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Abstract: This paper discusses the use of Equivariant Neural Networks (ENN) for solving Partial
Differential Equations by exploiting their underlying symmetry groups. We first show that Group-
Convolutionnal Neural Networks can be used to generalize Physics-Informed Neural Networks and
then consider the use of ENN to approximate differential invariants of a given symmetry group,
hence allowing to build symmetry-preserving Finite Difference methods without the need to formally
derivate corresponding numerical invariantizations. The benefit of our approach is illustrated on the
2D heat equation through the instantiation of an SE(2) symmetry-preserving discretization.

Keywords: geometric deep learning; equivariant neural networks; partial differential equations;
differential invariants; physics informed machine learning

1. Introduction

Numerically solving Partial Differential Equations (PDEs) is of paramount importance
for a wide range of applications such as physics, crowd theory, epidemiology and quantita-
tive finance. Conventional methods such as Finite Element or Finite Difference methods
have the main advantage of being easy to implement but are highly time consuming. With
the rise of Deep Learning in the past decade, new approximate methods based on Physics-
Informed Neural Networks (PINN) have been developed [1–3] and allow to significantly
improve simulation capacities [4,5].

Nonetheless, usual PDEs typically exhibit symmetries [6,7], and it is therefore natural
to expect numerical solving schemes to comply with those. For Hamiltonian systems,
symplectic integrators [8–11] have been introduced and have also recently been combined
with machine learning techniques for the sake of efficiency [12]. For more general PDEs,
symmetry-preserving Finite Difference schemes have been proposed [13,14], with the
underlying theory being consolidated in [15]. Practical applications showing improvements
with respect to the conventional approach have been presented in [16,17]. However, the
formal derivation of the required numerical invariantization of the differential operators
becomes more and more challenging as the number of variables increases, hence limiting
the applicability of these methods and motivating the need for alternative approaches.

There are mainly two ways to imprint Deep Learning algorithms with symmetries.
The first one, recently explored in [18] for PDEs solving, generalizes the data augmentation
techniques widely used for image processing tasks and aims at learning symmetries directly
from the data. The second one aims at directly encoding the symmetries within the
learning algorithms by leveraging the emerging field of Geometric Deep Learning [19,20].
In this context, Equivariant Neural Networks (ENN), initially introduced in [21], have
been shown very efficient, leveraging generalized convolution operators such as Steerable
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Convolution or G−convolution [22–25], and therefore providing equivariance to a wide
range of symmetry groups. These equivariance mechanisms are very appealing, as proving
theoretical guarantees with respect to the algorithms response to inputs variations and have
been shown more efficient than data augmentation techniques from both theoretical [26]
and empirical standpoints [27] in several contexts. Yet, these architectures cannot be applied
directly to PDEs solving as one would for a conventional PINN and, at the time of writing,
only [28] proposes to use steerable convolution to solve PDEs, but it is limited to special
cases of symmetries.

Contributions

In this paper, we present two innovative ways of using ENN to solve PDEs while
exploiting the associated symmetries. By anchoring in [29], we first show that Group-
Convolutionnal Neural Networks can be used to generalize the PINN architecture to encode
generic symmetries. By leveraging differential invariant theory [6], we then propose using
ENN to approximate differential invariants of a given symmetry group, hence allowing
to build symmetry-preserving Finite Difference methods without the need to formally
derivate corresponding numerical invariantizations. A key advantage of this approach is
that it allows solving any other PDE with the same symmetry group without any retraining.
Finally, we illustrate the interest of our approach on the 2D Heat Equation and show in
particular that a set of fundamental differential invariants of the roto-translation group
SE(2) can be efficiently approximated by ENN for arbitrary functions by training on simple
bivariate polynomials evaluations, allowing to easily build SE(2) symmetry-preserving
discretization schemes.

2. PDEs and Symmetries
2.1. Systems of PDEs

We are interested in the following in solving systems of PDEs involving one time
variable t, p independent space variables

(
x1, . . . , xp

)
= x ∈ X and q dependent variables(

u1, . . . , uq
)
= u ∈ U , for which a solution is of the form u = f (t, x), with uj = f j(t, x)

for j = 1, . . . , q in terms of components. In the following, we denote by X = Rp, with
coordinates

(
x1, . . . , xp

)
, the space of the independent variables, and by U = Rq, with

coordinates u, that of the dependent variable.
We call n−order jet space J(n) the Cartesian product between the space of the indepen-

dent variables X and enough copies of the space of the dependent variables U to include
coordinates for each partial derivative of order less or equal than n

J(n) = X × U × . . .×U︸ ︷︷ ︸
(p+n

n )

(1)

In the above definition, the binomial coefficient (p+n
n ) corresponds to the number of

partial derivatives (assumed to be smooth enough) with order less than or equal to n. A
function f : X → U represented as u = f (x) can naturally be prolonged to a function
u(n) = f (n)(x) from X to J(n) by evaluating f and the corresponding partial derivatives,
so that u(n) = {∂α

xu, |α| ≤ n} with ∂α
xu is the spatial cross-derivative corresponding to the

multi-index α =
(
i1, . . . , ip

)
∈ Np. According to this formalism, a PDEs system can be then

written as
∆
(

t, x, u(n)
)
= 0 (2)

where ∆ is an operator from R+ × J(n) to Rq.

2.2. Symmetry Group and Differential Invariants

We consider a Lie group G of dimension m acting as g.(x, u) on a sub-manifold
M⊆X ×U , with its Lie algebra g generated by the vector fields ζ1, . . . , ζm. We can define
the transform of a function u = f (t, x) under the action of G by identifying f with its graph
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Γ f and by defining g. f = fg, where the function fg is the function associated with the
transformed graph g.Γ f = Γ fg .

A symmetry group G of a PDEs system is a group G such that if f is a solution, then
its transform fg by the group action is also a solution. We then denote by pr(n) G the
prolongation of the group action of G to J(n) for which a prolonged transform g(n), for
g ∈ G, sends the graph Γ f (n) onto Γ

(g. f )(n)
and by pr(n) ζ1, . . . , pr(n) ζm the corresponding

prolonged vector fields. The algebraic invariants IG of the prolonged group action pr(n) G
are called the differential invariants of order n of the group G and can be obtained by lever-
aging the infinitesimal invariance criteria pr(n) ζi IG = 0. A complete set of independent
differential invariants of order n in the sense of Theorem 2.17 of [6] is generically denoted
by ∂φG

u,n =
{

∂φG,1
u,n , . . . , ∂φG,k

u,n

}
in the sequel and is related to the symmetry group of PDEs

systems as illustrated in Section 4.2.

3. Equivariant Neural Networks

To incorporate the symmetry information of PDEs into the neural network solver, it is
of capital importance to introduce equivariance into neural networks. Multiple approaches
have been studied these past years. Those approaches can be separated into two categories:
G-CNN and Steerable CNN. The first method is the one we chose to work with and to
generalize. The second one can be explored in [23,28,30–32].

3.1. G-CNN

The idea behind a G-CNN is to perform the convolution over the group G one wants
equivariance with. These kind of convolution layers were first introduced by Cohen and
Welling in [33] for discrete groups. There has been some important work on generalizing
this approach to other groups [29,34–36]. Let us first start with some reminders about the
group-based convolution operator and its properties.

Definition 1 (Group Convolution). Let G be a compact Group and V1, V2 two vector spaces.
Let K : G → Ł(V1, V2) be a kernel, f : G → V1 be a feature function and µ the Haar measure on G.
We define the group convolution for any s ∈ G by

(K ∗ f )(s) =
∫

G
K
(

r−1s
)

f (r)dµ(r).

Proposition 1. If the actions of G on VG
1 and VG

2 has regular representations, then the group
convolution defined in Figure 1 is G-equivariant.

As illustrated in Figure 1b, regular representations only allow to describe limited
group actions. Indeed, this group convolution does not revoke the constraint on the kernel
(see [36]) if one wants equivariance to all kinds of actions and not only ones with regular
representations.

g

(a)

g

(b)

g

(c)
Figure 1. Action of G with various representations. (a) Regular representation ρ(g) = id on scalars.
(b) Regular representation ρ(g) = id on vectors. (c) Non-regular representation on vectors.
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3.2. A New Convolution

Definition 2 (Representative Group Convolution). Let G be a compact Group and V1, V2 two
vector spaces. Let K : G → Ł(V1, V2) be a kernel, f : G → V1 be a feature function and µ the Haar
measure on G. If ρ1 : G → Ł(V1) and ρ2 : G → Ł(V2) are the linear representations of the action
of G on V1 and V2, respectively, we define the representative group convolution for any s ∈ G by

(K ~ f )(s) =
∫

G
ρ2(r)K

(
r−1s

)
ρ1

(
r−1
)

f (r)dµ(r) (3)

Remark 1. In what follows, we keep the same definitions for G, K, V, ρ, µ and f .

Theorem 1. With the same hypothesis stated in Definition 2, let V denote either V1 or V2 and ρ
either ρ1 or ρ2. If G acts on VG by

ρ(g) f
(

g−1r
)

∀g, r ∈ G and f : G → V,

then the representative group convolution is G-equivariant.

This new convolution layer is thus very powerful to create an estimator to an equivari-
ant function, because it is itself equivariant by construction. However, we cannot compose
it with other non-equivariant operations without breaking the equivariance for the whole
network. Therefore, alone, a convolution layer is not that powerful, but a chain of multiple
convolution layers is much more interesting.

Lemma 1. Any composition of G-equivariant functions is still G-equivariant.

Multiple representative-group convolution layers can be composed to obtain a G-
equivariant network. Note that the action of G on the output of the ith layer must match
the action of G on the input of the (i + 1)th layer.

In Table 1, there is a chain of representations ρ0 → . . .→ ρL, but what really matters
is only the first one (ρ0) and the last one (ρL). Indeed, by Lemma 1, the whole network is
equivariant to G’s action with ρ0 on the input and ρL on the output. Thus, we have full
choice over the other representations ρ` for 1 ≤ ` ≤ L− 1.

Table 1. Example of an Equivariant Neural Network.

input layer: N 0 = f ∈ VG
0 ,

convolution layers: N ` = K` ~N `−1 ∈ VG
` , with ρ`−1, ρ`, for 1 ≤ ` ≤ L.

Remark 2. One can still use non-equivariant functions between two hidden layers of the network,
as long as these functions are point-wise and that the representations chosen for theses hidden layers
are regulars. This covers the main usual architectures for convolutional neural networks.

Lifting the Coordinate Space

The Representative Group Convolution cannot be used right away since the convolu-
tion is constructed to be performed on G and not on the input data space (denoted X in the
sequel). The problem is obviated by lifting the coordinates from X to G. One can find more
details of this method in [29].

Definition 3 (Lifting). Let Q = X/G be the set of orbits of G. If u is a mapping from X to V, we
set u↑ : G×Q→ V as the lifted version of u, defined by:

u↑ : G×Q −→ V(
r, oq

)
7−→ u(r · oq)
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An element x ∈ X is then lifted to a tuple
(
rx, oq

)
.

Definition 4 (Lifted Action). If G acts on X × V, then it has an extended action on the lifted
space (G×X/G)×V. If

(
(r, q), u↑(r, q)

)
is a lifted element, and g ∈ G is acting by:

g ·
(
(r, q), u↑(r, q)

)
= g ·

(
r · oq, u

(
r · oq

))
=
(

r · oq, ρ(g)u
(

g−1r · oq

))
=
(
(r, q), ρ(g)u↑

(
g−1r, q

))
.

4. Solving of PDEs with ENN

We discuss in this section two ways of using ENN for solving PDEs, starting with the
use of G-CNN to generalize the PINN concept and then by building symmetry-preserving
Finite Difference schemes by using the ENN as differential invariant approximators.

4.1. Equivariant PINN

The idea behind PINNs is somewhat straightforward. Let us consider the PDE defined
in Section 2.1 but with added boundary conditions on a set B, which gives:

(E) :

{
∆
(

t, x, u(n)
)
= 0 ∀t, x ∈ R+ ×X

u(x) = ub(x) ∀x ∈ B

Now, we directly estimate a solution u of (E) at t0 + dt withNθ an Equivariant Neural
Network (ENN) parameterized by θ, taking as input the initial profile of the solution, being
u at time t0. This ENN is equivariant to the symmetry group of (E).

In order to train the ENN Nθ to approximate the solution of the PDE, we introduce
the following optimization problem (P):

(P) : θ∗ = arg min
θ
{L(θ, T )}.

Additionally, the following loss function L:

L(θ, T ) = w fL f

(
θ, T f

)
+ wbLb(θ, Tb) (4)

with

L f

(
θ, T f

)
=

1∣∣∣T f

∣∣∣ ∑
x∈T f

∥∥∥∆
(

t, x, û(n)
)∥∥∥2

2
(5)

Lb(θ, Tb) =
1
|Tb| ∑

x∈Tb

‖B(ûθ , x)‖2
2 (6)

with boundary conditions B(ub, x) = 0 on B. Additionally, T f and Tb are two training sets
of randomly distributed points, with Tb ⊂ B and T f ⊂ X .

Remark 3. A similar approach has been used by Wang et al. in [28] but with steerable neural
networks. They used a U-Net and a ResNet architecture, common for these types of tasks [37],
which they made equivariant in order to predict the PDEs’ results. To tackle the constraints on the
kernels, they manually design some transformations to make their neural networks equivariant to 4
different actions. Our result is meant to be more general than this case-by-case design. We bypass
the kernel’s constraints and have a fully equivariant network to any given group.
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4.2. Symmetry-Preserving Finite Difference

We restrict ourselves in the following to PDEs systems of order n with a linear depen-
dency with respect to the time differentials. According to the introduced formalism, we
only consider systems of the form

kt

∑
i=1

ai∂
i
tu = ∆

(
t, x, u(n)

)
(7)

where kt ∈ N and ∆ is an operator from R+ × J(n) to Rq. The above form covers most
of the PDEs encountered in physics, ranging from the heat and wave equations to the
Navier Stokes, Shrödinger and Maxwell equations. Assuming that the above PDEs system
is regular enough, it admits G as symmetry if and only if the operator ∆ can be expressed
as a function of a complete set of differential invariants, i.e., if and only if (2) can can be
re-written as

kt

∑
i=1

ai∂
i
tu = F

(
∂φG,1

u,n , . . . , ∂φG,k
u,n

)
(8)

with F : Rqk → Rq.
We propose in the following to approximate the differential invariants by neural

networks equivariant to the corresponding group action. More precisely, let us consider a
discretisation x(1), . . . , x(nx) (resp. t(1), . . . , t(nt)) of the input space X (resp. time interval
R+) and denote f (i,j) = f (t(i), x(j)) for any f : R+ × Rp → Rq. For a given differential

invariant ∂φG
f , we are then interested in approximating the vector

(
∂φ

G,(i,j)
f

)nx

j=1
by the

output of an equivariant neural network NG, taking as input the tensor
(

f (i)(j)
)nx

j=1
, so that

we have for the jth component

NG

((
f (i)(`)

)nx

`=1

)j
≈ ∂φ

G,(i,j)
f = ∂φG

f (t
(i), x(j)) (9)

In the following, we propose to train NG on multivariate polynomial functions in the
space variables x of degree d, but other choices could be envisioned depending on the
considered problem.

The use of equivariant neural networks is motivated here by the fact that the operator
f → ∂φG

f that we are approximating is equivariant. Indeed, for a function f : R+ ×Rp →
Rq, ∂φG

f is a function from R+ × Rp to Rq, and we can therefore consider its transform

g.∂φG
f according to the action of G by considering its transformed graph, as defined in

Section 2.2. As the differential invariant is an algebraic invariant of the prolonged group
action pr(n) G, it is possible to write

g.∂φG
f = ∂φG

g. f (10)

meaning that differential invariant operators are equivariant with respect to the associated
group action, as illustrated on Figure 2 for the case of SE(2).

We now come back to the PDE systems (2) and detail the numerical scheme that we
propose here for its integration. The idea is to first train an ENN N i

G for approximating

each of the k differential invariants ∂φ
G,j
.,n which are involved and then to integrate by using

an explicit scheme in which the differential invariants are replaced by their approximation
with the ENN, leading to

kt

∑
`=1

a`∂`t u(t(i), x(j)) ≈ F
(
N 1

G

((
u(i,`)

)nx

`=1

)j
, . . . ,N k

G

((
u(i,`)

)nx

`=1

)j
)

(11)
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Figure 2. From left to right and top to bottom: the initial function u, its rotated version ũ, the rotated
version of the SE(2) differential invariant u2

x + u2
y (see Section 4.3) and the differential invariant of the

rotated function. As expected, computing the differential invariant from u and applying the rotation
(bottom left) gives the same results as computing the differential invariant from the rotated function
(bottom right).

4.3. Numerical Experiments
4.3.1. Approximating SE(2) Differential Invariants

Here, we considered the case of SE(2) for which a generating set of second-order
differential invariants is given by

∂φ
SE(2)
u,2 =

{
u, u2

x + u2
y, uxx + uyy, u2

xuxx + 2uxuyuxy + u2
yuyy, u2

xx + 2u2
xy + u2

yy

}
(12)

We trained in the following 2 Neural Networks, namely one conventional Convolu-
tional Neural NetworkNR2

with R2−equivariant layers and one SE(2)−ENNN SE(2), both
of them built to have roughly the same number of parameters (≈2.2× 106). The training
set consists in 29× 29 evaluations of 2D-polynomials in R[X, Y] with degrees up to 10 and
generated from random coefficients drawn uniformly in [−1, 1]. Polynomials evaluations
were performed on the discrete grid (i/29, j/29)i,j=−14,...,14. An example of prediction with

the trained N SE(2), together with the corresponding theoretical value, is given in Figure 3.

Figure 3. The SE(2) differential invariant u2
x + u2

y computed for the function u depicted in Figure 2
with an SE(2)-CNN (left) and its theoretical value (right).
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4.3.2. Solving the 2D Heat Equation

Here, we consider the 2D heat equation ut = uxx + uyy defined on a square domain
[−a,a]×[−b,b], with the boundary condition u(t,±a, b) = 0 and u(t,±a,−b) = 100 and the
initial condition ut=0 = f , for f : R2 → R an arbitrary function. Below, we give the results
that we obtained by using an FD scheme relying on the approximation of the 2D-Laplacian,
as described in Section 4.2 , i.e., by computing the solution according to the following
update rule:

un+1 = un + δt ×N ∆
SE(2)(u

n) (13)

where un = u(n× δt, .). We ran 105 steps of the simulation for δt ≈ 10−7 using the two
trained architectures considered in Section 4.3.1, namely NR2

and N SE(2), and compared
the obtained heat profiles with that of the ground truth. The boundary condition was
taken into account by overriding the predicted outputs by the conventional second-order
derivative approximation for the corner cases. The obtained results are depicted in Figure 4,
where we can, in particular, observe the high benefit of preserving the SE(2) symmetry
during the numerical integration.

Figure 4. Comparison of the theoretical heat profile of the 2D heat equation with a top 100◦ boundary
condition (see Section 4.3.2) with those obtained through simulation with two symmetry-preserving
FD schemes (see Section 4.2) by leveraging R2 (middle) and SE(2) (right) equivariant neural networks.

5. Conclusions and Further Work

We presented two innovative ways of using ENN to solve PDEs while exploiting the
associated symmetries. We first showed that G-CNN can be used to generalize the PINN
architecture to encode generic symmetries and then proposed using ENN to approximate
differential invariants of a given symmetry group, hence allowing to build symmetry-
preserving Finite Difference methods. Our approach is illustrated on the 2D Heat Equation
for which we, in particular, showed that a set fundamental differential invariants of SE(2)
can be efficiently approximated by ENN for arbitrary functions by training on simple
bivariate polynomials evaluations, allowing to easily build SE(2) symmetry-preserving
discretization schemes.

Additional work will include performing proper benchmarking between the two
approaches and more conventional numerical schemes for PDE integration. More complex
PDEs with richer symmetry groups such as Maxwell equations could be considered in
this context.
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