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Abstract: We derive a weakly informative prior for a set of ordered resonance frequencies from
Jaynes’ principle of maximum entropy. The prior facilitates model selection problems in which both
the number and the values of the resonance frequencies are unknown. It encodes a weakly inductive
bias, provides a reasonable density everywhere, is easily parametrizable, and is easy to sample. We
hope that this prior can enable the use of robust evidence-based methods for a new class of problems,
even in the presence of multiplets of arbitrary order.
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1. Introduction

An important problem in the natural sciences is the accurate measurement of reso-
nance frequencies. The problem can be formalized by the following probabilistic model:

p(D, x|I) = p(D|x)p(x|I) ≡ L(x)π(x), (1)

where D is the data, x = {xk}K
k=1 are the K resonance frequencies of interest, and I is

the prior information about x. As an example instance of (1), we refer to the vocal tract
resonance (VTR) problem discussed in Section 5 for which D is audio recorded from
the mouth of a speaker; x are a set of K VTR frequencies, and the underlying model
is a sinusoidal regression model. Any realistic problem will include additional model
parameters θ, but these have been silently ignored by formally integrating them out of (1),
i.e., p(D, x|I) =

∫
dθ p(D, x, θ|I).

In this paper, we assume that the likelihood L(x) ≡ p(D|x) is given, and our task is
to choose an uninformative prior π(x) ≡ p(x|I) from limited prior information I. A conflict
arises, however:

The uninformative priors π most commonly chosen to express limited
prior information I are, in practice, often precluded by that same I. (2)

The goal of this paper is to describe this conflict (2) and to show how it can be resolved by
adopting a specific choice for π. This allows robust inference of the number of resonances
K in the important case of such limited prior information I, which in turn enables accu-
rate measurement of the resonance frequencies x with standard methods such as nested
sampling [1] or reversible jump MCMC [2].

2. Notation

The symbol π is intended to convey a vague notion of a generally uninformative or
weakly informative prior. Definite choices for π are indicated with the subscript i:

πi(x) ≡ p(x|βi, Ii), (i = 1, 2, 3), (3)
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where βi is a placeholder for the hyperparameter specific to πi. Note that in the plots
below and for the experiments in Section 5, the values of the βi are always set according to
Table 1.

Table 1. The values of the hyperparameters βi used throughout the paper. All quantities are given in units of Hz.

k → 0 1 2 3 4 5 6 7 8 9 10

a = {ak} 200 600 1400 2900 3500
b = {bk} 1100 3500 4000 4500 5500

x0 = {xk} 200 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

other x0 = 200 xmax = 5500

Each πi uniquely determines a number of important high-level quantities since the
likelihood L(x) and data D are assumed to be given. These quantities are the evidence for
the model with K resonances:

Zi(K) =
∫

dKxL(x)πi(x), (4)

the posterior:

Pi(x) =
L(x)πi(x)

Zi(K)
, (5)

and the information:

Hi(K) =
∫

dKx Pi(x) log
Pi(x)
πi(x)

, (6)

which measures the amount of information obtained by updating from prior πi to posterior
Pi, i.e., Hi(K) ≡ DKL(Pi|πi), where DKL is the Kullback–Leibler divergence.

3. Conflict

The uninformative priors π referenced in (2) are of the independent and identically
distributed type:

π(x) =
K

∏
k=1

g(xk|β), (7)

where g(x|β) is any wide distribution with hyperparameters β. A typical choice for g is the
uniform distribution over the full frequency bandwidth; other examples include diffuse
Gaussians or Jeffreys priors [3–9].

Second, the limited prior information I in (2) about K implies that the problem will in-
volve model selection, since each value of K implicitly corresponds to a different model for
the data. It is, thus, necessary to evaluate and compare evidence Z(K) =

∫
dKxL(x)π(x)

for each plausible K.
The conflict between these two elements is due to the label switching problem, which

is a well-known issue in mixture modeling, e.g., [10]. The likelihood functions L(x) used
in models parametrized by resonance frequencies are typically invariant to switching the
label k; i.e., the index k of the frequency xk has no distinguishable meaning in the model
underlying the data. The posterior P(x) ∝ L(x)π(x) will inherit this exchange symmetry
if the prior is of type (7). Thus, if the model parameters x are well determined by the data
D, the posterior landscape will consist of one primary mode, which is defined as a mode
living in the ordered region:

RK(x0) = {x|x0 ≤ x1 ≤ x2 ≤ · · · ≤ xK} with x0 > 0, (8)

and (K!− 1) induced modes, which are identical to the primary mode up to a permutation
of the labels k and, thus, live outside of the region RK(x0). The trouble is that correctly
taking into account these induced modes during the evaluation of Z(K) requires a surpris-
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ing amount of extra work in addition to tuning the MCMC method of choice, and that is
the label switching problem in our setting. In fact, there is currently no widely accepted
solution for the label switching problem in the context of mixture models either [11,12].
This is, then, how in (2) uninformative priors π are “precluded” by the limited information
I: the latter implies model selection, which in turn implies evaluating Z(K), which is
hampered by the label switching problem due to the exchange symmetry of the former.
Therefore, it seems better to try to avoid it by encoding our preference for primary modes
directly into the prior. This results in abandoning the uninformative prior π in favor of the
weakly informative prior π3, which is proposed in Section 4 as a solution to the conflict.

We use the VTR problem to briefly illustrate the label switching problem in Figure 1.
The likelihood L(x) is described implicitly in Section 5 and is invariant to switching the
labels k because the underlying model function (23) of the regression model is essentially
a sum of sinusoids, one for each xk. As frequencies can be profitably thought of as scale
variables ([13], Appendix A), the uninformative prior (7) is represented by

π1(x) ≡ p(x|x0, xmax, I1) =
K

∏
k=1

h(xk|x0, xmax), (9)

where β1 ≡ (x0, xmax) are a common lower and upper bound, and

h(x|a, b) =

{ 1
log(b/a)

1
x if a ≤ x ≤ b

0 otherwise
with

a > 0

b < ∞
(10)

is the Jeffreys prior, the conventional uninformative prior for a scale variable [although
any prior of the form (7) that is sufficiently uninformative would yield essentially the
same results.] We have visualized the posterior landscape P1(x) in Figure 1 by using the
pairwise marginal posteriors P1(xk, x`) plotted in blue. Note the exchange symmetry of P1,
which manifests as an (imperfect) reflection symmetry around the dotted diagonal xk = x`
bordering the ordered region R3(x0). The primary mode can be identified by the black
dot; all other modes are induced modes. Integrating all K! modes to obtain Z(K) quickly
becomes intractable for Z & 4.
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Figure 1. The exchange symmetry of the posterior P1(x) for a well-determined instance of the VTR problem from Section 5
with K := 3. The pairwise marginal posteriors P1(xk, x`) are shown using the isocontours of kernel density approximations
calculated from posterior samples of x. For each panel, the diagonal xk = x` is plotted as a dotted line, and the ordered
regionR3(x0) is shaded in grey. The black dot marks the mean of the primary mode for this problem.
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A Simple Way Out?

A simple method out of the conflict is to break the exchange symmetry by assuming
specialized bounds for each xk:

π2(x) ≡ p(x|a, b, I2) =
K

∏
k=1

h(xk|ak, bk), (11)

where β2 ≡ (a, b) with a = {ak}K
k=1 and b = {bk}K

k=1 being hyperparameters specifying
the individual bounds. However, in order to enable the model to detect doublets (a resolved
pair of two close frequencies such as the primary mode in the leftmost panel in Figure 1), it
is necessary to assign overlapping bounds in (a, b), presumably by using some heuristic.
The necessary degree of overlap increases as the detection of higher order multiplets such
as triplets (which can and do occur) is desired, but the more overlap in (a, b), the more
the label switching problem returns. Despite this issue, there will be cases where we have
sufficient prior information I to set the (a, b) hyperparameters without too much trouble;
the VTR problem is such a case for which the overlapping values of (a, b) up to K = 5 are
given in Table 1.

4. Solution

Our solution to the conflict (2) is a chain of K coupled Pareto distributions:

π3(x) ≡ p(x|x0, I3) =
K

∏
k=1

Pareto(xk|xk−1, λk) (12)

where

Pareto(x|x∗, λ) =

{
λxλ
∗

xλ+1 if x ≥ x∗

0 otherwise
with

x∗ > 0

λ > 0,
(13)

and the hyperparameter β3 ≡ x0 is defined as

x0 ≡ (x0, x), x0 := x0, x = {xk}K
k=1, λk =

xk
xk − xk−1

. (14)

From Figure 2, it can be seen that π3 encodes weakly informative knowledge about
K ordered frequencies: (12) and (13) together imply that π3(x) is defined only for x ∈
RK(x0), while nonzero only for x ∈ RK(x0). In other words, its support is precisely the
ordered regionRK(x0), which solves the label switching problem underlying the conflict
automatically, as the exchange symmetry of π is broken. This is illustrated in Figure 2,
where P3 contracts to a single primary mode, which is just what we would like.

The K + 1 hyperparameters x0 in (14) are a common lower bound x0 plus K expected
values of the resonance frequencies x. While the former is generally easily determined, the
latter may seem difficult to set given the premise of this paper that we dispose only of
limited prior information I. Why do we claim that π3 is only weakly informative if it is
parametrized by the expected values of the very things it is supposed to be only weakly
informative about? The answer is that for any reasonable amount of data, inference based
on π3 is completely insensitive to the exact values of x. Therefore, any reasonable guess
for x0 will suffice in practice. For example, for the VTR problem, we simply applied a
heuristic where we take xk = k × 500 Hz (see Table 1). This insensitivity is due to the
maximum entropy status of π3 and indicates the weak inductive bias it entails. On a more
prosaic level, the heavy tails of the Pareto distributions in (12) ensure that the prior will be
eventually overwhelmed by the data no matter how a priori improbable the true value of x
is. More prosaic still, in Section 5.1 below we show quantitatively that for the VTR problem
π3 is about as (un)informative as π2.
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Figure 2. Contraction of prior (π3) to posterior (P3) for the application of π3 to the VTR problem used in Figure 1. The
pairwise marginal prior π3(xk, x`) is obtained by integrating out the third frequency; for example, π3(x1, x2) =

∫
dx3 π3(x).

Unlike P1 in Figure 1, P3 exhibits only a single mode that coincides with the primary mode as marked by the black dot.

4.1. Derivation of π3

Our ansatz consists of interpreting the x as a set of K ordered scale variables that are
bounded from below by x0. Starting from (9) and not bothering with the bounds (a, b), we
obtain the improper pdf

m(x) ∝

{
∏K

k=1
1
xk

x ∈ RK(x0)

0 otherwise.
(15)

We can simplify (15) using the one-to-one transformation x↔ u defined as

x→ u : uk = log
xk

xk−1
(k = 1, 2, . . . , K)

u→ x : xk = x0 exp
k

∑
κ=1

uκ (k = 1, 2, . . . , K)
(16)

which yields (with abuse of notation for brevity)

m(u) ∝

{
1 u ≥ 0

0 otherwise.
(17)

Since model selection requires proper priors, we need to normalize m(u) by adding
extra information (i.e., constraints) to it; we propose to simply fix the K first moments
〈u〉 = {〈uk〉}K

k=1. This will yield the Pareto chain prior π3(u) directly, expressed in u space
rather than x space. The expression for π3(u) is found by minimizing the Kullback–Leibler
divergence [14]

DKL(π3|m) =
∫

dKu π3(u) log
π3(u)
m(u)

, subject to 〈u〉 ≡
∫

dKu uπ3(u) = u, (18)

where u = {uk}K
k=1 are the supplied first moments. This variational problem is equivalent

to finding π3(u) by means of Jaynes’ principle of maximum entropy with m(u) serving as
the invariant measure [15]. Since the exponential distribution Exp(x|λ) is the maximum
entropy distribution for a random variable x ≥ 0 with a fixed first moment 〈x〉 = 1/λ, the
solution to (18) is

π3(u) =
K

∏
k=1

Exp(uk|λk), (19)
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where the rate hyperparameters λk = 1/uk and

Exp(x|λ) =
{

λ exp{−λx} if x ≥ 0

0 otherwise
with λ > 0. (20)

Transforming (19) to x space using (16) finally yields (12), but we still need to express
λk in terms of x—we might find it hard to pick reasonable values of uk = log xk/xk−1 from
limited prior information I. For this, we will need the identity

〈xk〉 ≡
∫

dKx xkπ3(x) =
λk

λk − 1
〈xk−1〉 (k = 1, 2, . . . , K). (21)

Constraining 〈xk〉 = xk and solving for λk, we obtain λk = xk/(xk − xk−1), in agreement
with (14). Note that the existence of the first marginal moments 〈xk〉 requires that λk > 1.

4.2. Sampling from π3

Sampling from π3 is trivial because of the independence of the uk in u space (19). To
produce a sample x′ ∼ π3(x) given the hyperparameter x0, compute the corresponding
rate parameters {λk}K

k=1 from (14), and use them in (19) to obtain a sample u′ ∼ π3(u).
The desired x′ is then obtained from u′ using the transformation (16).

5. Application: The VTR Problem

We now present a relatively simple but realistic instance of the problem of measuring
resonance frequencies, which will allow us to illustrate the above ideas. The VTR problem
consists of measuring human vocal tract resonance (VTR) frequencies x for each of five rep-
resentative vowel sounds taken from the CMU ARCTIC database [16]. The VTR frequencies
x describe the vocal tract transfer function T(x) and are fundamental quantities in acoustic
phonetics [17]. The five vowel sounds are recorded utterances of the first vowel in the
words W = {shore, that, you, little, until}. In order to achieve high-quality VTR frequency
estimates x̂, only the quasi-periodic steady-state part of the vowel sound is considered for
the measurement. The data D, thus, consists of a string of highly correlated pitch periods.
See Figure 3 for an illustration of these concepts.
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Figure 3. The VTR problem for the case (D := until, K := 10). Left panel: The data D, i.e., the quasi-periodic steady-state
part, consist of 3 highly correlated pitch periods. Right panel: Inferred VTR frequency estimates {x̂k}K

k=1 for K := 10
at 3 sigma. They describe the power spectral density of the vocal tract transfer function |T(x)|2, represented here by
25 posterior samples and compared to the Fast Fourier Transform (FFT) of D. All x̂k are well resolved, and most have error
bars too small to be seen on this scale.

The measurement itself is formalized as inference using the probabilistic model (1).
The model assumed to underlie the data is the sinusoidal regression model introduced
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in [18]; due to limited space, we only describe it implicitly. The sinusoidal regression model
assumes that each pitch period d ∈ D can be modeled as

dt = f (t; A, α, x) + σet where et ∼ N (0, 1), (t = 1, 2, . . . , T), (22)

where d = {dt}T
t=1 is a time series consisting of T samples. The model function

f (t; A, α, x) =
K

∑
k=1

[Ak cos(xkt) + AK+k sin(xkt)] exp{−αkt}+
L

∑
`=1

A2K+`t`−1 (23)

consists of a sinusoidal part (first ∑) and a polynomial trend correction (second ∑). Note
the additional model parameters θ = {A, α, σ, L}. Formally, given the prior p(θ) ([18],
Section 2.2), the marginal likelihood L(x) is then obtained as L(x) =

∫
dθL(x, θ)p(θ),

where the complete likelihood L(x, θ) is implicitly given by (22) and (23). Practically, we
just marginalize out θ from samples obtained from the complete problem p(D, x, θ|I).

For inference, the computational method of choice is nested sampling [1] using the
dynesty library [19–23], which scales roughly as O(K2) [24]. Since the VTR problem is
quite simple (Hi(K) ∼ 30 nats), we only perform single nested sampling runs and take the
obtained log Zi(K) and Hi(K) as point estimates. Full details on the experiments and data
are available at https://github.com/mvsoom/frequency-prior.

5.1. Experiment I: Comparing π2 and π3

In Experiment I, we perform a high-level comparison between π2 and π3 in terms of
evidence (4) and information (6). The values of the hyperparameters used in the experiment
are listed in Table 1. We did not include π1 in this comparison as the label switching
problem prevented convergence of nested sampling runs for K ≥ 4. The (a, b) bounds for
π2 were based on loosely interpreting the VTRs as formants and consulting formant tables
from standard works [25–30]. These allowed us to compile bounds up until the fifth formant
such that Kmax = 5. For π3, we simply applied a heuristic where we take xk = k× 500 Hz.
We selected x0 empirically (although a theoretical approach is also possible [31]), and xmax
was set to the Nyquist frequency. The role of xmax is to truncate π3 in order to avoid aliasing
effects, since the support of π3(xi) is unbounded from above. We implemented this by
using the following likelihood function in the nested sampling program:

L′(x) =

{
L(x) if xk ≤ xmax for all (k = 1, 2, . . . , K)

0 otherwise.
(24)

First, we compare the influence of π2 and π3 on model selection. Given D ∈W, the
posterior probability of the number of resonances K is given by the following.

pi(K) =
Zi(K)

∑K′ Zi(K′)
(K = 1, 2, . . . , Kmax). (25)

The results in the top row of Figure 4a are striking: while p2(K) shows individual prefer-
ences based on D, p3(K) prefers K = Kmax unequivocally.

https://github.com/mvsoom/frequency-prior
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Figure 4. (a) Model selection in Experiment I (top row) and Experiment II (bottom row). (b) In Experiment I, π2 and π3

are compared in terms of evidence [log Zi(K)] and uninformativeness [Hi(K)] for each (D, K). The arrows point from π2 to
π3 and are color-coded by the value of K. For small values of K, the arrow lengths are too small to be visible on this scale.

Second, in Figure 4b, we compare π2 and π3 directly in terms of differences in evidence
[log Zi(K)] and uninformativeness [Hi(K)] for each combination (D, K).

Arrows pointing eastward indicate Z3(K) > Z2(K). The π3 prior dominates the π2
prior in terms of evidence, for almost all values of K, indicating that π3 places its mass in
regions of higher likelihood or, equivalently, that the data were much more probable under
π3 than π2. This implies that the hint of π3 at more structure beyond K > Kmax should be
taken serious–we investigate this in Section 5.2.

Arrows pointing northward indicate H3(K) > H2(K), i.e., π3 is less informative than
π2, since more information is gained by updating from π3 to P3 than from π2 to P2. It is
observed that π2 and π3 are roughly comparable in terms of (un)informativeness.

5.2. Experiment II: ‘Free’ Analysis

We now freely look for more structure in the data by letting K vary up until Kmax = 10.
This goes beyond the capacities of π1 (because of the label switching problem) and π2
(because no data are available to set the (a, b) bounds). Thus, the great advantage of π3
is that we can use a simple heuristic to set x0 and let the model perform the discovering
without worrying about convergence issues or the obtained evidence values. The bottom
row in Figure 4a shows that model selection for the VTR problem is well-defined, with
the most probable values of K ≤ 10, except for D = until. That case is investigated in
Figure 3, where the need for more VTRs (higher K) is apparent from the unmodeled broad
peak centered at around 3000 Hz in the FFT power spectrum (right panel). Incidentally,
this spectrum also shows that spectral peaks are often resolved into more than one VTR,
which underlines the importance of using a prior that enables trouble-free handling of
multiplets of arbitrary order. A final observation from the spectrum is the fact that the
inferred x̂k differs substantially from the supplied values in x (Table 1), which hints at the
weak inductive bias underlying π3.

6. Discussion

It is only when the information in the prior is comparable to the information
in the data that the prior probability can make any real difference in parameter
estimation problems or in model selection problems ([32], p. 9).

Although the weakly informative prior for resonance frequencies π3 is meant to
be overwhelmed, its practical advantage (i.e., solving the label switching problem) will
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nonetheless persist, making a real difference in model selection problems even when “the
information in the prior” is much smaller than “the information in the data”. In this sense,
π3 is quite unlike the prior referenced in the above quote. Since it will be overwhelmed,
all it has to do is provide a reasonable density everywhere (which it does), be easily
parametrizable (which it is), and be easy to sample from (which it is).

Thus, we hope that this prior can enable the use of robust evidence-based methods
for a new class of problems, even in the presence of multiplets of arbitrary order. The
prior is compatible with off-the-shelf exploration algorithms and solves the label switching
problem without any special tuning or post processing. It would be interesting to compare
it to other approaches, e.g., [33], especially in terms of exploration efficiency. It is valid
for any collection of scale variables that is intrinsically ordered, of which frequencies and
wavelengths seem to be the most natural examples. Some examples of recent work where
the prior could be applied directly are:

• Nuclear magnetic resonance (NMR) spectroscopy [34];
• Resonant ultrasound spectroscopy (a standard method in material science) [35];
• In the analysis of atomic spectra [36], such as X-ray diffraction [37];
• Accurate modeling of instrument noise (in this case LIGO/Virgo noise) [38];
• Model-based Bayesian analysis in acoustics [39].
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