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Idea

Wald’s solution - rotating black hole immersed in a uniform
magnetic field

generalisation of Wald’s solution: we take into account the
effects of nonlinear electrodynamics (NLE)

NLE Lagrangian density - a smooth function of two
electromagnetic invariants



Motivation

Astrophysical observations

EM fields surround astrophysical black holes

needed to explain jets of matter coming from active galactic
nuclei?
magnetars possess extreme magnetic fields (up to 1011T) -
NLE effects could be noticed

Theoretical research

EM potentials and charges appear in laws of black hole
thermodynamics

NLE models might ”regularise” black hole singularities



Killing vectors as gauge fields

The source-free Maxwell’s equations:

dF = 0
d ∗ F = 0

ansatz: F = dK , where K a is a Killing vector field

by definition dF = 0

the Killing lemma: ∇b∇bK a = −Ra
cK

c

in vacuum spacetimes: Rab = 0, so d ∗ F = 0

� Killing vectors satisfy the source-free Maxwell’s equations
� F is a test EM field



Wald’s solution

Kerr black hole in an asymptotically homogeneous magnetic field

k = ∂/∂t stationary Killing vector

m = ∂/∂φ axial Killing vector

B∞ field strength at infinity

a = J/M ratio of black hole’s angular momentum J and mass M

Test electromagnetic field 2-form:

F =
1

2
B∞(2adk + dm)

Electric charge: Q∞ = 1
4π

∮
S∞ ∗F = B∞(−2aM + 2J) = 0 (1)

Magnetic charge: P∞ = 1
4π

∮
S∞ F = 0

(1)S∞ denotes sphere at infinity



Nonlinear electrodynamics

Generalised Maxwell’s equations:

dF = 0
d ∗ Z = 0, with Z = −4(LFF + LG ? F )

Notation: Lx denotes ∂xL

Electromagnetic invariants: F = FabF
ab, G = Fab ? F

ab

Notable NLE Lagrangians:

Euler-Heisenberg theory - 1-loop QED correction

L(EH) = −1
4 F + α2

360m4
e

(
4F2 + 7G2

)
Born-Infeld theory - phenomenological

L(BI) = b2
(

1−
√

1 + F
2b2 − G2

16b4

)
= −1

4F+ 1
32b2 (F2+G2)+...



Generalisation of Wald’s solution to NLE

We are looking for an exact solution of NLE Maxwell’s equations:

1) using the basic ansatz F = dK

d ? Z = 0 gives terms of the form £XKa = Kb£Xgab
(2) which

are not necessarily zero

2) taking the rescaled Killing vector field

F = d(ψK )(3)

d ? Z = 0 gives nonlinear differential equation for ψ with no
closed-form solution

� as these attempts don’t work, we will use perturbative expansion
around Wald’s solution

(2)X a = ∇aF
(3)ψ is an arbitrary function



Perturbative approach

expansion of Lagrangian density with respect to coupling
constant λ:

L(F ,G) = −1

4
F + λ`(F ,G) + O(λ2)

ansatz: Aa = Ka + λva + O(λ2)
v is the lowest order correction to gauge potential

F = F0 + λdv + O(λ2)

NLE Maxwell’s equations:
dF = 0 - immediately satisfied
d ? Z = 0 - gives master equation for v :

d ? dv = ?Jeff ;
Jeff = 4(`FFdF + `FGdG)0 ∧ ?dK − 4(`GFdF + `GGdG)0 ∧ dK

Notation: `xy denotes ∂x∂y `, subscript 0 means ”evaluated at zeroth order of
perturbative expansion”



Perturbative approach

We focus on two aforementioned NLE theories:

Born-Infeld

`(BI) = F2 + G2

λ(BI) = 1
32b2

Euler-Heisenberg

`(EH) = 4F2 + 7G2,
λ(EH) = α2

360m4
e

both Lagrangians are of the form ` = pF2 + qG2, so `FG = 0

master equation reduces to:

d ? dv = 4(`FFdF)0 ∧ ?dK − 4(`GGdG)0 ∧ dK



Validity of perturbative approach

gravitational length scale: Lg

Orders of magnitude

Einstein’s tensor: L−2
g

magnetic field energy density: B2/(2µ0)

test field approximation is valid if L−2
g � 4πGB2/(c4µ0)

Lg - Schwarzschild radius ∼ 3(M/M�) · 103m

|B| � (M�/M) · 1015T fulfilled for strongest magnetic fields
as long as M < 104M�

� EM field exhibits nonlinear behaviour, but allows test field
approximation



Schwarzschild black hole

Schwarzschild spacetime

static, spherically symmetric vacuum solution

ds2 = −
(
1− 2M

r

)
dt2 + dr2(

1− 2M
r

) + r2(dθ2 + sin2θdφ2)

for K a = αka + βma, the corresponding invariants are:

F0 = −8M2

r4 α
2 + 8

(
1− 2M

r sin2θ
)
β2

G0 = −16M cosθ
r2 αβ

as α ∝ J in Wald’s solution, α = 0

master equation d ? dv = 4β(`FFdF)0 ∧ ?dm gives

v = 2β3M(`FF )0(4(2r − 5M)cos(2θ) + (M − 2r)(3 + cos(4θ))dφ



Magnetic scalar potential

”nonlinear H field”: Ha = Kb ? Zba

for symmetry inheriting fields H is a closed form

we can introduce scalar magnetic potential Υ: H = −dΥ

expanding with respect to coupling constant λ:
Υ = Ψ0 + λΨ1 + O(λ2)

from Wald’s solution: Ψ0 = −B∞
(
1− 2M

r

)
rcosθ

Maxwell’s equation translates to:

∇a
(∇aΨ1

kbkb

)
= 16p∇a

(
(∇c Ψ0)(∇c Ψ0)

(kbkb)2 ∇aΨ0

)
solution: Ψ1(r , θ) = 4pB3

∞
(
1− 2M

r

)
(4r − 5M + Mcos(2θ))cosθ

� in agreement with v



Asymptotic behaviour

Our solution should:
1) represent asymptotically homogeneous magnetic field

Check:

F at spatial infinity:

limr→∞
(dv)rφ

(F0)rφ
= 0, limr→∞

(dv)θφ
(F0)θφ

= 0

asymptotically,

F = F0 = 1
2B∞dm = B∞(rsin2θdr ∧dφ+ r2cosθsinθdθ∧dφ)

same form as F for homogeneous magnetic field B∞dz in
Minkowski spacetime

we can choose normalisation of v as β = 1
2B∞



Asymptotic behaviour

2) give Q = 0 and P = 0

Check:

Komar integrals for electric and magnetic charge:

Q∞ = 1
4π

∮
S∞ ∗Z

expansion: ∗Z = ∗F 0 + (4(−`F∗F + `GF )0 + ∗dv)λ+ O(λ2)

`F = 2F , `G = 2G, limr→∞ F0 = 8β2

(∗F0)θϕ = 0, (∗dv)θϕ = 0

� Q = 0 at the O(λ1) order

P∞ = 1
4π

∮
S∞ F

sin(2θ) and sin(4θ) terms in (dv)θϕ vanish after integration

� P = 0 at the O(λ1) order



Correction to F

Decomposition: F = F0 + δF

δF = −16λB4
∞M(`FF )0F1 + O(λ2),

F1 = − 1

16B3
∞M(`FF )0

(dm)ab(dv)ab

Local maxima of F1:

r ≈ 3.8M, θ+ ≈ 60.3◦

r ≈ 3.8M, θ− ≈ 119.7◦

implications for trajectories of charged particles?



Contour plots in r − θ plane

M = 1, black hole horizon is represented by the black circle in the middle

Left: Contour plot of F1

Right: Contour plot of relative correction 8β2F1/F0



Open questions

1) generalisation to non-static, i.e. Kerr black hole

obstacle: F0 and G0 have complicated forms and,
consequently, current Jeff

2) spherically symmetric, highly conducting star immersed in NLE
fields

boundary condition: na∇aΥ = 0 at star’s surface (na is a normal
to star’s boundary)

we get linear nonhomogeneous partial differential equation for
Υ

obstacle: its solution is an infinite series
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