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Abstract: Dynamics of many classical physics systems are described in terms of Hamilton’s equations.
Commonly, initial conditions are only imperfectly known. The associated volume in phase space is
preserved over time due to the symplecticity of the Hamiltonian flow. Here we study the propagation
of uncertain initial conditions through dynamical systems using symplectic surrogate models of
Hamiltonian flow maps. This allows fast sensitivity analysis with respect to the distribution of
initial conditions and an estimation of local Lyapunov exponents (LLE) that give insight into local
predictability of a dynamical system. In Hamiltonian systems, LLEs permit a distinction between
regular and chaotic orbits. Combined with Bayesian methods we provide a statistical analysis of
local stability and sensitivity in phase space for Hamiltonian systems. The intended application is
the early classification of regular and chaotic orbits of fusion alpha particles in stellarator reactors.
The degree of stochastization during a given time period is used as an estimate for the probability
that orbits of a specific region in phase space are lost at the plasma boundary. Thus, the approach
offers a promising way to accelerate the computation of fusion alpha particle losses.

Keywords: Gaussian process regression; surrogate model; Lyapunov exponent; sensitivity analysis;
Hamiltonian systems

1. Introduction

Hamilton’s equations describe the dynamics of many classical physics systems such as
classical mechanics, plasma physics or electrodynamics. In most of these cases, chaos plays
an important role [1]. One fundamental question in analyzing these chaotic Hamiltonian
systems is the distinction between regular and chaotic regions in phase space. A commonly
used tool are Poincaré maps, which connect subsequent intersections of orbits with a
lower-dimensional subspace, called Poincaré section. For example, in a planetary system
one could record a section each time the planet has made a turn around the Sun. The
resulting pattern of intersection points on this subspace allow insight into the dynamics
of the underlying system: regular orbits stay bound to a closed hyper-surface and do not
leave the confinement volume, whereas chaotic orbits might spread over the whole phase
space. This is related to the breaking of KAM (Kolmogorov-Arnold-Moser) surfaces that
form barriers for motion in phase space [2]. The classification of regular versus chaotic
orbits is performed, e.g., via box-counting [3] or by calculating the spectrum of Lyapunov
exponents [4–6]. Lyapunov exponents measure the asymptotic average exponential rate of
divergence of nearby orbits in phase space over infinite time and are therefore invariants
of the dynamical system. When considering only finite time, the obtained local Lyapunov
exponents (LLEs) for a specific starting position depend on the position in phase space
and give insight into the local predictability of the dynamical system of interest [7–10].
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Poincaré maps are in most cases inefficient to compute as their computation involves
numerical integration of Hamilton’s equations even though only intersections with the
surface of interest are recorded. When using a surrogate model to interpolate the Poincaré
map, the symplectic structure of phase space arising from the description in terms of the
Hamiltonian description has to be preserved to obtain long-term stability and conservation
of invariants of motion, e.g., volume preservation. Additional information on Hamiltonian
systems and symplecticity can be found in [2,11]. Here, we use a structure-preserving
Gaussian process surrogate model (SympGPR) that interpolates directly between Poincaré
sections and thus avoids unnecessary computation while achieving similar accuracy as
standard numerical integration schemes [12].

In the present work, we investigate how the symplectic surrogate model [12] can be
used for early classification of chaotic versus regular trajectories based on the calculation
of LLEs. The latter are calculated using the Jacobian that is directly available from the
surrogate model [13]. As LLEs also depend on time, we study their distribution on
various time scales to estimate the needed number of mapping iterations. We combine the
orbit classification with a sensitivity analysis based on variance decomposition [14–16] to
evaluate the influence of uncertain initial conditions in different regions of phase space.
The analysis is carried out on the well-known standard map [17] that is well suited for
validation purposes as a closed form expression for the Poincaré maps is available. This,
however, does not influence the performance of the surrogate model that is applicable also
in cases where such a closed form doesn’t exist [12].

The intended application is the early classification of regular and chaotic orbits of
fusion alpha particles in stellarator reactors [3]. While regular particles can be expected to
remain confined indefinitely, only chaotic orbits have to be traced to the end. This offers a
promising way to accelerate loss computations for stellarator optimization.

2. Methods
2.1. Hamiltonian Systems

A f−dimensional system (with 2 f−dimensional phase space) described by its Hamil-
tonian H(q, p, t) depending on f generalized coordinates q and f generalized momenta p
satisfies Hamilton’s canonical equations of motion,

q̇(t) =
dq(t)

dt
= ∇p H(q(t), p(t)), ṗ(t) =

dp(t)
dt

= −∇qH(q(t), p(t)), (1)

which represent the time evolution as integral curves of the Hamiltonian vector field.
Here, we consider the standard map [17] that is a well-studied model to investigate

chaos in Hamiltonian systems. Each mapping step corresponds to one Poincaré map of a
periodically kicked rotator:

pn+1 = (pn + Ksin(qn)) mod 2π, qn+1 = (qn + pn+1) mod 2π, (2)

where K is the stochasticity parameter corresponding to the intensity of the perturbation.
The standard map is an area-preserving map with detJ = 1, where J is its Jacobian:

J =

( ∂qn+1
∂qn

∂qn+1
∂pn

∂pn+1
∂qn

∂pn+1
∂pn

)
=

(
1 + Kcos(qn) 1

Kcos(qn) 1

)
(3)

2.2. Symplectic Gaussian Process Emulation

A Gaussian process (GP) [18] is a collection of random variables, any finite number
of which have a joint Gaussian distribution. A GP is fully specified by its mean m(x) and
kernel or covariance function K(x, x′) and is denoted as

f (x) ∼ GP(m(x), K(x, x′)), (4)
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for input data points x ∈ Rd. Here, we allow vector-valued functions f (x) ∈ RD [19].
The covariance function is a positive semidefinite matrix-valued function, whose entries
(K(x, x′))ij express the covariance between the output dimensions i and j of f (x).

For regression, we rely on observed function values Y ∈ RD×N with entries y = f (x)+
ε. These observations may contain local Gaussian noise ε, i.e., the noise is independent at
different positions x but may be correlated between components y. The input variables are
aggregated in the d× N design matrix X, where N is the number of training data points.
The posterior distribution, after taking training data points into account, is still a GP with
updated mean F∗ ≡ E(F(X∗)) and covariance function allowing to make predictions for
test data X∗:

F∗ = K(X∗, X)(K(X, X) + Σn)
−1Y, (5)

cov(F∗) = K(X∗, X∗)− K(X∗, X)(K(X, X) + Σn)
−1K(X, X∗), (6)

where Σn ∈ RND×ND is the covariance matrix of the multivariate output noise for each
training data point. Here we use the shorthand notation K(X, X) for the block matrix
assembled over the output dimension D in addition to the number of input points as in a
single-output GP with a scalar covariance function k(x, x′) that expresses the covariance of
different input data points x and x′. The kernel parameters are estimated given the input
data by minimizing the negative log-likelihood [18].

To construct a GP emulator that interpolates symplectic maps for Hamiltonian systems,
symplectic Gaussian process regression (SympGPR) was presented in [12] where the
generating function F(q, P) and its gradients are interpolated using a multi-output GP
with derivative observations [20,21]. The generating function links old coordinates (q, p) =
(qn, pn) to new coordinates (Q, P) = (qn+1, pn+1) (e.g., after one iteration of the standard
map Equation (2)) via a canonical transformation such that the symplectic property of phase
space is preserved. Thus, input data points consist of pairs (q, P). Then, the covariance
matrix contains the Hessian of an original scalar covariance function k(q, P, q′, P′) as the
lower block matrix L(q, P, q′, P′) (denoted with the red box):

K(q, P, q′, P′) =

 k ∂q′k ∂P′k
∂qk ∂qq′k ∂qP′k
∂Pk ∂Pq′k ∂PP′k

. (7)

Using the algorithm for the (semi-)implicit symplectic GP map as presented in [12], once
the SympGPR model is trained and the covariance matrix calculated, the model is used to
predict subsequent time steps or Poincaré maps for arbitrary initial conditions.

For the estimation of the Jacobian (Equation (3)) from the SympGPR, the Hessian of the
generating function F(q, P) has to be inferred from the training data. Thus, the covariance
matrix is extended with a block matrix C containing third derivatives of k(q, P, q′, P′):

C =

(
∂q,q′ ,qk ∂q,P′ ,qk ∂P,q′ ,qk ∂P,P′ ,qk
∂q,q′ ,Pk ∂q,P′ ,Pk ∂P,q′ ,Pk ∂P,P′ ,Pk

)
. (8)

The mean of the posterior distribution of the desired Hessian of the generating function
F(q, P) is inferred via

∇2F = (∂2
qqF, ∂2

qPF, ∂2
PqF, ∂2

PPF)> = CL−1Y. (9)

As we have a dependence on mixed coordinates Q(q̄(q, p), P(q, p)) and P(Q(q, p), p̄(q, p)),
where we used q̄(q, p) = q and p̄(q, p) = p to correctly carry out the inner derivatives, the
needed elements for the Jacobian can be calculated employing the chain rule. The Jacobian
is then given as the solution of the well-determined linear set of equations:
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∂Q
∂q

=
∂Q
∂q̄

∂q̄
∂q

+
∂Q
∂P

∂P
∂q

,
∂Q
∂p

=
∂Q
∂q̄

∂q̄
∂p

+
∂Q
∂P

∂P
∂p

, (10)

∂P
∂q

=
∂P
∂Q

∂Q
∂q

+
∂P
∂ p̄

∂ p̄
∂q

,
∂P
∂p

=
∂P
∂Q

∂Q
∂p

+
∂P
∂ p̄

∂ p̄
∂p

, (11)

where we use the following correspondence to determine all factors of the SOEs:(
∂Q
∂q̄

∂Q
∂P

∂ p̄
∂q̄

∂ p̄
∂P

)
=

(
∂q̄
∂Q

∂P
∂Q

∂q̄
∂ p̄

∂P
∂ p̄

)>
=

(
1 + ∂2F

∂q∂P − ∂2F
∂P∂P

− ∂2F
∂q∂q 1 + ∂2F

∂P∂q

)
. (12)

2.3. Sensitivity Analysis

Variance-based sensitivity analysis decomposes the variance of the model output
into portions associated with uncertainty in the model inputs or initial conditions [14,15].
Assuming independent input variables Xi, i = 1, ..., d, the functional analysis of variance
(ANOVA) allows a decomposition of the scalar model output Y from which the decomposi-
tion of the variance can be deduced:

V[Y] =
d

∑
i=1

Vi + ∑
1≤i<j≤d

Vij + ... + V1,2,...,d (13)

The first term describes the variation in variance only due to changes in single variables
Xi, whereas higher-order interactions are depicted in the contributions of the interaction
terms. From this, first-order Sobol’ indices Si are defined as the corresponding fraction of
the total variance, whereas total Sobol’ indices STi also take the influence of Xi interacting
with other input variables into account [14,15]:

Si =
Vi

Var(Y)
, STi =

EX∼i (VarXi (Y|X∼i)

Var(Y)
(14)

Several methods for efficiently calculating Sobol’ indices have been presented, e.g., MC
sampling [14,16] or direct estimation from surrogate models [22,23]. Here, we use the MC
sampling strategy presented in [16] using two sampling matrices A, B and a combination
of both A(i)

B , where all columns are from A except the i-th column which is from B:

SiVar(Y) =
1
N

N

∑
i=1

f (B)j( f (A(i)
B )j − f (A)j), STi Var(Y) =

1
2N

N

∑
i=1

( f (A)j − f (A(i)
B )j)

2, (15)

where f denotes the model to be evaluated.

2.4. Local Lyapunov Exponents

For a dynamical system in RD, D Lyapunov characteristic exponents λn give the expo-
nential separation of trajectories with initial conditions z(0) = (q(0), p(0)) of a dynamical
system with perturbation δz over time:

|δz(T)| = J (T)
z(T)δz(0) ≈ eTλ|δz(0)|, (16)

where J (T)
z(T) is a time-ordered product of Jacobians Jz(T−1)Jz(T−2)...Jz(1)Jz(0) [4]. The

Lyapunov exponents are then given as the logarithm of the eigenvalues of the positive and
symmetric matrix.

Λ = lim
T→∞

[J (T)>
z(T) J

(T)
z(T)]

1/(2T), (17)

where > denotes the transpose of J (T)
z(T).

For a D-dimensional system, there exist D Lyapunov exponents λn giving the rate
of growth of a D-volume element with λ1 + ... + λD corresponding to the rate of growth
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of the determinant of the Jacobian det(J (T)
z(T)). From this follows that for a Hamiltonian

system with a symplectic (e.g., volume-preserving) phase space structure, Lyapunov
exponents exist in additive inverse pairs as the determinant of the Jacobian is constant,
λ1 + ... + λD = 0. In the dynamical system of the standard map with D = 2 considered
here, the Lyapunov exponents allow a distinction between regular and chaotic motion. If
the Lyapunov exponents λ1 = −λ2 > 0, neighboring orbits separate exponentially which
corresponds to a chaotic region. In contrast, when λ1 = −λ2 ≈ 0 the motion is regular [1].

As the product of Jacobians is ill-conditioned for large values of T, several algorithms
have been proposed to calculate the spectrum of Lyapunov exponents [13]. Here, we
determine local Lyapunov exponents (LLE) that determine the predictability of an orbit of
the system at a specific phase point for finite time. In contrast to global Lyapunov exponents
they depend on T and on the position in phase space z. We use recurrent Gram-Schmidt
orthonormalization procedure through QR decomposition [5,6,24], where we follow the
evolution of D initially orthonormal deviation vectors wn

0 . The Jacobian is decomposed
into Jz(0) = Q(1)R(1), where Q(1) is an orthogonal matrix and R(1) is an upper triangular
matrix yielding a new set of orthonormal vectors wi. At the next mapping iteration, the
matrix product Jz(1)Q(1) is again decomposed. This procedure is repeated T times to

arrive at J (T)
z(t) = Q(T)R(T)R(T−1)...R(0). The Lyapunov exponents are then estimated from

the diagonal elements of R(t)

λn =
1
T

T

∑
t=1

lnR(t)
nn . (18)

3. Results and Discussion

In the following we apply an implicit SympGPR model with a product kernel [12].
Due to the periodic topology of the standard map we use a periodic kernel function to
construct the covariance matrix in Equation (7) with periodicity 2π in q, whereas a squared
exponential kernel is used in P:

k(q, qi, P, Pi) = σ2
f exp

(
− sin2((q− qi)/2)

2l2
q

)
exp

(
− (P− Pi)

2

2l2
P

)
. (19)

Here σ2
f specifies the amplitude of the fit and is set in accordance with the observations

to 2 max(|Y|)2, where Y corresponds to the change in coordinates. The hyperparameters
lq, lP are set to their maximum likelihood value by minimizing the negative log-likelihood
given the input data using the L-BFGS-B routine implemented in Python [18]. The noise in
observations is set to σ2

n = 10−16. 30 initial data points are sampled from a Halton sequence
to ensure good coverage of the training region in the range [0, 2π]× [0, 2π] and Equation (2)
is evaluated once to obtain the corresponding final data points. Each pair of initial and
final conditions constitutes one sample of the training data set. Once the model is trained,
it is used to predict subsequent mapping steps for arbitrary initial conditions and to infer
the corresponding Jacobians for the calculation of the local Lyapunov exponents. Here,
we consider two test cases of the standard map with different values of the stochasticity
parameter K = 0.9 and K = 2.0 (Equation (2)). For each of the test cases, a surrogate model
is trained. While in the first case the last KAM surface is not yet broken and therefore the
region of stochasticity is still confined in phase space, in the latter case the chaotic region
covers a much larger portion of phase space. However, there still exist islands of stability
with regular orbits [2]. For K = 0.9 the mean squared error (MSE) for the training data is
1.4× 10−6, whereas the test MSE after one mapping application is found to be 2.4× 10−6.
A similar quality of the surrogate model is reached for K = 2.0, where the training MSE is
1.6× 10−7 and the test MSE 2.4× 10−7.
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3.1. Local Lyapunov Exponents and Orbit Classification

For the evaluation of the distribution of the local Lyapunov exponents with respect to
the number of mapping iterations T and phase space position z = (q, p), 1000 points are
sampled from each orbit under investigation. In the following, we only consider the maxi-
mum local Lyapunov exponent as it determines the predictability of the system. For each
of the 1000 points, the LLEs are calculated using Equation (18), where the needed Jacobians
are given by the surrogate model by evaluating Equation (9) and solving Equation (11).

Figure 1 shows the distributions for K = 2.0, T = 50, T = 100 and T = 1000 for two
different initial conditions resulting in a regular and a chaotic orbit. In the regular case the
distribution exhibits a sharp peak and with increasing T moves closer to 0. This bias due to
the finite number of mapping iterations decreases with O(1/T) as shown in Figure 2 [25].
For the chaotic orbit, the distribution looks smooth and its median is clearly >0 as expected.
For a smaller value of K = 0.9 the dynamics in phase space exhibit larger variety with
regular, chaotic and also weakly chaotic orbits that remain confined in a small stochastic
layer around hyperbolic points. Hence, the transition between regular, weakly chaotic and
chaotic orbits is continuous due to the larger variety in phase space. For fewer mapping
iterations, possible values of λ are overlapping, thus preventing a clear distinction between
confined chaotic and chaotic orbits.
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(b)
Figure 1. Distribution of local Lyapunov exponents for a (a) regular orbit (q, p) = (1.96, 4.91) and
(b) chaotic orbit (q, p) = (0.39, 2.85) in the standard map with K = 2.0
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0.05

0.10

0.15

0.20

(b)
Figure 2. Rate of convergence of the block bias due to finite number of mapping iterations for (a)
K = 2.0 with a regular orbit (q, p) = (1.96, 4.91) (diamond) and a chaotic orbit (q, p) = (0.39, 2.85)
(x) and (b) K = 0.9 with a regular orbit (q, p) = (1.76, 0.33) (diamond), a confined chaotic orbit
(q, p) = (0.02, 2.54) (circle) and a chaotic orbit (q, p) = (0.2, 5.6) (x). The graphs show λ̃T , the
median of λT for each T, with λ̃T = λ + c/T fitted by linear regression of Tλ̃T on T. The gray areas
correspond to the standard deviation for 1000 test points.

When considering the whole phase space with 200 orbits with initial conditions
sampled from a Halton sequence in the range [0, π]× [0, 2π], already T = 50 mapping
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iterations provide insight in the predictability of the standard map (Figure 3). If for a region
in phase space the obtained LLE is positive, the predictability in this region is restricted
as the instability there is relatively large. If, however, the LLE is close to zero, we can
conclude that this region in phase space is governed by regular motion and is therefore
highly predictable. For K = 2.0 the orbits constituting the chaotic sea have large positive
LLEs, whereas islands of stability built by regular orbits show LLEs close to 0. A similar
behavior can be observed for K = 0.9, where again regions around stable elliptic points
feature λ ≈ 0 while stochastic regions exhibit a varying range of LLEs in accordance to
Figure 2.

Based on the estimation of the LLEs, a Gaussian Bayesian classifier [26] is used
to determine the probability of an orbit being regular, where we assume that LLEs are
normally distributed in each class. First, the classifier is trained on LLEs resulting from
200 different initial conditions for T mapping iterations with the corresponding class labels
resulting from the chosen reference being the generalized alignment index (GALI) [27].
Then, 104 test orbits are sampled from a regular grid in the range [0, π] × [0, 2π] with
∆q = ∆p = 2π/10, their LLE is calculated for T mapping iterations and the orbits are then
classified. The results for K = 0.9 and K = 2.0 with T = 50 are shown in Figure 4, where
the color map indicates the probability that the test orbit is regular. While for K = 2.0
the classifier provides a very clear distinction between regular and chaotic regions, the
distinction between confined chaotic and regular orbits for K = 0.9 is less clear. With
increasing number of mapping iterations, the number of misclassifications reduces as
depicted in Figure 5. If the predicted probability that an orbit belongs to a certain class
is lower than 70%, the prediction is not accepted and the orbit is marked as misclassified.
With K = 0.9, the percentage of misclassified orbits does not drop below approximately
10%, because the transition between regular and chaotic motion is continuous.
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(b)
Figure 3. Local Lyapunov exponents in phase space of the standard map calculated with T = 50
mapping iterations for (a) K = 2.0, (b) K = 0.9 .
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Figure 4. Orbit classification in standard map, (a) K = 2.0, (b) K = 0.9 for T = 50. The color map
indicates the probability that the orbit is regular.
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Figure 5. Percentage of misclassified orbits using a Bayesian classifier trained with 200 orbits for (a)
K = 2.0 and (b) K = 0.9. 100 test orbits on an equally spaced grid in the range of [0, π]× [0, 2π] are
classified as regular or chaotic depending on their LLE.

3.2. Sensitivity Analysis

The total Sobol’ indices are calculated for the outputs from the symplectic surrogate
model (Q, P) using Equation (15) with N = 2000 uniformly distributed random points
within a box of size [10−3 × 10−3] for each of the T = 100 mapping iterations as we are
interested in the temporal evolution of the indices. For the standard map at K = 0.9 with
d = 2 input and D = 2 output dimensions, 4 total Sobol’ indices are obtained: SQ

q and SP
q

denoting the influence of q and SQ
p and SP

p marking the influence of p on the output. We
obtain good agreement with an MSE in the order of 10−6 between the indices obtained by
the surrogate model and those using reference data.

As shown in Figure 6 for three different initial conditions for K = 0.9 depending on
the orbit type, either chaotic or regular, the sensitivity indices behave differently. In case of
a regular orbit close to a fixed point, Si

j are oscillating, indicating that both input variables
have similar influence on average. Getting further from the fixed point, closer to the border
of stability, the influence of q gets bigger. This, however, is in contrast to the behavior in
the chaotic case, where initially the variance in p has larger influence on the model output.
However, when observing the indices over longer periods of time, both variables have
similar influence. In Movie S01 in the supplemental material, the time evolution of all four
total Sobol’ indices obtained for the standard map are shown in phase space. Each frame is
averaged over 10 subsequent mapping iterations. One snapshot is shown in Figure 7. The
observation of the whole phase space sustains the findings in Figure 6.
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Figure 6. Total Sobol’ indices as a function of time for three orbits of the standard map with K = 0.9—
upper: chaotic orbit (q, p) = (0.2, 5.6), middle: regular orbit (q, p) = (1.76, 0.33), lower: regular orbit
very close to fixed point (q, p) = (π, 0.1).
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Figure 7. Total Sobol’ indices (Equation (15)) for the standard map with K = 0.9 averaged from
t = 20 to t = 30.

4. Conclusions

We presented an approach for orbit classification in Hamiltonian systems based on
a structure preserving surrogate model combined with early classification based on local
Lyapunov exponents directly available from the surrogate model. The approach was
tested on two cases of the standard map. Depending on the perturbation strength, we
either see a continuous transition from regular to chaotic orbits for K = 0.9 or a sharp
separation between those two classes for higher perturbation strengths. This also impacts
the classification results obtained from a Bayesian classifier. The presented method is
applicable to chaotic Hamiltonian systems and is especially useful when a closed form
expression for Poincaré maps is not available. Also, the accompanying sensitivity analysis
provides valuable insight: in transition regions between regular and chaotic motion the
Sobol’ indices for time-series can be used to analyze the influence of input variables.
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