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Abstract: The classical Density Functional Theory (DFT) is introduced as an application of entropic
inference for inhomogeneous fluids in thermal equilibrium. It is shown that entropic inference
reproduces the variational principle of DFT when information about the expected density of particles
is imposed. This process introduces a family of trial density-parametrized probability distributions
and, consequently, a trial entropy from which the preferred one is found using the method of
Maximum Entropy (MaxEnt). As an application, the DFT model for slowly varying density is
provided, and its approximation scheme is discussed.

Keywords: entropic inference; relative entropy; density functional theory; contact geometry; optimal
approximations

1. Introduction

The Density Functional Theory was first developed in the context of quantum me-
chanics and only later extended to the classical regime. The theory was first introduced
by Kohn and Hohenberg (1964) [1] as a computational tool to calculate the spatial den-
sity of an electron gas in the presence of an external potential at zero temperature. Soon
afterwards, Mermin provided the extension to finite temperatures [2]. Ebner, Saam, and
Stroud (1976) [3] applied the idea to simple classical fluids, and Evans (1979) provided a
systematic formulation in his classic paper [4]: “The nature of the liquid–vapour interface
and other topics in the statistical mechanics of non-uniform, classical fluids”.

The majority of physicists and chemists today are aware of the quantum DFT and the
Kohn–Sham model [5], while fewer are familiar with the classical DFT; a historical review
of quantum DFT and its vast variety of applications is found in [6,7]. The classical DFT,
similarly, is a “formalism designed to tackle the statistical mechanics of inhomogeneous
fluids” [8], which has been used to investigate a wide variety of equilibrium phenomena,
including surface tension, adsorption, wetting, fluids in porous materials, and the chemical
physics of solvation.

Just as the Thomas–Fermi–Dirac theory is usually regarded as a precursor of quantum
DFT, van der Waals’ thermodynamic theory of capillarity under the hypothesis of a contin-
uous variation of density [9] can be regarded as the earliest work on classical DFT without
a fundamental proof of existence for such a variational principle.

“The long-term legacy of DFT depends largely on the continued value of the DFT
computer programs that practitioners use daily” [6]. The algorithms behind the com-
puter programs, all starting from an original Hartree–Fock method to solve the N-particle
Schrödinger equation, have evolved with many approximations and extensions imple-
mented over time by a series of individuals; although the algorithms produce accurate
results, they do not mention the HK variational principle. Without the variational principle,
the computer codes are suspected of being ad hoc or intuitively motivated without a solid
theoretical foundation; therefore, the DFT variational principle not only scientifically justi-
fies the DFT algorithms, but it also provides us with a basis to understand the repeatedly
modified algorithms behind the codes.
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In this work, we derive the classical DFT as an application of the method of maximum
entropy [10–14]. This integrates the classical DFT with other formalisms of classical statisti-
cal mechanics (canonical, grand canonical, etc.) as an application of information theory.
Our approach not only enables one to understand the theory from the Bayesian point of
view, but also provides a framework to construct equilibrium theories on the foundation of
MaxEnt. We emphasize that our goal is not derive an alternative to DFT. Our goal is purely
conceptual. We wish to find a new justification or derivation of DFT that makes it explicit
how DFT fits within the MaxEnt approach to statistical mechanics. The advantage of such
an understanding is the potential for future applications that are outside the reach of the
current version of DFT.

In Section 2, we briefly review entropic inference as an inference tool that updates
probabilities as degrees of rational belief in response to new information. Then, we show
that any entropy maximization produces a contact structure that is invariant under the
Legendre Transformations; this enables us to take advantage of these transformations for
maximized entropy functions (functionals here) found from constraints other than those of
thermal equilibrium, as well as thermodynamic potentials.

In Section 3, we briefly review the method of relative entropy for optimal approxi-
mation of probabilities, which allows us to derive and then generalize the Bogolyubov
variational principle. Then, we apply it for the special case wherein the trial family of
probabilities are parametrized by the density function n(x).

In Section 4, the Density Functional formalism is introduced as an extension of the
existing ensemble formalisms of statistical mechanics (canonical, grand canonical, etc.), and
we show that the core DFT theorem is an immediate consequence of MaxEnt; we prove that
in the presence of an external potential v(x), there exists a trial density functional entropy
Sv(E; n] maximized at the equilibrium density. We also prove that this entropy maximiza-
tion is equivalent to minimization of a density functional potential Ω(β; n] given by

Ωv(β; n] =
∫

d3xv(x)n(x) + F(β; n] (1)

where F(β; n] is independent of v(x). This formulation achieves two objectives. (i) It
shows that the density functional variational principle is an application of MaxEnt for
non-uniform fluids at equilibrium, and therefore, varying the density n(x) in Sv(E; n] does
not imply that the functional represents entropy of any non-equilibrium system. This trial
entropy, although very useful, is just a mathematical construct that allows us to incorporate
constraints that are related to one another by definition. (ii) By this approach, we show that
the Bayesian interpretation of probability liberates the fundamental theorem of the DFT
from an imaginary grand-canonical ensemble, i.e., the thermodynamic chemical potential
is appropriately defined without the need to define microstates for varying numbers of
particles.

Finally, in Section 5, as an illustration, we discuss the already well-known example
of a slowly varying inhomogeneous fluid. We show that our entropic DFT allows us to
reproduce the gradient approximation results derived by Evans [4]. There are two different
approximations involved: (i) rewriting the non-uniform direct correlation function in
terms of the uniform one and (ii) the use of linear response theory to evaluate the Fourier
transform of direct correlation functions. The former assumes that the density is uniform
inside each volume element, and the latter assumes that in of densities for neighboring
volume elements is small compared to their average.

2. Entropic Inference

A discussion of the method of maximum entropy as a tool for inference is found
in [14]. Given a prior Probability Distribution Function (PDF) Q(X), we want to find the
posterior PDF P(X) subject to constraints on expected values of functions of X.
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Formally, we need to maximize the relative entropy

Sr[P|Q] ≡ −∑
X
(PlogP− PlogQ) , (2)

under constraints Ai = ∑X P(X)Âi(X) and 1 = ∑X P(X), where Ais are real numbers, Âis
are real-valued functions on the space of X, and 1 ≤ i ≤ m for m number of constraints.

The maximization process yields the posterior probability

P(X) = Q(X)
1
Z

e−∑i αi Âi(X) , where Z = ∑
X

Q(X)e−∑i αi Âi(X) , (3)

and αis are Lagrange multipliers associated with Ais.
Consequently, the maximized entropy is

S = ∑
i

αi Ai + logZ . (4)

Now we can show that the above entropy readily produces a contact structure, we can
calculate the complete differential of Equation (4) to define the vanishing one-form ωcl as

ωcl ≡ dS−∑
i

αidAi = 0 . (5)

Therefore, any classical entropy maximization with m constraints produces a contact
structure {T, ωcl} in which manifold T has 2m + 1 coordinates {q0, q1, . . . qm, p1, . . . , pm}.

The physically relevant manifold M is an m-dimensional sub-manifold of T on which
ωcl vanishes; i.e., M is determined by 1 + m equations:

q0 ≡ S({Ai}) , pi ≡ αi =
∂S
∂Ai

. (6)

The Legendre Transformations, which are defined as

q0 −→ q0 −
l

∑
j=1

pjqj , (7)

qi −→ pi , pi −→ −qi , for 1 ≤ i ≤ l ,

are coordinate transformations on space T under which ωcl is conserved. It has been
shown [15,16] that the laws of thermodynamics produce a contact structure conforming to
the above prescription. Here, we are emphasizing that the contact structure is an immediate
consequence of MaxEnt, and therefore, it can be utilized in applications of information
theory beyond thermodynamics.

3. MaxEnt and Optimal Approximation of Probabilities

The posterior PDF found from entropic inference is usually too complicated to be
used for practical purposes. A common solution is to approximate the posterior PDF with
a more tractable family of PDFs {pθ} [17]. Given the exact probability p0, the preferred
member of tractable family pθ∗ is found by maximizing the entropy of pθ relative to p0:

δSr[pθ |p0]

δθ

∣∣∣
θ=θ∗

= 0 . (8)

The density functional formalism is a systematic method in which the family of trial
probabilities is parametrized by the density of particles; in Section 4, we shall use the



Phys. Sci. Forum 2021, 3, 13 4 of 10

method of maximum entropy to determine the family of trial distributions parametrized
by n(x), pθ ≡ pn. So, we can rewrite Equation (8) as

δ

δn(x′)

[
Sr[pn|p0] + αeq[N −

∫
d3xn(x)]

]
n(x)=neq(x)

= 0 . (9)

We will see that the canonical distribution itself is a member of the trial family;
therefore, in this case, the exact solution to Equation (9) is p0 itself:

pn

∣∣∣
n(x)=neq(x)

= p0 . (10)

4. Density Functional Formalism

An equilibrium formalism of statistical mechanics is a relative entropy maximization
process consisting of three crucial elements: (i) One must choose the microstates that
describe the system of inference. (ii) The prior is chosen to be uniform. (iii) One must select
the constraints that represent the information that is relevant to the problem at hand.

In the density ensemble, microstates of the system are given as positions and momenta
of all N particles of the same kind, given the uniform prior probability distribution

Q({~x1, . . . ,~xN ;~p1, . . . ,~pN}) = constant. (11)

Keeping in mind that we are looking for thermal properties of inhomogeneous
fluids, it is natural to choose the density of particles n(x) as a computational constraint
and the expected energy E as a thermodynamic constraint, in which n(x) represents the
inhomogeneity and E defines the thermal equilibrium.

Note that all constraints (computational, thermal, etc.) in the framework can be
incorporated as inferential constraints and can be imposed as prescribed in Section 2.

The density constraint holds for every point in space; therefore, we have 1 + 1 +R3

constraints—one for normalization, one for total energy, and one for density of particles at
each point in space; thus, we have to maximize the relative entropy

Sr[P|Q] = − 1
N!

∫
d3N xd3N p(PlogP− PlogQ) ≡ −Trc(PlogP− PlogQ), (12)

subject to constraints

1 =〈1〉, E = 〈Ĥv〉, (13a)

n(x) =〈n̂x〉 where
∫

d3xn(x) = N, (13b)

where 〈.〉 ≡ 1
N!

∫
(.)Pd3N xd3N p. The classical Hamiltonian operator Ĥ and the particle

density operator n̂x are given as

Ĥv ≡
N

∑
i=1

v(xi) + K̂(p1, . . . , pN) + Û(x1, . . . , xN), (14)

n̂x≡
N

∑
i

δ(x− xi). (15)

The density n(x) is not an arbitrary function; it is constrained by a fixed total number
of particles, ∫

d3xn(x) = N. (16)
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Maximizing (12) subject to (13) gives the posterior probability P(x1, . . . , xN ; p1, . . . , pN) as

P =
1

Zv
e−βĤv−

∫
d3xα(x)n̂x under condition

∫
d3xn(x) = N. (17)

where α(x) and β are Lagrange multipliers.
The Lagrange multiplier function α(x) is implicitely determined by

δlogZv

δα(x)
= −n(x) (18)

and by Equation (16)

−
∫

d3x
δlogZv

δα(x)
= N . (19)

Substituting the trial probabilities from (17) into (12) gives the trial entropy Sv(E;n] as

Sv(E; n] = βE +
∫

d3xα(x)n(x) + logZv, (20)

where Zv(β; α] is the trial partition function defined as

Zv(β; α] = Trce−βĤv−
∫

d3xα(x)n̂x . (21)

The equilibrium density neq(x) is that which maximizes Sv(E;n] subject to
∫

d3xn(x) =
N:

δ

δn(x′)

[
Sv(E; n] + αeq[N −

∫
d3xn(x)]

]
= 0 for fixed E. (22)

Next, perform a Legendre transformation and define the Massieu functional S̃v(β, n] as

S̃v ≡ Sv − βE, (23)

so that we can rewrite Equation (22) as

δ

δn(x′)

[
S̃v(β; n]− αeq

∫
d3xn(x)

]
= 0 for fixed β . (24)

Combine (20), (23), and (24) and use the variational derivative identity δn(x)
δn(x′) = δ(x− x′)

to find ∫
d3x

[
δlogZv(β; α]

δα(x)
+ n(x)

]
δα(x)
δn(x′)

= αeq − α(x′). (25)

The LHS of equation (25) vanishes by (16), and therefore, the RHS must vanish for an
arbitrary n(x), which implies that

α(x) = αeq , and
δlogZv

δα(x)

∣∣∣
αeq

= −neq(x) . (26)

Substituting (26) into (17) yields the equilibrium probability distribution

P∗(x1, . . . , xN ; p1, . . . , pN) =
1

Z∗v
e−βĤv−αeq

∫
d3xn̂x =

1
Z∗v

e−βĤv−αeq N (27)

where Z∗v (β, αeq) = Trce−βĤv−αeq N .
From the inferential point of view, the variational principle for the grand potential

and the equilibrium density [4] is proved at this point; we showed that for an arbitrary
classical Hamiltonian Ĥv, there exists a trial entropy Sv(E; n(x)] defined by Equation (20),



Phys. Sci. Forum 2021, 3, 13 6 of 10

which assumes its maximum at fixed energy and varying n(x) under the condition∫
d3xn(x) = N at the equilibrium density and gives the posterior PDF (Equation (27))

equal to that of the canonical distribution.
The massieu function S̃v(β; n(x)] from Equation (23) defines the density functional

potential Ωv(β; n(x)] by

Ωv(β; n] ≡ −S̃v(β; n]
β

= −
∫

d3x
α(x)

β
n(x)− 1

β
logZv(β; α] , (28)

so that the maximization of Sv(E; n] (20) in the vicinity of the equilibrium is equivalent to
the minimization of Ωv(β; n(x)] (28) around the same equilibrium point

δ

δn(x′)

[
Ωv(β; n] +

αeq

β

∫
d3xn(x)

]
= 0 . (29)

After we find Ωv, we just need to recall that α(x) = −β δΩv
δn(x) and substitute in

Equation (26) to recover the “core integro-differential equation” [4] of the DFT as

∇
( δΩ(β; n]

δn(x)

)
eq
= 0 (30)

which implies that
Ωv;eq ≤ Ωv(β; n], (31)

where
Ωv,eq(β; n] = −

αeq

β

∫
d3xn(x)− 1

β
logZ∗v (β, αeq). (32)

From Equation (28), it is clear that

Ωv(β; n] =
∫

d3xv(x)n(x) + 〈K̂ + Û〉 − Sv(E; n]
β

. (33)

It is convenient to define the intrinsic density functional potential Fv as

Fv(β; n] ≡ 〈K̂ + Û〉 − Sv

β
(34)

to have
Ωv(β; n] =

∫
v(x)n(x) + Fv(β; n] . (35)

Now we are ready to restate the fundamental theorem of the classical DFT:

Theorem 1. The intrinsic functional potential Fv is a functional of density n(x) and is independent
of the external potential:

δFv(β; n]
δv(x′)

= 0 for fixed β and n(x). (36)

Proof. The crucial observation behind the DFT formalism is that P and Zv depend on
the external potential v(x) and the Lagrange multipliers α(x) only through the particular
combination ᾱ(x) ≡ βv(x) + α(x). Substitute Equation (20) into (34) to get

βFv(β; n] = logZ(β; ᾱ] +
∫

d3xᾱ(x)n(x), (37)
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where Z(β; ᾱ] = Zv(β; α] = Trce−β(K̂+Û)−
∫

d3xᾱ(x)n̂x . The functional derivative of βFv at
fixed n(x) and β is

δ(βFv(β; n])
δv(x′)

∣∣∣
β,n(x)

=
∫

d3x′′
δ

δᾱ(x′′)

[
logZ(β; ᾱ] +

∫
d3xᾱ(x)n(x)

] δᾱ(x′′)
δv(x′)

∣∣∣
β,n(x)

. (38)

Since n(x′) = − δlogZ(β;ᾱ]
δᾱ(x′) , keeping n(x) fixed is achieved by keeping ᾱ(x) fixed:

δᾱ(x′′)
δv(x′)

∣∣∣
β,n(x)

=
δᾱ(x′′)
δv(x′)

∣∣∣
β,ᾱ(x)

= 0 , (39)

so that
δFv(β, n]

δv(x′)

∣∣∣
β,n(x)

= 0 , (40)

which concludes the proof; thus, we can write down the intrinsic potential as

F(β, n(x)] = Fv(β, n(x)] . (41)

Remark 1. Note that since a change in the external potential v(x) can be compensated by a suitable
change in the multiplier α(x) in such a way as to keep ᾱ(x) fixed, such changes in v(x) will have
no effect on n(x). Therefore, keeping n(x) fixed on the left-hand side of (37) means that ᾱ(x) on the
right side is fixed too.

Now, we can substitute Equation (35) into (29) and define the chemical potential

µ ≡
−αeq

β
, (42)

to have
δ

δn(x′)

[ ∫
d3xv(x)n(x) + F(β; n]− µ

∫
d3xn(x)

]
n(x)=neq(x)

= 0 . (43)

We can also substitute (35) into (30) to find

v(x) +
δF

δn(x)

∣∣∣
eq
= µ, (44)

which allows us to define and interpret µin(x; n] ≡ δF
δn(x) as the intrinsic chemical po-

tential of the system. To proceed further, we also split F into that of ideal gas plus the
interaction part as

F(β; n] = Fid(β; n]− φ(β; n]. (45)

Differentiating with δ
δn(x) gives

βµin(x; n] = log(λ3n(x))− c(x; n] , (46)

where, for a monatomic gas, λ =
(

2πh̄2

m

)1/2
. The additional one-body potential

c(x; n] = δφ
δn(x) is related to the Ornstein–Zernike direct correlation function of non-uniform

fluid [18–20] by

c(2)(x, x′; n] ≡ δc(x; n]
δn(x′)

=
δ2φ(β; n]

δn(x)δn(x′)
. (47)
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5. Slowly Varying Density and Gradient Expansion

We have proved that the solution to Equation (43) is the equilibrium density. However,
the functional F(β; n] needs to be approximated because the direct calculation of F involves
calculating the canonical partition function, the task that we have been avoiding to begin
with. Therefore, different models of the DFT may vary in their approach to guessing F(β; n].
Now assume that we are interested in a monatomic fluid with a slowly varying external
potential. In our language, it means that we use the approximation

∫
d3x ≡ ∑(∆x)3, where

∆x is much longer than the density correlation length, and the change in density in each
volume element is small compared to the average density. This allows us to interpret each
volume element (∆x)3 as a fluid at grand canonical equilibrium with the rest of the fluid as
its thermal and particle bath.

Similarly to [4], we expand F(β; n] as

F(β; n] =
∫

d3x
[

f0(n(x)) + f2(n(x))|∇n(x)|2 +O(∇4n(x))
]

. (48)

Differentiating with respect to n(x), we have

µin(x; n] =
δF

δn(x)
= f ′0(n(x))− f ′2(n(x))|∇n(x)|2 − 2 f2(n(x))∇2n(x). (49)

In the absence of an external potential, v(x) = 0, the second and the third terms in the
RHS of (49) vanish, and from Equation (44), µin = µ; therefore, we have

f ′0(n) = µ(n(x)), (50)

where µ(n(x)) is the chemical potential of a uniform fluid with density n = n(x). On the
other hand, with the assumption that each volume element behaves as if it is in grand
canonical ensemble for itself under influence of both external potential and additional
one-body interaction c(x; n], we know that the second derivative of F is related to Ornstein–
Zernike theory by

β
δ2F

δn(x)δn(x′)
=

δ(x− x′)
n(x)

− c(2)(x, x′; n] . (51)

Therefore we have a Taylor expansion of F around the uniform density as

F[n(x)] =F[n] +
∫

d3x
[ δF

δn(x)

]
neq(x)

ñ(x) (52)

+
1

2β

∫ ∫
d3xd3x′

[ δ(x− x′)
n(x)

− c(2)(|x− x′|; n]
]

neq(x)
ñ(x)ñ(x′) + . . . ,

where ñ(x) ≡ n(x)− n, and c(2)(|x− x′|; n] is the direct correlation function of a uniform
fluid with density n = n(x). The Fourier transform of the second integral in (52) gives

1
2β

∫ ∫
d3xd3x′

[ δ(x− x′)
n(x)

− c(2)(|x− x′|; n]
]

neq(x)
ñ(x)ñ(x′) (53)

=
−1

2βV ∑
q

(
c(2)(q; n]− 1

n(q)

)
ñ(q)ñ(−q) ,

and comparing with (48) yields

f ′′0 (n) =
−1
β

(a(n)− 1
n
) , f2(n) =

−b(n)
2β

, (54)
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where the functions a(n) and b(n) are defined as coefficients of the Fourier transform of
the Ornstein–Zernike direct correlation function by c2(q; n] = a(n(q)) + b(n(q))q2 + . . . .
b(n) is evaluated with linear response theory to find that

f2(n(x)) =
1

12β

∫
d3x′|x− x′|2c(2)(|x− x′|; n]. (55)

We can substitute Equations (55) and (50) into (49) and use the equilibrium identity
∇µ = 0 to find the integro-differential equation

∇
[

v(x) + µ(n(x))− f ′2(n(x))|∇n(x)|2 − 2 f2(n(x))∇2n(x)

]
n(x)=neq(x)

= 0, (56)

which determines the equilibrium density n̂eq(x) in the presence of external potential v(x)
given the Ornstein–Zernike direct correlation function of uniform fluid c(2)[n(x), |x− x′|].

6. Conclusions

We have shown that the variational principle of classical DFT is a special case of
applying the method of maximum entropy to construct optimal approximations in terms
of the variables that capture the relevant physical information, namely, the particle density
n(x). It is worth emphasizing once again: In this paper, we have pursued the purely
conceptual goal of finding how the DFT fits within the MaxEnt approach to statistical
mechanics. The advantage of achieving such an insight is the potential for future appli-
cations that lie outside the reach of the current versions of DFT. As an illustration, we
have discussed the already well-known example of a slowly varying inhomogeneous fluid.
Future research can be pursued in three different directions: (i) To show that the method of
maximum entropy can also be used to derive the quantum version of DFT, (ii) to approach
the Dynamic DFT [21], generalizing the idea to non-equilibrium systems by following the
theory of maximum caliber [22], and (iii) to revisit the objective of Section 5 and construct
weighted DFTs [23,24] by using the method of maximum entropy.
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