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Abstract: The optical properties and ecophysiological parameters of leaves of Ceratonia siliqua L.
(carob) expanded in more and less polluted habitats were compared in order to evaluate the effect of
air quality in leaf development. The accumulation of pigments (chlorophylls a and b, and carotenoids)
and specific leaf area (SLA, cm2 g−1) were seasonally determined during leaf development (i.e., in
nine successively grown leaves along shoots). Leaf transmittance (T) and reflectance (R) spectra for
both adaxial and abaxial leaf surfaces were measured between 250 and 2500 nm wavelengths using a
UV–VIS spectrophotometer and leaf absorptance (Abs) [(Abs = 100 − (R + T)] was used to assess the
effect of environmental quality of more and less polluted habitats in Athens, according to the files
of the Hellenic Ministry of Environment and Energy, on carob leaf physiology. An increase in the
studied leaf parameters was observed for carob trees grown in the urban site. There was an increase
in SLA from spring to late summer and a decrease in late autumn. Leaves of the less polluted site
in the bush, regardless of the developmental stage, exhibited greater water absorption, while the
adaxial surface absorbed more radiation in both categories of plants. It seems likely that differences
in optical properties and pigment accumulation have important implications for model simulation
purposes and may be used for air pollution biomonitoring.

Keywords: air pollution; biomonitoring; chlorophyll; Ceratonia siliqua; climate change; leaf optical
properties; model simulation; pigment accumulation; SLA

1. Introduction

The urban environment does not usually offer ideal living conditions to trees (e.g., due
to impermeable ground, less water available, lack of soil nutrients, toxic products and
atmospheric pollutants). Air pollutants lead to a variety of adverse effects and visible
injury symptoms in plant leaves. Various studies show that different plant species elicit the
environmental quality in which they grow by changing their leaf anatomical and physi-
ological properties; thus, changes in leaf properties can be used to provide a reasonably
accurate assessment of habitat quality [1–4]. Pollution can directly affect plants’ physiology
either via leaves exposed to air-polluted conditions or indirectly via soil acidification. Pol-
lutants absorbed by the leaves cause changes in stomatal opening, photosynthesis and the
concentration of chlorophylls, which directly affects the plant productivity [5]. The effect
of the air pollutants on plant structure and function has been in the focus of interest for
many investigators. It is difficult to estimate the effects of air pollutants because organisms
are concomitantly exposed to a wide range of uncontrolled abiotic and biotic variables
(parasites, weather conditions and complex mixture of pollutants). On the physiological
and morphological point of view, the plants from polluted sites possess important pheno-
typical alterations changes especially regarding their colors, shapes, leaf length, width, area
and petiole length. As leaves represent the main surfaces of plant canopies, where energy

Biol. Life Sci. Forum 2020, 4, 50. https://doi.org/10.3390/IECPS2020-08896 https://www.mdpi.com/journal/blsf

https://www.mdpi.com/journal/blsf
https://www.mdpi.com
https://orcid.org/0000-0002-3393-2133
https://orcid.org/0000-0002-1908-8618
https://doi.org/10.3390/IECPS2020-08896
https://doi.org/10.3390/IECPS2020-08896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://iecps2020.sciforum.net/
https://doi.org/10.3390/IECPS2020-08896
https://www.mdpi.com/journal/blsf
https://www.mdpi.com/article/10.3390/IECPS2020-08896?type=check_update&version=1


Biol. Life Sci. Forum 2020, 4, 50 2 of 8

and gases are exchanged, they are the most sensitive parts to be affected by air pollution;
therefore, at various stages of leaf development, they may serve as sensors of air pollutants,
indicating that plants do survive in polluted environments [6–9].

Biomonitoring is useful for the assessment of environmental impacts of pollution on
living organisms, including plants. The benefit of using plants as a biosensors is their
uncomplicated deployment in field campaigns. Moreover, monitoring-based biosensors
are cheap compared to the costly physico-chemical monitoring [9–11].

Carob tree (Ceratonia siliqua L.) is being investigated as a potential bio-monitor plant
for urban habitats. It is a common tree, native in the Mediterranean Basin [12], appearing
in urban and suburban areas, exhibiting great morphogenetic plasticity and tolerance to
drought stress conditions [13]. It requires little if any cultivation, tolerates poor soils and is
long lived [14,15]. Carob tree has a great potential as a tree crop for restoring vegetation,
reforestation and improving the productivity of marginal drylands. It is widely planted
as an ornamental tree on the streets, considering that it reflects sunlight and reduces
noise pollution. The sclerophyll carob leaves are characterized by a very thick, unilayered
adaxial epidermis, while stomata are present only on the abaxial surface [16–18]. The
compound leaves of carob expand within a 3-months period; then, they cease growing,
and are exposed to the environmental conditions for approximately 20 months [19–21].

The objective of this research is to understand the effect of air pollution on the optical
properties and on the chlorophyll content of carob leaves and develop a model that classifies
an area whether it is polluted or not, by using this plant species as a bio-monitor.

2. Experiments

Compound leaves of two carob trees (approximately 60–70 years old), without any wa-
tering or fertilizing treatment, grown at two sites with different air quality (more polluted
urban area 37◦58′17.85′′ N, 23◦45′28.24′′ E, and less polluted suburban area 37◦57′34.35′′ N,
23◦47′56.25′′ E) were collected throughout a year. Concentrations of air pollutants were
measured by the Hellenic Ministry of Environment and Energy (Table 1) [22]. The accumu-
lation of photosynthetic pigments (chlorophylls a and b, and carotenoids) was seasonally
determined during the leaf development (i.e., in nine successively grown leaves along
shoots). Leaf area, dry weight and specific leaf area were also estimated. Transmittance
(T), reflectance (R) and absorptance (A) spectra for both the adaxial and the abaxial leaf
surfaces were measured between 250 and 2500 nm wavelength (bandwidth 2 nm), using a
UV–VIS spectrophotometer.

Table 1. Mean PM10 (particulate matter with a diameter less than 10 µm), NO, NO2 and O3 (µg m−3) and CO (mg m−3)
monthly values at the two experimental sites, i.e., the less polluted suburban (S) and the more polluted urban (U) site, of
Athens metropolitan area, during 2018.

Months April May June July August September October November December January February March

S-PM10 27 3 20 18 19 17 23 15 12 13 13 37
U-PM10 38 32 29 28 26 5 31 25 33 33 27 44

S-CO - - - - - - - - - - - -
U-CO 0.5 0.4 0.3 0.4 0.3 0.2 0.4 0.5 0.9 0.8 1.5 0.7

S-NO 2 1 1 1 1 1 2 2 1 2 2 1
U-NO 10 5 3 4 1 4 9 11 23 24 11 6

S-NO2 18 14 13 11 6 14 13 14 12 14 13 15
U-NO2 41 28 25 28 16 7 3 29 30 35 24 28

S-O3 106 96 101 101 103 96 73 53 52 59 66 79
U-O3 60 76 81 80 85 79 63 42 42 44 59 59

2.1. Estimating Specific Leaf Area and Chlorophyll Content

Nine successively leaves grown along shoots were collected early in the morning.
Following harvest (within 1 h), the leaves were scanned in a flatbed scanner to calculate
the fresh area using ImageJ Pro then they dried at 60 ◦C for 48 h to a constant mass and
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weighed to the nearest 0.001 g. Specific leaf area (SLA) was calculated by the ratio of
fresh leaf area per dry leaf mass (cm2 g−1). The dried material was then powdered, using
a MFC mill (Janke and Kunkel GMBH & Co., Staufen, Germany) and stored in tightly
sealed containers, in a cool dry and dark environment. The total chlorophyll (Chl) content
was spectrophotometrically determined in leaf samples according to a modified acetone
method [23]. Chlorophyll concentration was extracted from dried, grounded leaf samples
mixed and homogenized with acetone (80% v/v) using China pestle and mortar and filtered
through Whatman # 2 filter paper. The chlorophyll content was measured in aliquots of
the leaf extracts using a spectrophotometer (Pharmacia Biotech Novaspec II) at A663.2,
A646.8, A470 and the absorbance readings were applied to relevant equations, in order to
determine the chlorophyll content [23].

2.2. In Situ Measurements of Optical Properties of Fresh Leaves

Leaf reflectance (R) and transmittance (T), for both adaxial and abaxial fresh carob leaf
surfaces was measured between 250 and 2500 nm wavelength [24] (bandwidth 2 nm), using
a UV–VIS spectrophotometer (Perkin Elmer Lambda-950), equipped with an integrating
sphere and glassfibre tubes [25]. The calculated leaf absorptance (pigments, water, dry
matter) at a range of wavelengths from 250 to 2500 nm [A = 100 − (R + T)] was used to
assess the effect of environmental quality of the contrasting habitats in Athens for the carob
tree. Statistical significance of the differences in optical properties will be tested for model
simulation purposes.

3. Results
3.1. Chlorophyll Content

An increase in the studied leaf parameters was observed for carob trees grown in
the urban site. Leaf chlorophyll content was found much higher at the more polluted
site (Figures 1 and 2) in comparison with that of the less polluted area; in young leaves,
a relatively high carotenoid content was estimated. Leaf chlorophyll a + b concentration
increased up to the sixth leaf (counting from the top of the shoot) for both habitats and
then remained constant.
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(a) (b) 

Figure 1. Chlorophyll content in relation to the leaf position on the stem (nine successively growing leaves, counting from
the top of the shoot) during a twelve-month period: (a) less polluted site; (b) more polluted site. The red dots refer to the
mean value throughout a year. The equation of the polynomial regression line and its coefficient (R2-value) are presented in
the figure.
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Figure 2. Chlorophyll content throughout a year: (a) less polluted area; (b) more polluted area. The red dots refer to the
mean value of nine successively growing leaves, counting from the top of the shoot apex.

An increase of the concentration of chlorophyll a + b was observed during June–July
in leaves grown in the suburban site in the bush, whereas in leaves grown in the urban site
higher maxima were obtained during July–September (Figure 2).

3.2. Specific Leaf Area (SLA) (Leaf Area/Dry Weight cm2 g−1)

The specific leaf area (SLA) was measured throughout the year. The SLA values varied
with leaf position on stem and in their responsiveness to environmental stimuli. Younger
leaves exhibit lower values of SLA due to smaller leaf area and decreased dry weight.
Significant difference was observed between the two research sites; suburban carob leaves
possessed lower SLA in comparison with leaves growing in the urban area. There was an
increase in SLA from spring to late summer and a decrease in late autumn. Additionally,
a decrease of SLA was observed in mature leaves from both urban and sub-urban sites
(Figure 3). A high SLA indicates a low dry matter investment per unit of leaf area.
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3.3. Leaf Optical Properties

The leaf absorptance (A) was calculated [A = 100 − (R + T)] by measuring transmit-
tance (T) and reflectance (R) using a UV–VIS spectrophotometer (Perkin Elmer Lambda-
950), in the range between 300 nm and 2500 nm assessing pigments concentration, water
content, dry matter, etc. The absorption of light by photosynthetic pigments dominates
the optical properties of green leaves in the visible spectrum (400–700 nm). Chlorophyll
a (the most abundant plant pigment) absorbs light with wavelengths of 430 nm (blue)
and 662 nm (red), chlorophyll b (increases the range of light) absorbs light of 453 nm and
642 nm, and carotenoids (accessory pigment) absorb light maximally between 460 nm and
550 nm. Enhanced content of phenolic compounds was found in the plant tissue that
absorb in the UV region (260–350 nm). Anthocyanins (flavonoid pigments not associated
with photosynthesis) strongly absorb light between 450 nm and 550 nm (blue and green
light), with a peak at about 520 nm (Table 2). However, foliar reflection in the near-infrared
plateau (NIR, 700 nm–1100 nm) is affected by multiple scattering of photons within the leaf,
and it is related to the internal structure, fraction of air spaces, and air–water interfaces
that refract light within leaves.

Table 2. Peak absorption of the most common plant pigments, biochemical compounds and water.

Compound Absorption Peaks, Wavelengths (nm)

Phenolic compounds 260–370

Chlorophyll a 430 and 662

Chlorophyll b 453 and 642

Carotenoids 460–550

Anthocyanins 450–550 (maximum at 520)

Water 970, 1200, 1470 and 1900 (maximum)

Cellulose–Lignin 1400–2000 and 2000–2500 (maximum)

Protein–Starch–Sugar 1400 and 2000–2500 (maximum)

Water is almost transparent to visible light, whereas in the shortwave-infrared one,
two major water absorption peaks centered near 1470 nm and 1900 nm are observed, and
two minor absorption peaks centered near 970 nm and 1200 nm.

The organic compounds (e.g., cellulose, hemicellulose, lignin, structural proteins)
that comprise the dry matter of plant cell walls form complex assemblages, that actually
strongly absorb radiation in the UV (λ ≤ 0.4 µm) and in the middle-infrared (λ ≥ 2.5 µm)
region [24].

The abaxial surfaces reflected more than the adaxial surfaces in the visible portion
of the spectrum and absorb less light in both plants (Figure 4). A stronger absorptance
is noticed at the near infrared and shortwave infrared spectra (water absorptance) for
young and mature carob leaves of the urban site. The spectral response is highest in
shortwave infrared near 1950 nm (Figure 5). Leaves of the less polluted site, regardless of
the development stage, exhibit greater water absorption, while the adaxial surface absorbs
more radiation in both categories of plants (Figure 5).
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Leaf chlorophyll contents were found higher at the more polluted site, in comparison
with that of the less polluted area (Figure 5). Absorptance spectra showed higher reflectance
efficiency in mature leaves than in young leaves and was significantly higher in more
polluted sites compared to less polluted.

4. Discussion

Over the past few decades, industrialization and anthropogenic activities affect the
increasing concentrations of atmospheric pollutants, especially atmospheric CO2 and tro-
pospheric O3, which play significant roles in the functioning of ecosystems. Air pollution
problems are primarily gathered near urban and industrial areas and mostly have a nega-
tive impact on plants as foliar surface undergoes different structural and functional changes.
Leaf construction involves a stoichiometric balance among biophysically and environmen-
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tally dependent metabolites (chlorophyll, nitrogen, water) and SLA (specific leaf area) and
varies according to the environmental conditions [25]. Although high stress inhibits the
synthesis and accumulation of chlorophylls, pigments seem to be stimulated by low-level
stress. Increased chlorophyll concentration in response to low-level stress may equip the
leaf-system with an enhanced capacity for defense against high-level (health-threatening)
challenges (pigment hormesis) [26].

In this study, we assess the potential of carob tree (Ceratonia siliqua L.) as a bioindicator
and/or a biosensor for monitoring air pollution; as it is a commonly distributed species, it
can be sampled easily and shows a physiological response to differences in habitat quality.
The accumulation of pigments and specific leaf area, which were seasonally determined
during leaf development for carob trees of two different habitats (urban, suburban) as well
as leaf specular behavior, indicate a significant increase in the studied leaf parameters for
carob trees grown in the urban site. It seems likely that differences in optical properties
and pigment accumulation have important implications for model simulation purposes
and may be used for air pollution biomonitoring.
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