗ log2 e

= 1.39 ∗ 1.44

= 2 bits.

(29)

Maximum missing information of two bits exactly describes our minimum state of knowl-
edge in a 2× 2 state space with four equally probable states. We need one bit to choose a
column and another bit to choose a row. Combined, we have fully specified one of four
equally probable states or cells in the state space.

Absolute certainty is described by zero bits of missing information. This is attained
when one Qi = 1 and all other Qj 6=i = 0. Then our state of knowledge is fully specified and
there is no missing information. For example, a “certain distribution” is p = (0, 0, 1, 0), for
which the entropy is

H(p) = 0. (30)

Here we have used
lim

x→0+
x log x = 0, (31)

and log 1 = 0.
The table in Table 11 shows the values for H(Q), in bits, in the last column. Al-

though all models have an entropy that is smaller than two bits, the numerical values of the
entropy are not easily assessed intuitively. Jaynes gives an excellent explanation to guide
one’s intuition ([6], Ch. 11.3).

Suppose we were first told about the kangaroos’ handedness, namely p1 = 3/4 versus
p2 = 1/4. The information entropy of this binary case is

H2(p1, p2) = −
3
4

log2
3
4
− 1

4
log2

1
4

= 0.81.
(32)

Next, we learn that the first alternative consists of two possibilities, namely blue and green
eyes, with p1 = q1 + q2, where q1 = 1/4 and q2 = 1/2. The information entropy for the
ternary case becomes

H3(q1, q2, p2) = H2(p1, p2) + p1 ∗ H2

(
q1

p1
,

q2

p1

)
= H2(p1, p2) +

3
4

(
−1

3
log2

1
3
− 2

3
log2

2
3

)
= 0.81 + 0.69

= 1.50.

(33)

Finally, the second alternative also consists of two possibilities, namely p2 = q3 + q4,
with q3 = 1/12 and q4 = 1/6. The information entropy becomes

H4(q1, q2, q3, q4) = H3(q1, q2, p2) + p2 ∗ H2

(
q3

p2
,

q4

p2

)
= H3(q1, q2, p2) +

1
4

(
−1

3
log2

1
3
− 2

3
log2

2
3

)
= 1.50 + 0.23

= 1.73.

(34)
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We recognize the same value as for MVP,MaxEnt in Table 11. In this example, the state space is
gradually expanded and, as the number of cells increases one’s ambivalence also increases,
which is reflected in an increase in the entropy. The example also shows that the subsequent
Hn are additive. Notice that the above partitioning of the p1 and p2 is proportional to the
blue- and green-eyed kangaroos ratio.

For a given set of constraints, of all possible models, the maximum entropy solution
has the highest information entropy ([4], Ch. 24.2), which is confirmed in Table 11. This
means that the MVP,MaxEnt solution has the most missing information. Consequently, in one
way or another, some extra information was introduced by the other variational functions.
From the example above, one may surmise that the additional information originates from
a different partitioning of the p1 and p2 into the qi-s.

This extra information also shows up as non-zero correlations; the higher the absolute
value of the correlation, the lower the information entropy. Therefore, correlation induces
information, reducing the amount of missing information.

5. Maximum Entropy Principle

Although we have already obtained several solutions to the kangaroo problem by
the optimization of various variational functions, the procedure may be seen as ad hoc.
The Maximum Entropy Principle (MEP) is a versatile problem-solving method based on
the work of Shannon and Jaynes ([6], Ch. 11; [3,7]). The MEP is a method with highly
desirable features for making numerical assignments, and, most importantly, all conceivable
legitimate numerical assignments may be made, and are made, via the MEP. The book by
Blower [4] is entirely devoted to the MEP.

5.1. Interactions

Blower defines the interaction between two (or more) constraints as the product of
their constraint function vectors. Here we have two constraints, which can have only one
interaction, namely between “right-handed” and “blue eyes”. In problems with more
dimensions, higher-dimensional interactions can be defined by the product of three or more
constraint function vectors.

The interaction vector is the element-wise product of the relevant constraint function
vectors

F3(X = xi) = F1(X = xi) ∗ F2(X = xi)

= (1, 1, 0, 0) ∗ (1, 0, 1, 0)

= (1, 0, 0, 0).

(35)

From Table 12, we see how F3(X = xi) selects the interaction between “right-handed” and
“blue eyes”. This interaction singles out the (X = x1) statement in the state space and,
consequently, the Q1 joint probability. Keeping our terminology simple, this interaction
vector is also called a constraint function vector.

Table 12. F3(X = xi) selects the interaction between “right-handed” and “blue eyes”.

State Space Table
Blue eyes Green eyes

Right-handed F3(X = x1) = 1 F3(X = x2) = 0 3/4

Left-handed F3(X = x3) = 0 F3(X = x4) = 0 1/4

1/3 2/3 1

There are now three constraint function vectors

F1(X = xi) = (1, 1, 0, 0)

F2(X = xi) = (1, 0, 1, 0)

F3(X = xi) = (1, 0, 0, 0),

(36)
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which can be combined to form the constraint function matrix

M =

 1 1 0 0
1 0 1 0
1 0 0 0

. (37)

The constraint function matrix has dimensions m× n. As in Section 4, the expectation value
of the interaction 〈F3〉 is

〈F3〉 =
n

∑
i=1

F3(X = xi) Qi

= 1 Q1 + 0 Q2 + 0 Q3 + 0 Q4

= Q1.

(38)

The three expectation values are combined to form the constraint function average vector 〈F1〉
〈F2〉
〈F3〉

 =

 3/4
1/3

Q1

. (39)

The constraint function average vector (〈F1〉, 〈F2〉, 〈F3〉) is related to the contravariant
coordinates (η1, η2, η3) in information geometry in Section 6.

In an under-determined problem, the number of constraints (primary and interaction)
is m < n − 1. In our case m = 3, therefore combined with the normalization of the
probability distribution, we have a linear system of four equations with four unknowns.
However, in this paper, we take a general approach as if we had an under-determined
system with m < n− 1.

Returning to our kangaroo problem, from the MEP perspective, we will obtain four
models MMEP,k defined by their constraint function averages (〈F1〉, 〈F2〉, 〈F3〉). The set-up
of the problem fixes values of 〈F1〉 and 〈F2〉, whereas the third value, 〈F3〉, is taken as the
Q1-s from the MVP,k model solutions, as shown in Table 11.

5.2. The Maximum Entropy Principle

The MEP involves a constrained optimization problem utilizing the method of La-
grange multipliers. According to Jaynes, the MEP provides the most conservative, non-
committal distribution where the missing information is as ‘spread-out’ as possible, yet
which accords with no other constraints than those explicitly taken into account.

The MEP solution in its canonical form is ([4], p. 50)

Qi =
exp

(
∑m

j=1 λj Fj(X = xi)
)

Z(λ)
. (40)

Here Qi is the probability for the joint statement (X = xi). The Fj(X = xi) is the j-th
constraint function operator acting on the i-th joint statement. The λj are the Lagrange
multipliers, each corresponding to a constraint function. The summation is over all m
constraints. The Z(λ) in the denominator normalizes the joint probabilities and is called
the partition function

Z(λ) =
n

∑
i=1

exp

(
m

∑
j=1

λj Fj(X = xi)

)
. (41)

For our kangaroo problem the MEP solution can be written as

Qi =
exp(λ1 F1(X = xi) + λ2 F2(X = xi) + λ3 F3(X = xi))

Z(λ1, λ2, λ3)
, (42)
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with

Z(λ1, λ2, λ3) =
n

∑
i=1

exp(λ1 F1(X = xi) + λ2 F2(X = xi) + λ3 F3(X = xi)). (43)

The arguments of the exponents can be written in vector-matrix notation, using the con-
straint function matrix (37)

(λ1, λ2, λ3) ·

 1 1 0 0
1 0 1 0
1 0 0 0

 = (λ1 + λ2 + λ3, λ1, λ2, 0). (44)

The partition function then becomes

Z(λ1, λ2, λ3) = exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1. (45)

The joint probabilities (42) are expressed in full as

Q1 =
exp(λ1 + λ2 + λ3)

exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1

Q2 =
exp(λ1)

exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1

Q3 =
exp(λ2)

exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1

Q4 =
1

exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1
,

(46)

and the three Lagrange parameters (λ1, λ2, λ3) are the solutions of the three constraint
equations

Q1 + Q2 =
exp(λ1 + λ2 + λ3) + exp(λ1)

exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1
= 〈F1〉

Q1 + Q3 =
exp(λ1 + λ2 + λ3) + exp(λ2)

exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1
= 〈F2〉

Q1 =
exp(λ1 + λ2 + λ3)

exp(λ1 + λ2 + λ3) + exp(λ1) + exp(λ2) + 1
= 〈F3〉.

(47)

This is a non-linear problem in three unknowns. Solving the Lagrange parameters usually
requires an advanced numerical approximation technique. The Legendre transform pro-
vides such a method, which is described in detail by Blower ([4], Ch. 24), and demonstrated
in the code example in Figure 4. In some cases, the λj can be obtained exactly, as we will
see below.

cfm = {{1, 1, 0, 0}, {1, 0, 1, 0}, {1, 0, 0, 0}};

cfa = 3 / 4, 1 / 3, Q1;

lsymbolic = {λ1, λ2, λ3};

zsymbolic = Total[Exp[Dot[lsymbolic, cfm]]];

{entropy, solution} = NMinimize[Log[zsymbolic] - Dot[lsymbolic, cfa], lsymbolic]

lnumeric = lsymbolic /. solution

Figure 4. Wolfram Mathematica code for finding the Lagrange parameters (47) using the Legendre
transform as a function of Q1.

Our four models are distinguished only by their constraint function average, 〈F3〉 =
Q1, in (39). The details are shown in Table 13.
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Table 13. MEP-solution of the kangaroo problem.〈
Fj
〉

λj Qi

MMEP,MaxEnt (0.75, 0.33, 0.25) (1.10,−0.69, 0.00) (0.25, 0.50, 0.08, 0.17)

MMEP,LeastSq (0.75, 0.33, 0.29) (0.79,−1.61, 1.16) (0.29, 0.46, 0.04, 0.21)

MMEP,MaxLog (0.75, 0.33, 0.23) (1.29,−0.31,−0.53) (0.23, 0.52, 0.11, 0.14)

MMEP,MaxSqrt (0.75, 0.33, 0.24) (1.21,−0.46,−0.31) (0.24, 0.51, 0.10, 0.15)

The constraint function vectors are shown in the second column. The three Lagrange
parameters are shown in the third column. From this column one can learn that all three
Lagrange parameters λj vary, even when only the value of 〈F3〉 is varied. Substituting
these (λ1, λ2, λ3) in (46), the probability distributions Qi of the last column are obtained.
In our case, these MEP solutions are the same as those obtained by the variational principle
methods in table in Table 6, but this need not be so in general. The Lagrange parameters
(λ1, λ2, λ3) are related to the covariant coordinates

(
θ1, θ2, θ3) of information geometry in

Section 6.
Close inspection of the table in Table 13 reveals that the Lagrange multiplier λ3 = 0

for MMEP,MaxEnt solution. This is an important observation because it signals that the
F3(X = xi) constraint function is redundant and, consequently, can be removed. The so-
lution for the joint probabilities Qi using only (〈F1〉, 〈F2〉) is identical to the one with
(〈F1〉, 〈F2〉, 〈F3〉). Actually, we knew this already, as this was the basis of the solution
in Table 3, but the MEP provides a systematic method for detecting redundancies ([6],
p. 369, [8], p. 108).

The Lagrange parameters can be solved algebraically for the MMEP,MaxEnt and the
MMEP,LeastSq models. Recall that the MVP,MaxEnt and MVP,LeastSq models gave exact solutions
for the Qi, namely from substituting (8) and (5) in (2). From (46), we see that Z = 1/Q4,
therefore the value of the partition function is exactly known. Subsequently, the exp λj can
be solved algebraically from (46).

Since the MVP,k and the MMEP,k model results turn out to be identical, the distinc-
tion based on their solution method can now be dropped. For consistency, we keep the
redundant F3(X = xi) constraint function in the MMaxEnt model.

6. Information Geometry
6.1. Coordinate Systems

In Information Geometry (IG), a discrete probability distribution Qi is represented
by a point in a manifold S. A manifold of dimension n is denoted by Sn; in our case n = 4.
The probability distribution is parameterized by two dual coordinate systems, namely
a covariant system denoted by superscripts

(
θ0, θ1, θ2, θ3) and a contravariant system

denoted by subscripts (η0, η1, η2, η3). This notation corresponds to the work of Amari [9].
The book by Blower [8] is entirely devoted to IG, and in this section we follow his notation.

The contravariant coordinate system corresponds to the constraint function averages

(η0, η1, η2, η3) = (〈F0〉, 〈F1〉, 〈F2〉, 〈F3〉), (48)

whereas the covariant coordinates are the Lagrange multipliers(
θ0, θ1, θ2, θ3

)
= (λ0, λ1, λ2, λ3). (49)

The normalization of the probability distribution is given by

〈F0〉 = η0 = 1.

This definition yields for the first covariant coordinate
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λ0 = θ0 = 1− log Z,

where Z is the partition function (41). For example, the uniform distribution q in the
covariant coordinate system is

(λ0, λ1, λ2, λ3) = (1− log 4, 0, 0, 0), (50)

and in the contravariant coordinate system

(〈F0〉, 〈F1〉, 〈F2〉, 〈F3〉) = (1, 1/2, 1/2, 1/4). (51)

In IG, the normalization is always implicitly assumed; therefore the coordinates η0 and θ0

are never shown explicitly. In the remainder of this paper, only three coordinates are used,
namely

(〈F1〉, 〈F2〉, 〈F3〉) = (η1, η2, η3), (52)

and
(λ1, λ2, λ3) =

(
θ1, θ2, θ3

)
. (53)

6.2. Tangent Space

All modeling takes place in a sub-manifold Sm, which is tangent to the manifold Sn.
This is illustrated in Figure 5. In our kangaroo problem m = 3.

Figure 5. The sub-manifold Sm (blue) is tangent to the manifold Sn. The red line is a meridian of
longitude and the blue line is a parallel of latitude through the point of tangency.

Perhaps it is tempting to think of a probability distribution Q as a vector in Sn, with a
coordinate system along the axes as in Figure 6. However, this notion is conceptually wrong
because the probability distribution is normalized by

Q1 + Q2 + Q3 + Q4 = 1, (54)

and not as √
Q2

1 + Q2
2 + Q2

3 + Q2
4 = 1. (55)

We will return to the issue of normalization in Section 6.6.
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Figure 6. Incorrect view of the probability distribution as a vector (green) to the point of tangency in
Sn, with a coordinate system along the axes.

The manifold has no familiar extrinsic set of coordinate axes by which all points can
be referenced. All we have is this austere representation of points mapped to a coordinate
system ([8], p.46). The tangent space is spanned by a set of m basis vectors. The natural
basis vectors of the tangent space are

er = Fr(X = xi)− 〈Fr〉, (56)

where we recognize the constraint function vector Fr(X = xi) and the corresponding con-
straint function average 〈Fr〉. Notice that the constraint function average 〈Fr〉 is subtracted
from every element of the constraint function vector Fr(X = xi). For the least squares
model solution MLeastSq, the basis vectors are

(e1, e2, e3) =


1/4
1/4

−3/4

−3/4

,

2/3

−1/3
2/3

−1/3

,

17/24

−7/24

−7/24

−7/24

, (57)

where we have used (36) and (39), and substituted the Qi using (5).
These basis vectors are not orthogonal. The angle φ between two vectors v and w is

given by
cos(φ) =

v ·w
‖v‖‖w‖ . (58)

This gives for the angles in degrees between e1 and e2, e1 and e3, and e2 and e3: 98.1◦,
56.1◦, and 59.0◦, respectively. The basis vectors are also not normalized; their lengths are
defined as ‖er‖ and found to be 1.12, 1.05, and 0.87, respectively. However, the er of (57)
are perpendicular to the probability distribution (6) from the model MVP,LeastSq

Qi = (7/24, 11/24, 1/24, 5/24); (59)

all mutual angles φ are 90.0◦.
Since the basis vectors er do not form an orthogonal coordinate system, for an arbitrary

vector there are two possible projections. Covariant coordinates are obtained by a projection
parallel to the basis vectors, while contravariant coordinates are obtained by a perpendicular
projection onto the basis vectors.

6.3. Metric Tensor

Each probability distribution p in the manifold Sn has an associated metric tensor
G(p). The metric tensor is an additional structure that allows the definition of distances
and angles in the manifold.
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The metric tensor is a symmetric matrix, and it comes in covariant and contravariant
forms which are each other’s matrix inverse. The contravariant metric tensor turns out to
be the same as the variance-covariance matrix ([8], p. 50). In our notation the covariant
form is grc, and the contravariant form is grc, where the superscripts and subscripts r and c
refer to the matrix row and column index.

The elements of the contravariant metric tensor are defined as inner products

grc = 〈(Fr(X = xi)− 〈Fr〉), (Fc(X = xi)− 〈Fc〉)〉

=
n

∑
i=1

(Fr(X = xi)− 〈Fr〉) (Fc(X = xi)− 〈Fc〉) Qi

=
n

∑
i=1

Fr(X = xi) Fc(X = xi) Qi − 〈Fr〉 〈Fc〉.

(60)

The sum is over all state space cells, whereas the r and c are fixed. Notice that this is the
same computation as (22) for the covariance between two vectors.

In the locally flat tangent space Sm, the two coordinate systems are non-orthogonal,
and the metric tensor forms the local transformation between the two coordinate systems,

∂〈Fc〉
∂λr

=
∂ηc

∂θr = grc, (61)

and its inverse
∂λr

∂〈Fc〉
=

∂θr

∂ηc
= grc. (62)

In Blower’s notation the contravariant
〈

Fj
〉

and covariant λj vector indices do not follow
the common Einstein convention.

The metric tensor can be computed by

grc =
∂2 log Z
∂λr ∂λc

, (63)

with Z the partition function (43)

Z(λ) = e(λ1+λ2+λ3) + eλ1 + eλ2 + 1. (64)

The contravariant metric tensor for our kangaroo problem is most easily expressed in the
covariant coordinates (λ1, λ2, λ3)

G(λ) =
1

Z2


eλ1

(
eλ2 + 1

)(
eλ2+λ3 + 1

)
eλ1+λ2

(
eλ3 − 1

)
eλ1+λ2+λ3

(
eλ2 + 1

)
eλ1+λ2

(
eλ3 − 1

)
eλ2

(
eλ1 + 1

)(
eλ1+λ3 + 1

)
eλ1+λ2+λ3

(
eλ1 + 1

)
eλ1+λ2+λ3

(
eλ2 + 1

)
eλ1+λ2+λ3

(
eλ1 + 1

)
eλ1+λ2+λ3

(
eλ1 + eλ2 + 1

)
. (65)

The Wolfram Mathematica [5] code which yields this symbolic expression is surpris-
ingly compact, as shown in Figure 7. This short piece of code demonstrates the indispens-
ability of a good symbolic tool when doing IG.

cfm = {{1, 1, 0, 0}, {1, 0, 1, 0}, {1, 0, 0, 0}};
lsymbolic = {λ1, λ2, λ3};
z = Total[Exp[Dot[lsymbolic, cfm] ]];
Outer [D[Log[z], #1, #2] &, lsymbolic, lsymbolic]

Figure 7. Wolfram Mathematica code for calculating the metric tensor (65).
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Substituting the appropriate Lagrange parameters from Table 13, the metric tensor for
the least squares model solution MLeastSq is

GLeastSq =

 3/16 1/24 7/96
1/24 2/9 7/36
7/96 7/36 119/576

, (66)

and for the maximum entropy model MMaxEnt, we obtain

GMaxEnt =

 3/16 0 1/16

0 2/9 1/6
1/16 1/6 3/16

. (67)

Here we can see that the upper-left 2 × 2 sub-matrices are identical to the variance-
covariance matrix of (24). The extension to the 3× 3 matrices is due to the added interactions
F3(X = xi).

6.4. Kullback–Leibler Divergence

The Kullback–Leibler divergence allows for the determination of the differences in
information content between two probability distributions. The Kullback–Leibler divergence
between two discrete probability distributions p and q is defined as

KL(p ‖ q) =
n

∑
i=1

pi log
(

pi
qi

)
. (68)

The divergence is not a distance because the expression is not symmetric in p and q.
A common way to refer to Kullback–Leibler divergence (KL) is as the relative entropy of p
with respect to q or the information gained from p over q.

For example, with p = (0, 0, 1, 0) and q = (1/4, 1/4, 1/4, 1/4) we have

KL(p ‖ q) = 0 log
(

0
1/4

)
+ 0 log

(
0

1/4

)
+ 1 log

(
1

1/4

)
+ 0 log

(
0

1/4

)
= log(4),

(69)

where we have used the limit expression (31) again. However, when we interchange p and
q we obtain

KL(q ‖ p) = 1/4 log
(

1/4

0

)
+ 1/4 log

(
1/4

0

)
+ 1/4 log

(
1/4

1

)
+ 1/4 log

(
1/4

0

)
= ∞.

(70)

Therefore, figuratively speaking, we have gained a finite amount of information when
learning that we are certain, but we have lost an “infinite” amount when we lose our
certainty. Learning and forgetting are asymmetric.

Therefore, the notion of the KL-divergence as a distance measure between distinct
probability distributions is flawed. Rewriting (68) we obtain

KL(p ‖ q) =
n

∑
i=1

pi log
(

pi
qi

)
=

n

∑
i=1

pi log pi −
n

∑
i=1

pi log qi

= −〈log q〉p − H(p)

(71)

where H(p) is the entropy of p. The first term on the right is the expectation of log q with
respect to p. When q 6= p, KL(p ‖ q) and −〈log q〉p are strictly positive quantities.
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The KL-divergence can be expressed in bits when (68) is multiplied by log2 e ≈ 1.44.
Table 14 shows the values for our four models. As expected, the table is not symmetric.

Table 14. The Kullback–Leibler divergence KL(p ‖ q) (bits) between the models Mk, where p and q
are the models in the rows and columns, respectively.

MMaxEnt MLeastSq MMaxLog MMaxSqrt

MMaxEnt 0 0.0368 0.0085 0.0030

MLeastSq 0.0327 0 0.0729 0.0547

MMaxLog 0.0087 0.0834 0 0.0014

MMaxSqrt 0.0031 0.0623 0.0014 0

When the distributions p and q = p + dp are infinitesimally close, writing

qi = pi + dpi, (72)

we have
n

∑
i=1

dpi = 0. (73)

Expanding the KL-divergence for small dp

KL(p ‖ q) =
n

∑
i=1

pi log
(

pi
qi

)
= −

n

∑
i=1

pi log
(

qi
pi

)
= −

n

∑
i=1

pi log
(

1 +
dpi
pi

)
= −

n

∑
i=1

dpi +
n

∑
i=1

1
2

dp2
i

pi
−O

(
dp3
)

≈ 1
2

n

∑
i=1

dp2
i

pi
.

(74)

This expansion is a sum of squares, which is symmetric. Therefore, the KL-divergence is
commutative for infinitesimal separations between p and q.

This property of the Kullback–Leibler divergence has an analogy in classical mechanics,
namely that two infinitesimal rotations of a rigid body along different principal axes are
commutative, while finite rotations are not.

6.5. Distances

What is the distance between two discrete probability distributions p and q in the
manifold Sn? This is at the heart of Information Geometry. For a distance we need a curve
connecting the two points. There are many possibilities. What would be the length of such
curves? Which one is the shortest? The shortest of all possible curves is called a geodesic.
Suppose that s is a curve connecting p and q, then any point t on the curve s is a probability
distribution. Therefore, we have a continuum of probability distributions along s in the
manifold Sn.

For two close-by points p and q = p + dp, their distance is a function of the KL-
divergence, namely ([8], pp. 77–78)

ds =
√

2 KL(p ‖ q). (75)
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The same distance is given by

ds =

√
m

∑
r=1

m

∑
c=1

grc(p) dλr dλc, (76)

where the covariant coordinates λ and λ + dλ of p and q are used, and the metric tensor
grc(p) is evaluated as in (65). However, there is a subtle difference here, namely the KL-
divergence in (75) is computed in the full manifold Sn, whereas ds in (76) is computed in
the tangent space Sm, with m < n.

When the two distributions are finitely separated, as is the case for our models Mk,
the length of the curve s(t) is the integral from p to q of

L(s) =
∫ q

p

∣∣s′(t)∣∣ dt, (77)

where s(t) is the curve in Sn parameterized by the probability distribution t, and s′(t) is its
first derivative. The tangent sub-manifold Sm(t) follows t along s(t) from p to q, and the
Lagrange parameters λ(t) and the metric tensor grc(t) vary with t. However, finding the
distance D = min L(s) is an Euler–Legendre variational problem beyond the scope of this
paper [10].

6.6. Angular Distances

The distance between two probability distributions can also be found as the arc length
of a great circle on a sphere in Sn. This is known as the Bhattacharyya angle.

Substituting (74) in (75) we can write

(ds)2 =
n

∑
i=1

(dpi)
2

pi

=
m

∑
r=1

m

∑
c=1

grc(p) dpr dpc,

(78)

with a metric tensor

grc(p) =

{
1/pr for r = c
0 otherwise.

(79)

Using the transformation
ψi =

√
pi (80)

we define ψ as a point on the positive orthant of the unit sphere with

n

∑
i=1

ψ2
i =

n

∑
i=1

pi = 1. (81)

This effectively restricts ψ to a sub-manifold of dimension Sn−1. The geometry is illustrated
by Figure 8. In the ψ-coordinate system, the infinitesimal distance becomes

(ds)2 =
n

∑
i=1

(dpi)
2

pi

=
n

∑
i=1

(2ψ dψi)
2

ψ2
i

= 4
n

∑
i=1

(dψi)
2,

(82)
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or
ds = 2 dψ. (83)

Notice that in this coordinate system the metric tensor is the Euclidean metric tensor

grc(ψ) =

{
1 for r = c
0 otherwise.

(84)

With this transformation the probability distributions become points on a hypersphere
with a unit radius in (n− 1) dimensions. However, it is well known that geodesics on a
sphere are great circles. Therefore, the distance can be obtained by the path integral (77)
along a great circle connecting the two points. The arc length between two points is the
subtended angle θ between two points ψ1 and ψ2 on the unit hypersphere

θ = arccos ψ1 · ψ2

= arccos
n

∑
i=1

ψ1,i ψ2,i

= arccos
n

∑
i=1

√
pi
√

qi.

(85)

This remarkable result is the Bhattacharyya angle between two probability distributions [11].
The distance D between p and q is twice the arc length from (83)

D(p, q) = 2 θ

= 2 arccos
n

∑
i=1

√
pi
√

qi.
(86)

The units of D are radians. The maximum distance of π radians is achieved between two
orthogonal distributions.

Figure 8. Positive orthant Sn−1. In the ψ-coordinate system, the ψi are orthonormal coordinates.

With this result we can compute the symmetric distance table for our four Kangaroo
models, shown in Table 15; the numerical values are converted from radians to degrees.
From this table we see that the largest distance is between the models MLeastSq and MMaxLog.
This observation corresponds with these models having the biggest difference in their
correlation coefficients ρ(F1, F2) in Table 11.



Phys. Sci. Forum 2022, 1, 22 22 of 24

Table 15. The distance D (in degree) between the models Mk.

MMaxEnt ↔ MLeastSq 12.5

MMaxEnt ↔ MMaxLog 6.3

MMaxEnt ↔ MMaxSqrt 3.7

MLeastSq ↔ MMaxLog 18.8

MLeastSq ↔ MMaxSqrt 16.3

MMaxLog ↔ MMaxSqrt 2.5

Interestingly, when we define lower and upper bounds

KLmin = min(KL(p ‖ q), KL(q ‖ p))
KLmax = max(KL(p ‖ q), KL(q ‖ p)),

(87)

all the distances from Table 15 have values√
2 KLmin < D(p, q) <

√
2 KLmax. (88)

Although we have no proof, this observation suggests that the two forms of the KL-
divergence may act as lower and upper limits for the true distance D(p, q).

6.7. Geodesics

The arc of the great circle connecting the two points can be found as follows [12]. Let
v1 and v2 be two points on the (n− 1) dimensional hypersphere, then

w = v2 − (v2· v1) v1 (89)

u =
1
‖w‖ w. (90)

Then
α(τ) = cos(τ) v1 + sin(τ) u (91)

traces out a great circle through v1 and v2. It starts at α(τ) = v1 when τ = 0, it reaches
α(τ) = v2 at τ = arccos(v2· v1), and returns to v1 when τ = 2π. Here we recognize the
Bhattacharyya angle again.

When v1 = ψ1 and v2 = ψ2 represent two probability distributions, they must remain
on the positive orthant of the hypersphere. For 0 ≤ τ ≤ arccos(ψ2·ψ1),

t = α2(τ) (92)

is a probability distribution in Sn on the geodesic connecting ψ1 and ψ2.
Our under-determined problem is parametrized by a single variable, namely 1/12 ≤

Q1 ≤ 1/3 from (3), which implies that there is only one dimension involved. Therefore
it seemed reasonable to surmise that varying Q1 traces out probability distributions t
along the shortest distance between the various models, but this turned out to be incorrect.
The distributions t on the geodesic s(t) connecting, for example, MLeastSqto MMaxEnt, do
not comply with the constraint function average vector (39)

(〈F1〉, 〈F2〉, 〈F3〉) = (3/4, 1/3, Q1). (93)

except for the endpoints.
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6.8. Distances Revisited

Our knowledge of the geodesic s(t) allows us to verify (75) with (76). The arc length
of the geodesic between p and q is

s =
∫ q

p
ds(t) dt

=
∫ q

p

√
m

∑
r=1

m

∑
c=1

grc(t) dλ(t)r dλ(t)c dt, (94)

where we have substituted (76). Notice that the metric tensor as well as the covariant
coordinates depends on t. This integral can be approximated by a sum of many small steps
in t ([8], p.78).

By taking K small segments, the distance s is approximated by

s =
K−1

∑
k=0

(
m

∑
r=1

m

∑
c=1

(λ(tk)− λ(tk+1))r grc(λ(tk)) (λ(tk)− λ(tk+1))c

) 1
2

. (95)

Here k = 0 corresponds to the probability distribution t0 = p and k = K is the distribution
tK = q. The intermediate points tk are obtained by dividing the arc 0 ≤ τ ≤ arccos

(√
p· √q

)
of the hypersphere into K equal angular segments. The corresponding probability distribu-
tions are tk = α2(τk), using (92).

For each tk in (95), the constraint function averages (〈F1〉, 〈F2〉, 〈F3〉)k are obtained
through the multiplication by the constraint function vectors (36). The corresponding
covariant coordinates λ(tk) are computed by solving the set of equations in (47), as illus-
trated by Figure 4. Finally, the metric tensor grc(λ(tk)) is obtained through substitution
of λ(tk) in (65). By taking K = 128 segments and performing the computation of (95) we
have confirmed all the numerical values in Table 15. This confirms the equivalence of (75)
and (76).

7. Conclusions

The Gull–Skilling kangaroo problem provides a useful setting for illustrating the solu-
tion of under-determined problems in probability. The Variational Principle—in conjunction
a variational function—effectively creates enough missing information for a complete so-
lution, but not necessarily the minimum amount. In this paper four different Variational
Principle solutions are shown, only one of which introduces the minimum amount, when
the variational function is the Shannon–Jaynes entropy function.

The Maximum Entropy Principle is an alternative method for solving under-determined
problems, which however avoids any implicit introduction of extra information not in the
original problem. This information manifests itself in our examples as added correlations
in the solutions.

The Kullback–Leibler divergence allows for the determination of the differences in
information content between two probability distributions, but it cannot be used as a
distance measure. It is symmetrical for infinitesimal separations. We point out an analogy
with infinitesimal rigid body rotations.

Through the lens of Information Geometry, the actual geometric distance between
two probability distributions along a geodesic path, can also be expressed as twice the
Bhattacharyya angle in a hypersphere. In this paper, we illustrate the equivalence of these
two geometrical concepts.

We also find that the mutual differences in distance between any two models, are
directly reflected in the difference of their correlation coefficients.

Our understanding of the kangaroo problem and its implications has been particularly
facilitated by the symbolic programming capabilities of Wolfram Mathematica.
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