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Abstract: A Gaussian-process surrogate model based on already acquired data is employed to
approximate an unknown target surface. In order to optimally locate the next function evaluations
in parameter space a whole variety of utility functions are at one’s disposal. However, good choice
of a specific utility or a certain combination of them prepares the fastest way to determine a best
surrogate surface or its extremum for lowest amount of additional data possible. In this paper,
we propose to consider the global (integrated) variance as an utility function, i.e., to integrate the
variance of the surrogate over a finite volume in parameter space. It turns out that this utility not
only complements the tool set for fine tuning investigations in a region of interest but expedites the
optimization procedure in toto.

Keywords: global optimization; Bayesian optimization; utility function; global variance

PACS: 02.50.-r; 52.65.-y

1. Introduction

In many experimental or theoretical approaches the effort of acquiring data may
be costly, time consuming or both. The goal is to get insights in either the overall or
extremal behaviour of a target quantity with respect to a set of parameters. If insights to
functional dependencies between target and parameters are only to be obtained from a
computationally expensive function, which may be considered as a black box function,
it is instructive to employ surrogate modelling: already acquired data serve as a starting
basis for establishing a surrogate surface in parameter space which then gets explored
by Bayesian optimization [1]. An overall survey about Bayesian optimization may be
found in [2], though it concentrates on an expected improvement (EI) utility and considers
noise in the data only in the last paragraph, again by concentrating on EI. In contrast to
this nice study we propose to alternate the different utilities at hand. Moreover, a fast
information theory related to Bayesian optimization is shown in [3], though this approach
approximates any black-box function by a parabolic form which differs from our ansatz
letting the black-box function untouched. Interesting insights to multi-objective Bayesian
optimization are provided by [4], which considers “multi-objective” in the sense of seeking
the extrema–each is free of choice maximum or minimum–of a bunch of single-objective
functions. However, the present paper concentrates on finding a common extremum
depending on multiple parameters.

For the surrogate modelling we use the Gaussian process method (GP) [5] whose
early stages date back to the middle of last century with very first efforts in geosciences [6]
tackling the problem of surrogate modelling by so-called kriging [7]. Afterwards, GP
has been appreciated much in the fields of neural networks and machine learning [8–12]
and further work showed the applicability of active data selection via variance based
criterions [13,14]. Our implementation of the GP method in this paper was already in-
troduced at [15], and follows in notation–and apart from small amendments—the very
instructive book of Rasmussen & Williams [5].
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While in a previous work [16] we investigated the performance of utility functions for
the expected improvement of an additional data point or for a data point with the maximal
variance, in this paper we would like to introduce the global variance, i.e., the integral over
the variance for a target surrogate within a region of interest with respect to a newly added
data point. It is the substantial advantage of the Gaussian process method that such a task
may be tackled simply on the basis of already acquired data, i.e., before new data have to
be determined.

2. Global Variance for Gaussian Process-Based Model

In the following we concisely report the formulas leading to the results in this paper.
For a thorough discussion of Gaussian processes please refer to the above mentioned
papers, especially to the book of Rasmussen & Williams [5].

The problem of predicting function values in a multi-dimensional space supported by
given data is a regression problem for a non-trivial function of unknown shape. Given are
n target data y for input data vectors xi of dimension Ndim with matrix X = (x1, x2, ..., xn)
written as

y =


y1

y2

...

yn

 , xi =


xi1

xi2
...

xiNdim

 , X =


x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

. . .
...

x1Ndim x2Ndim . . . xnNdim

 . (1)

We assume that target data yi are blurred by Gaussian noise with σ2
di

. Further, we assume
that the black box function interconnecting input X and target y is at least uniformly
continuous and thereby justifies a description of a target surface with a surrogate from the
Gaussian process method. Despite the experimental data and the physics background all
quantities throughout this paper are without units.

The decisive quantity of a Gaussian process is the covariance function k describing
the distance between two vectors xp and xq defined by

k(xp, xq) = σ2
f exp

{
−1

2

∣∣∣∣ xp − xq

λ

∣∣∣∣2
}

. (2)

with the signal variance σ2
f and length scale λ. A covariance matrix (K)ij = k(xi, xj)

considers the covariances of all input data X. The GP method describes a target value f∗ at
test input vector x∗ by a normal distribution p( f∗|X, y, x∗) ∝ N

(
f̄∗, var(x∗)

)
with mean

f̄∗ = kT
∗
(
K + σ2

n∆
)−1y, and variance var(x∗) = k(x∗, x∗)− kT

∗
(
K + σ2

n∆
)−1k∗, where the

term σ2
n∆ represents the degree of information in the data. While ∆ is the diagonal matrix

of the given variances σ2
di

, the variance σ2
n accounts for an overall noise in the data. Then

the full covariance matrix M of the Gaussian Process is

M = K + σ2
n∆ (3)

In Bayesian probability theory the three parameters θ = (λ, σf , σn)T are considered to
be hyper-parameters which show up in the marginal likelihood as

log p(y|θ) = const− 1
2

yT
[
K(λ, σf ) + σ2

n∆
]−1

y− 1
2

log
∣∣∣K(λ, σf ) + σ2

n∆
∣∣∣. (4)

In [16], we showed, that for a sufficiently large data base the target surrogate is well
described by using the expectation values of the hyper-parameters in the formulas for f∗
and var( f∗), at least well enough to determine a global optimum in a region of interest
(RoI). The global optimum is found by employing utility functions, as there are the ex-
pected improvement UEI(x∗) = 〈I〉 =

∫ ∞
fmax

f∗p( f∗|X, y, x∗)d f∗ and the maximum variance
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UMV(x∗) = var( f∗). For both the respective maximum at x∗max = arg max{x∗}UEI/MV is
sought. While the first one (UEI) evaluates the possible information gain from a new data
point, the second utility (UMV) simply estimates the vector in input space with largest
variance in the target surrogate.

In order to have a look on the implications of an additional data point in the sur-
rogate, we propose a further utility function, i.e., the global variance defined on the
multi-dimensional RoI∈ [−1 : 1] by

UGV =
∫ 1

−1
var(x)dx . (5)

The exact integration shown in the Appendix A leads to

Uexact
GV = 2Ndim σ2

f − σ4
f

(√
πλ

2

)Ndim n

∑
ij

(
M−1

)
ij

·
Ndim

∏
k

{
erf
[

1
λ
−

xik + xjk

2λ

]
− erf

[
− 1

λ
−

xik + xjk

2λ

]}
(6)

Though Equation (6) represents the correct result, it may turn out in computation runs
that the determination of the error-function is substantially time consuming compared to
the total expenditure. Therefore, we would like to introduce two alternatives to the exact
integration in Equation (5).

The first one is kind of an approximation. Since outside of the RoI the integrand in
Equation (5) shows only trivial contributions we shift the upper and lower integral bounds
to ± infinity and get from the simple Gaussian integrals

Uinf
GV ≈ −σ4

f
(√

πλ
)Ndim

n

∑
ij

(
M−1

)
ij

exp
{
− 1

4λ2

(
xi − xj

)T(xi − xj
)}

. (7)

We dropped the first term in the integral over [σ2
f x]∞−∞ for being infinity, since at least

it is a constant contribution regardless of changes in the input X. Although the utility
UGVinf in Equation (7) is an approximation only, it has the advantage of being much easier
accessible by numerical means and its computation performs much faster compared to
Equation (6).

A second much more sophisticated approach is to insert an enveloping Gaussian
function with adjustable location xG (guiding center) and variance σG in the integral of
Equation (5). Again the integration limits are shifted to ± infinity, however this time the
enveloping Gaussian function takes care of the integrability and we get

Uenv
GV =

∫ ∞

−∞
var(x)

 1√
2πσ2

G

Ndim

exp

[
1

2σ2
G
(x− xG)

T(x− xG)

]
dx

= σ2
f − σ4

f

 λ√
2σ2

G + λ2

Ndim
n

∑
ij

(
M−1

)
ij

(8)

· exp

−
1
2

 xT
i xi + xT

j xj

λ2 +
xT

GxG

σ2
G
−

(
xi+xj

λ2 + xG
σ2

G

)T( xi+xj
λ2 + xG

σ2
G

)
2

λ2 +
1

σ2
G


.

The two parameters xG and σG provide a toolset to guide the search for the next
target data evaluations: a smaller standard deviation σG shifts the attention to the center of
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the enveloping Gaussian, while xG gives us the possibility to focus on certain regions in
the RoI.

All three utilities employing the global variance, Uexact
GV , Uinf

GV, Uenv
GV require the in-

version of the full covariance matrix M of Equation (3). Since the inversion has to be
performed for every newly proposed test input x∗ this is the main time consuming part in
the whole procedure. Let us remind the reader, that the method we are proposing fully
resides on input space (together with already acquired data) and the bottle neck is the
generation of new target data. Therefore, the starting condition of very expensive (aka
time consuming) data acquisition still holds. However, we can beneficially use blockwise
matrix inversion [17] since a new input vector xn+1 expands the covariance matrix for
one additional row and line only. Consequently, we reduced the computational effort to
n2-behaviour instead of n3 for standard inversion.

3. Proof of Principle

We follow the global optimization scheme from Section 4 of [18]. Again we give proof
of principle with a “black box” model featuring a broad parabolic maximum 2−∑Ndim

k x2
k +

(−1)k0.3 together with a smaller cosine structure 0.1cos[2π(xk − 0.3)/∆cos] on top of it,
while we focus on a decent ripple on ∆cos=0.6 in one and two dimensions (Ndim=1, 2).

Figures 1–3 show in left and right panels the results for one and two dimensions,
respectively. The x axis to the right counts the number of newly acquired data for the utility
comparisons in Figure 3 and in the bottom rows (c), (d) of Figures 1 and 2.

For every newly added data point proposed by the various utilities, the distance
between the true location of the global optimum and the maximal value of the surrogate
residing on the data at hand is calculated in Figure 1. In a similar fashion, the search for
the best surrogate description of the hidden model is shown in Figure 2.

Eventually Figure 3 demonstrates the use of an enveloping Gaussian function in the
integral of the global variance by varying its center xG, e.g., if an educated guess about
the location of the extremal structure is at hand, i.e., the guiding center xG is preset to
the positive axis (1d) or the quadrant (2d) with the true model maximum. Consequently,
Table 1 displays for 1d the specific number of data and for 2d the saturation level for which
the target surrogate enters the stage of resembling the true model, i.e. the summed up
(absolute) differences between all grid points of the target surrogate and the model starts
to diminish with the number of target data only.

Table 1. Comparison of enveloping Gaussian utilities with different integral weights and guiding cen-
ters in finding the best surrogate. 1d: Changing step to solution. 2d: Saturation level of the solution.

Integral Weight of env. Gaussian within RoI 0.6 0.8 0.95

1d: Corresponding width of env. Gaussian σG 1.38 0.95 0.71

UGV with xG = 0 15 14 22
UGV with xG = 0.5 13 12 13

2d: Corresponding width of env. Gaussian σG 0.99 0.79 0.67

UGV with xG=(0;0) 0.23 0.61 0.21
UGV with xG=(0.5;-0.5) 0.06 0.14 0.05
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Figure 1. (a,b): One- and two-dimensional model with target data (full circles). The square in the
bottom line/surface represents the true maximum. On the left the gray shaded area represents the
uncertainty region of the surrogate (full line) from using the expected improvement utility only.
On the right the points in the bottom surface are input data. Full circles represent additional data
proposed by combination of all three utilities. (c,d): Distance surrogate/true maximum for different
utilities employed in the global optimization procedure.
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Figure 2. (a,b): One- and two-dimensional surrogate with newly acquired data. Surrogate solution
(full line) on the left from using combination of UMV and UGV. Surrogate surface on the right
from employing UGV only. (c,d): Comparison of the differences between surrogate and true model
integrated over RoI for various utilities.
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Figure 3. Summation over difference between grid points of target surrogate and true model as
function of additionally acquired data. (a,b): One and two-dimensional case for enveloping Gaussian
utility with various weights and guiding center at origin and at (0.5) or (0.5; −0.5).

4. Discussion

The results above show the usage of various utilities as a toolbox for surrogate mod-
eling. Depending on the task—either to find an extremum or to get a best surrogate
description of an unknown “black box” model—and depending on the prior knowledge at
hand—presumption of location of the sought extremum or concentration on the region of
interest—it is advisable to choose the most eligible utility function. However, even more
promising is the combination of utilities of different character to profit from their benefits
in toto and to compensate for pitfalls and drawbacks of one or the other utility.

As can be seen in the very first example in Figure 1 for the one-dimensional case
the global optimum is found very fast with help of the expected improvement utility UEI
(starting to enter the bump with the correct extremum already below N = 10). However,
a known drawback of this utility is that it gets stuck in local extrema and that it takes an
unreasonably high number of additional data to get distracted from this pitfall.

This is taken into account for the two-dimensional case where the best result with
lowest difference to the exact result is obtained by acting in combination of all three utilities
UEI, UMV and UGV. Focusing the maximum search on the utility regarding expected
improvement alone (black line in Figure 1d would have got stuck in a local extremum with
y = 2.03 in the “wrong” quadrant at (−0.26; −0.29) for not recovering from this at all at
about N = 63 (internal stop of algorithm for no improvement after entering computing
accuracy level) and totally missing the true optimum with y = 2.2 at (0.3; −0.3).

The situation changes for the task of getting a best overall description within the
region of interest. To accomplish this the newly introduced global variance utility UGV is
of tremendous help both in one and two dimensions—either alone or in combination with
at least the maximum variance utility UMV. As shown in Figure 2d the best surrogate can
already be established around ninety data points by employing UGV only (full circles in
the target surface of Figure 2b, with very few deviations from the true model left.

A guess about the approximate occurrence of an extremal structure–without excluding
another region—can be emphasized by a further refinement to the global variance utility.
In letting act an enveloping Gaussian within the global variance integral Equation (5) the
result is not only much easier to be tackled from a computational point of view, but also
the focus of the numerical search for the global optimum can be guided by predetermining
the center of Gaussian xG and its integral weight (aka width σxG ).

Figure 3 shows the results for three different integral weights (0.6; 0.8; 0.9) of the
enveloping Gaussian function at two guiding centers: the first one at the origin corresponds
to an ignorant scenario where one is not sure about a certain position of some global
optimum at all. In the second approach we suppose that the extremal structure may
be found in one dimension for positive values and thereby set xG = 0.5, while in two
dimensions it may be located within the quadrant with positive values for x1 and negative
ones for x2 resulting in xG = [0.5;−0.5]. As can be seen already in Figure 3, but all the more
learned from the numbers of Table 1, displacing the center of the enveloping Gaussian
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function to the real center of the optimum of the hidden model facilitates the development
of a best—regarding similarity to the true model—surrogate surface.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Global Variance: Derivation of the Exact Integration

The variance at some (test) point xT = (x1, x2, . . . , xNdim) in a region confined to [−1, 1]
of dimension Ndim is

var(x) = k(x, x)− kT(K + σ2
n∆)−1k . (A1)

The covariance k(xp, xq) between pairs of input variables (xp, xq) is defined by

k(xp, xq) = σ2
f exp

[
−
(xp − xq)T(xp − xq)

2λ2

]
. (A2)

While the first term in Equation (A1) is simply k(x, x) = σ2
f , we need for the sec-

ond term

k = σ2
f


exp

[
− 1

2λ2 (x− x1)
T(x− x1)

]
exp

[
− 1

2λ2 (x− x1)
T(x− x2)

]
...

exp
[
− 1

2λ2 (x− x1)
T(x− xN)

]

 (A3)

and the inversion of the matrix M = K + σ2
n∆, where the matrix elements are ∆ii = σdi

(∆ij = 0 for i 6= j) and Kij = σ2
f exp

[
− 1

2λ2 (xi − xj)
T(xi − xj)

]
. For a given set of hyper-

parameters the matrix M does not depend on the test vector x and may be treated as a
constant in integration over dx. Therefore, after the inversion has been performed, M−1

can easily be regarded as a pure number. So the second term in Equation (A1) is just a sum
over all components with indices {i, j} ∈ (1, . . . , N),

kT
∗ (K + σ2

n∆)−1k∗ =
N

∑
i,j=1

k∗i
(

M−1
)

ij
k∗j (A4)

= σ4
f

N

∑
i,j=1

(
M−1

)
ij

e−
(x−xi)

T (x−xi)
2λ2 e−

(x−xj)
T (x−xj)

2λ2 . (A5)

Further let us concentrate on the terms in the nominator of the exponential:

(x− xi)
T(x− xi) + (x− xj)

T(x− xj) = 2

[
−xT xi + xj

2
−

xT
i + xT

j

2
x

]
+ xixT

i + xjxT
j . (A6)

Completing the square gives

2

[(
x−

xi + xj

2

)T(
x−

xi + xj

2

)]
+

1
2
(
xi − xj

)T(xi − xj
)

. (A7)
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We insert Equation (A7) in Equation (A5) and finally get for the variance

var(x) = σ2
f − σ4

f

N

∑
i,j=1

(
M−1

)
ij

e−
1

4λ2 (xi−xj)
T
(xi−xj)e

− 1
λ2

[(
x−

xi+xj
2

)T(
x−

xi+xj
2

)]
. (A8)

Only the second exponential in Equation (A8) depends on x and therefore needs to be
considered in the integral of the global variance:

∫ 1

−1
dx var(x) . (A9)

We insert Equation (A8) into Equation (A9) and let the integral stay only for the term
with x dependency:

∫ 1

−1
dx var(x) = 2ND σ2

f − σ4
f

N

∑
i,j=1

(
M−1

)
ij

e−
1

4λ2 (xi−xj)
T
(xi−xj)

·
∫ 1

−1
dx e

− 1
λ2

[(
x−

xi+xj
2

)T(
x−

xi+xj
2

)]
. (A10)

Since the term in the exponential is quadratic it separates into a sum, which itself
facilitates the separation of the integral into each dimension. Being simplified to a number
of Nd one-dimensional integrals they can easily be solved by employing the error function.
To prove this, let us have a closer look at the integral only:

∫ 1

−1
dx e

− 1
λ2

[(
x−

xi+xj
2

)T(
x−

xi+xj
2

)]
=

Ndim

∏
k

∫ 1

−1
dxke

− 1
λ2

[(
xk−

xik+xjk
2

)2
]

. (A11)

Focusing on a the kth integral and substituting τk = (xk −
xik+xjk

2 )/λ some error
functions evolve to end up finally in:

∫ 1

−1
dxke

− 1
λ2

[(
xk−

xik+xjk
2

)2
]
= λ

∫ − 1
λ−

xik+xjk
2λ

1
λ−

xik+xjk
2λ

dτke−τ2
k (A12)

= λ

∫ 0

1
λ−

xik+xjk
2λ

dτke−τ2
k +

∫ − 1
λ−

xik+xjk
2λ

0
dτke−τ2

k

 (A13)

=

√
π

2
λ

{
erf
[

1
λ
−

xik + xjk

2λ

]
− erf

[
− 1

λ
−

xik + xjk

2λ

]}
. (A14)

This concludes the study. Simply inserting Equation (A14) into Equation (A10) suc-
ceeds in the result reported in the paper:

∫ 1

−1
dx var(x) = 2ND σ2

f − σ4
f

(√
π

2
λ

)Ndim N

∑
i,j=1

(
M−1

)
ij

e−
1

4λ2 (xi−xj)
T
(xi−xj)

·
Ndim

∏
k

{
erf
[

1
λ
−

xik + xjk

2λ

]
− erf

[
− 1

λ
−

xik + xjk

2λ

]}
. (A15)
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