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Abstract: We present an approach to enhance the performance and flexibility of the Bayesian inference
of model parameters based on observations of the measured data. Going beyond the usual surrogate-
enhanced Monte-Carlo or optimization methods that focus on a scalar loss, we place emphasis on
a function-valued output of a formally infinite dimension. For this purpose, the surrogate models
are built on a combination of linear dimensionality reduction in an adaptive basis of principal
components and Gaussian process regression for the map between reduced feature spaces. Since
the decoded surrogate provides the full model output rather than only the loss, it is re-usable for
multiple calibration measurements as well as different loss metrics and, consequently, allows for
flexible marginalization over such quantities and applications to Bayesian hierarchical models. We
evaluate the method’s performance based on a case study of a toy model and a simple riverine diatom
model for the Elbe river. As input data, this model uses six tunable scalar parameters as well as silica
concentrations in the upper reach of the river together with the continuous time-series of temperature,
radiation, and river discharge over a specific year. The output consists of continuous time-series data
that are calibrated against corresponding measurements from the Geesthacht Weir station at the Elbe
river. For this study, only two scalar inputs were considered together with a function-valued output
and compared to an existing model calibration using direct simulation runs without a surrogate.

Keywords: parameter inference; Monte Carlo; surrogate model; Gaussian process regression; dimensionality
reduction

1. Introduction

Delayed acceptance [1,2] can accelerate Markov chain Monte Carlo (MCMC) sampling
up to a factor of one over the acceptance rate. In order to do so, it requires a surrogate
of the posterior that contains the cost function inside the likelihood in the case of model
calibration. The simplest way to implement delayed acceptance relies on a surrogate with
scalar output built for this cost function or for the likelihood. Here, we take an intermediate
step and construct a surrogate for the functional output of a blackbox model to be calibrated
against reference data. Typical examples are numerical simulations that output time-series
or spatial data and depend on tunable input parameters.

There exist numerous related works treating blackbox models with functional outputs
with surrogates. Campbell et al. [3] used an adaptive basis of principal component analysis
(PCA) to perform global sensitivity analysis. Pratola et al. [4] and Ranjan et al. [5] used
GP regression for sequential model calibration in a Bayesian framework. Lebel et al. [6]
modeled the likelihood function in an MCMC model calibration via a Gaussian process.
Perrin [7] compared the use of a multi-output GP surrogate with a Kronecker structure to
an adaptive basis approach.

The present contribution relies on the adaptive basis approach in principal components
(Karhunen–Loéve expansion or functional PCA) to reduce the dimensions of the functional
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output, while modeling the map from inputs to weights in this basis via GP regression. We
demonstrate the application of this approach on two examples using usual and hierarchical
Bayesian model calibration. In the latter case, a surrogate beyond theL2 cost function is
required if the likelihood depends on additional auxiliary parameters. As an example, we
allow variations of the (fractional) order of the norm, thereby, marginalizing over different
noise models, including Gaussian and Laplacian noise.

2. Gaussian Process Regression and Bayesian Global Optimization

Gaussian process regression [8–10] is a commonly used tool to construct flexible non-
parameteric surrogates. Based on the observed outputs f (xk) at training points xk and a
covariance function k(x, x′), the GP regressor predicts a Gaussian posterior distribution
at any point x∗. For a single prediction f (x∗), the expected value and variance of this
distribution are given by

f̄ (x∗) = m(x∗) + K∗(K + σn I)−1y, (1)

var[ f (x∗)] = K∗∗ − K∗(K + σn I)−1K∗T , (2)

where m(x∗) is the mean model, the covariance matrix K contains entries Kij = k(xi, xj)
based on the training set, K∗i (x∗, xi) are entries of a row vector, and K∗∗ = k(x∗, x∗) is
a scalar. The unit matrix I is added with the noise covariance σn, which regularizes the
problem and is usually estimated in an optimization loop together with other kernel
hyperparameters.

Such a surrogate with uncertainty information can be used for Bayesian global
optimization [11–13] of the log-posterior as a cost function. Here, we apply this method
to reach the vicinity of the posterior’s mode before sampling. As an acquisition function,
we use the expected improvement (see, e.g., [12]) at a newly observed locationx∗ given
existing training data D,

aEI(x?) = E[max(0, f̄ (x∗)− f̂ )|x∗,D]
= ( f̄ (x∗)− f̂ )Φ( f̂ ; f̄ (x∗), var[ f (x∗)]) + var[ f (x∗)]N ( f̂ ; f̄ (x∗), var[ f (x∗)]), (3)

where f̂ is the optimum value for f (x) observed thus far. Due to the non-linear transformation
from the functional blackbox output to the value of the cost function, it is more convenient
to realize Bayesian optimization with a direct GP surrogate of the cost function that is
constructed in addition to the surrogate for the functional output for the KL expansion
coefficients described below.

3. Delayed Acceptance MCMC

Delayed acceptance MCMC builds on a fast surrogate for the posterior p̃(x|y) to reject
unlikely proposals early [1,2]. Following the usual Metropolis–Hastings algorithm, the
probability to accept a new proposal x∗ in this first stage in the n-the step of the Markov
chain is, as usual,

P̃n
acc =

p̃(x∗|y)
p̃(xn−1|y)

g(xn−1|x∗)
g(x∗|xn−1)

, (4)

whereg is a transition probability that has been suitably tuned during warmup. The true
posterior p(x|y) is only evaluated if the proposal“survives” this first stage and enters the
final acceptance probability

Pn
acc =

p(x∗|y)
p(xn−1|y)

p̃(xn−1|y)
p̃(x∗|y) . (5)

Actual computation is typically performed in the logarithmic space with a cost function

`(x|y) ≡ −logp(x|y). (6)
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If this function is fixed, it is most convenient to directly build a surrogate ˜̀(x|y) for
the log-posterior `(x|y) including the corresponding prior.

4. Bayesian Hierarchical Models and Fractional Norms

One application of modeling the full functional output instead of only the cost function
is the existence of additional distribution parameters θ in the likelihood in addition to
the original model inputs x. Such dependencies appear within Bayesian hierarchical
models [14], where θ are again subject to a certain (prior) distribution with possibly further
levels of hyperparameters. There are essentially two ways to construct a surrogate with
support for additional parameters θ: Building a surrogate for the cost function that adds θ
as independent variables or constructing a surrogate with functional output for fk(x) and
keeping the dependencies on θ exact. Here, we focus on the latter, and apply this surrogate
within delayed acceptance MCMC with both, x and θ as tunable parameters.

As an example, we use a more general noise model than the usual Gaussian likelihood
that builds on arbitrary `θ norms [15–17] with real-valued θ not fixed while traversing the
Markov chain. We allow members of the exponential family for observational noise and
specify only its scale, but keep θ as a free parameter. Namely, we model the likelihood for
observing y in the output as

p(y|x, θ) =
1

2
√

2σ Γ(1 + θ−1)
e−`(y;x,θ), (7)

with the normalized `θ norm to the power of θ,

`(y; x, θ) ≡ 1
D

D

∑
i=1

∣∣∣∣yi − fi(x)√
2σ

∣∣∣∣θ (8)

as the loss function between observed data yi and blackbox model fi(x). Choosing the
usual L2 norm leads to a Gaussian likelihood for the noise model, whereas using the L1
norm means Laplacian noise. To maintain the relative scale when varying θ, it is important
to add the term log Γ(1 + θ−1) from (7) to the negative log-likelihood. In the following use
cases, we are going to compare the cases of fixed and variable θ.

5. Linear Dimension Reduction via Principal Components

Formally, the blackbox output for given input x can be a function f (t) ∈ H in an
infinite-dimensional Hilbert space (though sampled at a finite number of points in practice).
Linear dimension reduction in such a space means finding the optimum set of basis
functions ϕk(t) that spans the output space f (t; x) for any input x given to the blackbox.
The reduced model of order r is then given by

f (t; x) ≈
r

∑
k=1

zk(x)ϕk(t). (9)

This approach is known as the Karhunen–Loéve (KL) expansion [18] in case f (t; x) are
interpreted as realizations of a random process, or as the functional principal component
analysis (FPCA) [19]. For our application, this distinction does not matter. The KL
expansion boils down to solving a regression problem in the non-orthogonal basis of
N observed realizations to represent new observations. Then, an eigenvalue problem is
solved to invert the N × N collocation matrix with entries

Mij =
〈

f (t; xi), f (t; xj)
〉
. (10)
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Here, the inner product in Hilbert spaces and its approximation for a finite set of
support points is given by

〈u, v〉 =
∫

Ω
u(t)v(t)dt ≈ 1

Nt

Nt

∑
k=1

u(tk)v(tk). (11)

If Nt � N (many support points, few samples), solving the eigenvalue problem
of the collocation matrix M is more efficient than the dual one of the covariance matrix
C with Cij = ∑k f (ti, xk) f (tj, xk) in the usual PCA (see [9] for their equivalence via the
singular value decomposition of Yij = f (ti, xj)). The question of at which r to truncate
the eigenspectrum in (9) depends on the desired accuracy in the output, which is briefly
analyzed in the following paragraph.

Error Estimate

Here, we justify why we can assume an L2 truncation error of the order of the ratio
λr/λ1 between the smallest eigenvalue considered in the approximation and the largest
one. The truncated SVD can be shown to be the best linear approximation M(r) of lower
rank r to an N × N matrix M in terms of the Frobenius norm ||M||F (see, e.g., [20]). Its
value is simply computed from the L2 norm of singular values,

||M||F =

(
N

∑
k=1

σ 2
k

)1/2

, (12)

where σ 2
k = λk in the case of real eigenvalues λk of a positive semi-definite matrix as for

the covariance or collocation matrix. The truncation error is given by

||M(r) −M||F =

(
N

∑
k=r+1

λk

)1/2

. (13)

The error estimate for the KL expansion uses this convenient property together with
the fact that the Frobenius norm is compatible with the usual L2 norm |x| of vectors y, i.e.,

|My| ≤ ||M||F|y|. (14)

Representing y via the first r eigenvalues of the collocation matrix yields a relative
squared reconstruction error of

|(M(r) −M)y|2/|y|2 ≤
N

∑
k=r+1

λk ≤ (N − r)λr. (15)

The last estimate is relatively crude if N � r, and the spectrum decays fast with the
index variable k. If one assumes a decay rate α with

λk ≈ λr(k− r)−α, (16)

one obtains
N

∑
k=r+1

λk ≈
∞

∑
k=r+1

λr(k− r)−α = λr

∞

∑
k=1

k−α = λrζ(α), (17)

where ζ is the Riemann zeta function. This function diverges for a spectral decay of
order α = 1 and reaches its asymptotic value ζ(∞) = 1 relatively quickly for α ≥ 2
(e.g., ζ(3) = 1.2). The spectral decay rate α can be fitted in a log–log plot of λk over index k
and takes values between α = 3 and 5 in our use case. The underlying assumptions are
violated if the spectrum stagnates at a large number of constant eigenvalues for higher
indices k.
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6. Implementation and Results

The idea behind the realization of MCMC with a function-valued surrogate is quite
simple. Instead of directly using the surrogate for the cost ` with fixed θ, we take a step
in-between. Multiple surrogates z̃k(x) are built, where each maps the input x to one weight
zk(x) in the KL expansion. A surrogate f̃i(x) ≡ f̃ (ti; x) for the model output is then given
by replacing zk(x) by z̃k(x) in (9). The according surrogate ˜̀(y; x, θ) for the cost function
uses f̃i(x) instead of fi(x) in (8). Dependencies on θ are kept exact in this approach. The
main algorithm proceeds in the following steps:

1. Construct a GP surrogate for the L2 cost function on a space-filling sample sequence
over the whole prior range.

2. Refine the sampling points near the posterior’s mode through Bayesian global optimization
with the L2 cost surrogate.

3. Train a multi-output GP surrogate for the functional output z(x) on the refined
sampling points.

4. Use the function-valued surrogate for delayed acceptance in the MCMC run.

For all GP surrogates, we use a Matern 5/2 kernel for k(x, x′) together with a linear
mean model for m(x), as realized in the Python package GPy [21]. For step 4, we use Gibbs
sampling and the surrogate for z(x), yielding the full output y(t, x) rather than only the L2
distance to a certain reference dataset. The idea to refine the surrogate iteratively during
MCMC had to be abandoned early. The problem is that detailed balance is violated as soon
as the surrogate proposal probabilities change when modifying the GP regressor with a
new point. In the following application cases, we compare a usual MCMC evaluation using
the full model to MCMC with delayed acceptance using the GP surrogate together with the
KL expansion/functional PCA (GP+KL) in the output function space.

6.1. Toy Model

First, we test the quality of the algorithm on a toy model given by

y(t, x) = x1 sin((t− x2)
3). (18)

We choose reference values x1 = 1.15, x2 = 1.4 to test the calibration ofx against the
according output yref(t) ≡ y(t, xref) and add Gaussian noise of amplitude σ = 0.05. A
flat prior is used for x. For the hierarchical model case (7), we choose a starting guess of
θ = 2 for the norm’s order and a Gaussian prior with σθ = 0.5 around this value together
with a positivity constraint. The initial sampling domain in the square x1, x2 ∈ (0, 2). The
comparison between MCMC and delayed acceptance MCMC is made once for fixed θ = 2
(Gaussian likelihood) and then for a hierarchical model with a random walk also in θ. The
respective Markov chain with 10,000 steps has a correlation length of ≈ 10 steps (Figure 1)
and yields a posterior parameter distribution for (x1, x2) depicted in Figure 2.

The results in Figure 2 show good agreement in the posterior distributions of full
MCMC and delayed acceptance MCMC. Compared to the case with fixed θ = 2, the
additional freedom in θ in the hierarchical model leads to further exploration of the
parameter space. The posterior of θ according to the Markov chain is given in Figure 3. The
similarity to the prior distribution shows that the data does not yield new information on
how to choose θ.
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Figure 1. Autocorrelation over lag in MCMC steps for inputs x1 (solid) and x2 (dashed) in the toy
model. Top: Gaussian likelihood, and bottom: hierarchical model. Left: full MCMC, and right:
delayed acceptance MCMC with GP+KL surrogate.
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Figure 2. Posterior distribution of the calibrated parameters x in (18). Top: Gaussian likelihood,
bottom: hierarchical model. Left: full MCMC, right: delayed acceptance MCMC with GP+KL
surrogate.
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Figure 3. Posterior distribution of the fractional order θ in the loss function with `θ norm. Left: full
MCMC, right: delayed acceptance MCMC with GP+KL surrogate.
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6.2. Riverine Diatom Model

The final application of the described method is on a riverine diatom model [22,23].
This model predicts the chlorophyll a concentration at an observation point at the Elbe
river as a time series and depends on several input parameters. For simplicity, and to limit
computational resources, we select only two of the six scalar inputs and use fixed values
for the remaining four. Namely, the chosen parameters x1 = Klight and x2 = µ0 appear in
the growth rate inside the diatom model. The latter is given by the “Smith formula” [24]
for photosynthesis,

µ(t) ∝ µ0
1
D

∫ D

0

I(t)e−λ(t)z√
K 2

light + I2(t)e−2λ(t)z
dz,

where D is the water depth, and I(t) is the radiation intensity prescribed at the water surface.
Light attenuation λ(t) ≡ λSCchl(t) is modeled to be proportional to the chlorophyll a
concentration Cchl(t). Equations are solved within a Lagrangian setup, following water
parcels that travel down the Elbe river. Data points of the local chlorophyll time series
simulated at Geesthacht Weir are made up by chlorophyll a values at the Lagrangian
trajectory end points. These values are the functional model output y(t) for which the
model is calibrated with respect to measurements yref(t). As the parameters are positive
and limited by reasonable maximum values from domain knowledge, we use a half-sided
Cauchy (Lorentz) prior

p(xk) =
2
π

bk

b 2
k + x 2

k
for xk > 0, p(xk) = 0 for xk ≤ 0. (19)

Here, we choose a scale value x∗k for which P∗ = 90% of the probability volume is
contained withinxk < x∗k . Considering the cumulative distribution, we have to set

bk =
x∗k

tan
(

π
2 P?

) (20)

to realize this condition.
As in the case of the toy model, we use 10,000 steps in the Markov chain. The results

for autocorrelation and posterior samples using the full model versus delayed acceptance
are shown in Figures 4 and 5. The correlation time of ≈500 steps is much larger than in
the toy model, and the decay of the autocorrelation over the lag roughly matches between
the two approaches. Delayed acceptance sampling produces similar posterior samples in
Figure 5 at about one third of the overall computation time. There, one also sees the issue
of high correlation between Klight and µ0 in the posterior of the calibration, making Gibbs
sampling inefficient in that particular case.
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Figure 4. Autocorrelation over lag in MCMC steps for inputs Klight (solid) and µ0 (dashed) in the
riverine diatom model. Top: Gaussian likelihood, bottom: hierarchical model. Left: full MCMC,
right: delayed acceptance MCMC with GP + KL surrogate.
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Figure 5. Posterior distribution of calibrated parameters for the riverine diatom model. Left: full
MCMC, right: delayed acceptance MCMC with GP + KL surrogate.

7. Conclusions and Outlook

We illustrated the application of function-valued surrogates to delayed acceptance
MCMC for parameter calibration in simple as well as hierarchical Bayesian models. Using
a surrogate for the functional output rather than a cost function or likelihood is useful for
several reasons. Conceptually, it allows introducing additional distribution parameters in
Bayesian hierarchical models. Our results demonstrate that it is possible and efficient to
perform MCMC with delayed acceptance on such models while keeping the dependencies
in these additional parameters exact. In particular, the fractional order of the norm
appearing in the cost function was left free, which is useful for robust model calibration.

The method was applied to a toy model and an application case of a riverine diatom
model. In both cases, using delayed acceptance with a surrogate for the functional output
produced results comparable to using the full model at only about one third of the actual
model evaluations. Compared to direct surrogate modeling of the cost function, we could
also observe an increase in the quality of the predicted cost. This is likely connected to the
higher flexibility of modeling weights to multiple principal components with Gaussian
processes with individual hyperparameters.

The described approach is not immune to the curse of dimensionality. On the one
hand, the number of required GP regressors grows linearly with the effective dimensions
of the output function space. Since evaluation is fast and parallelizable, this is a minor issue
in practice. On the other hand, increasing the dimension of the input space soon prohibits
the construction of a reliable surrogate due to the required number training points to fill
the parameter space. In such cases, the preprocessing overhead is expected to outweigh
the speedup of delayed acceptance MCMC for either functional or scalar surrogates. More
detailed investigations will be required to give quantitative estimates on this trade off.
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