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Abstract: In acidic soils with Mn toxicity, the development of an intact arbuscular mycorrhiza
extraradical mycelium (ERM) by stress-adapted native plants can promote increased growth and
protection against metal toxicity, in subsequent crops. In a recent study, the growth of Ornithopus
compressus (ORN) in acidic soil doubled shoot weight, increased P contents and decreased shoot Mn
in successive wheat crops. The biochemical mechanisms involved in this beneficial effect may include
the subcellular redistribution of nutrients and of excess Mn. In the present work, shoot Ca, Fe, Mg,
Mn, P, K, Si, Na and Zn were mapped through Laser Ablation-Inductively Coupled Plasma Mass
Spectrometry (LA-ICP-MS), in wheat grown for 3 weeks in undisturbed soil, where ORN previously
developed an extensive ERM network. Element mapping allowed for the detection of higher levels
of Fe, Mg, Mn, P, K, Na and Zn in the interveinal sections of wheat leaves while Ca and Si showed
higher levels in vascular zones of the adaxial side. This preliminary work is part of an ongoing
project which aims at identifying biochemical mechanisms responsible for the protective properties
of an early AM colonization of crops, by ERM previously developed in association with native plants
under Mn toxicity. Future research will determine the subcellular redistribution of these elements
and excess Mn.

Keywords: element imaging; extraradical mycelium; LA-ICP-MS; manganese toxicity; mycorrhiza;
soil health; sustainable farming; Triticum aestivum

1. Introduction

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophic soil microorganisms of the
phylum Glomeromycota that establish mutualistic relationships with about 80% of terrestrial
plants [1]. Benefits to plant hosts include (a) improved access to water and nutrients, such
as phosphorus (P), nitrogen (N) and other elements, (b) higher protection against abiotic
and biotic stresses and (c) improvement of soil structure [2]. In acidic soils that generally
promote an increase in levels of bioavailable manganese (Mn), AMF can both buffer metal
toxicity and increase plant growth, allowing hosts to thrive in inhospitable soils. Stress
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adapted microbiota can be used to improve growth and productivity of agricultural species
in acidic soils, by growing local native plants and using the intact extraradical mycelium
(ERM) they develop in the soil as main inoculum source for the subsequent crop [3]. This
sustainable agricultural practice can lead to an almost 3-fold decrease in Mn levels and
a 1.5-fold increase in plant growth [4,5]. In the Montado ecosystem, in the south-east of
Portugal, acidic soils, commonly Cambisols and Arenosols, can promote Mn toxicity, being
considered one of the main constraints to plant production [6]. In wheat, the previous
growth of native Ornithopus compressus (ORN) showed noteworthy beneficial effects granted
by the earlier and faster colonization by its associated intact AMF extraradical mycelium [5].
The presence of ERM was important for the AMF diversity that subsequently colonized
wheat [7]. The use of this AMF inoculum source was seen to promote the transcription of
genes related to cellular division and growth in wheat, but also to manage the transcription
of genes that code for metal transporters responsible for translocation and distribution
of Mn in the plant [8]. In the present work, Mn and other plant nutrients and elements
were quantified and mapped in the leaves of wheat grown in undisturbed acidic soil where
stress adapted AMF were developed by the previous growth of ORN. Element abundance
heat maps were obtained by laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS). The present preliminary work was performed as part of an ongoing larger
project which aims at identifying the beneficial effects of the early AM colonization, by
ERM previously developed in association with native plants, on the element transport
dynamics of wheat under Mn toxicity in acidic soil.

2. Material and Methods
2.1. Experimental Setup and Plant Material

Plants were grown on acidic soil collected from the top 20 cm of a granitic Cambisol
reported to induce Mn toxicity symptoms in wheat [9,10], which was chemically [11] and
biologically characterized [7]. The experimental setup followed was previously reported [5].
Briefly, 8 L pots filled with acidic Cambisol were used to grow ORN, a strongly mycotrophic
endemic plant. After seven weeks, plants were eliminated leaving the soil undisturbed
(intact ERM). After seven days, ten wheat (Triticum aestivum L. cv. Ardila) seedlings were
planted and after 21 days of growth, shoots were excised and immediately frozen intact in
liquid nitrogen and stored at −80 ◦C until analysis.

2.2. Wheat Shoot Element Mapping

Wheat leaf anatomical distribution of Ca, Fe, Mg, Mn, P, K, Si, Na and Zn was
determined by a Laser Ablation LSX-213 G2+ system, CETAC technologies, connected to
an Agilent 8800 Triple Quadrupole ICP-MS [11]. Intact frozen sections of leaves of wheat
grown in undisturbed soil, from previously grown ORN, were mounted and fixed on a
glass microscope slide with carbon tape, with abaxial or adaxial sides facing upwards.
Laser ablation was performed, immediately, in 2 mm length transversal sections of the
whole leaf width. Determination of multi-elemental distribution was performed by line
scan with 30 µm diameter size, 60% laser energy, 20 Hz laser shot frequency, 110 µm/s
scan speed and 1 L/min of helium (He) carrier gas flow. Conversion of obtained counts per
second (cps) to images was performed using iQuant2 software, developed by Institute of
Technology of Tokyo (Tokyo, Japan) and University of Kyoto.

2.3. Wheat Shoot Element Quantification

Element levels were quantified in wheat shoot tissues after acid digestion, as described
in [12]. The concentrations of Ca, Fe, Mg, Mn, P, K, Si, Na and Zn were determined
in 2% HNO3 aqueous solutions of the fully digested shoot tissue with an Agilent 8800
Triple Quadrupole ICP-MS, according to [11]. The triple quadrupole mass spectrometer
collision/reaction cell was set to “no-gas mode” for the quantification of Mg, Mn, Na and
K, “O2 mode” for the quantification of P and Si, “NH3 mode” for the quantification of Ca,
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Fe and “He mode” for the quantification of Zn. Results were presented as average and
standard error of 4 replicates.

3. Results

In mature wheat, the leaf lamina is composed of a well-marked midrib, enclosing the
major vascular bundle. This central vein divides the lamina into two sections containing
parallel veins with smaller vascular bundles, in strips alternating with the interveinal
portions composed of mesophyll tissue. In the adaxial side, the tissue covering the main
vascular bundle is ridged while the abaxial side is flatter. Strips of abundant stomata
are disposed along the lamina (examples in [13,14]). Element mapping allowed for the
identification of macro and micronutrients in transversal sections of the abaxial and adaxial
sides of wheat leaves, following their distribution and abundance in heat maps.

The distribution of Fe, Mg, Mn, P, K, Na and Zn was higher and more homogenous in
the interveinal sections of wheat leaves, while parallel veins showed lower levels of these
elements (Figure 1c–j or Figure 1m–r).

The ridged midrib in the adaxial side appeared to show lower levels of these elements
which made the remaining tissue show a higher response (warmer colours). In the abaxial
side, differences were not so marked, but a clear difference could still be seen between the in-
terveinal zones and veins. Whole tissue element analysis quantified 136 ± 14 mg/kg for Fe,
1707 ± 115 mg/kg for Mg, 61 ± 6 mg/kg for Mn, well below the 100 to 200 mg/kg thresh-
old considered toxic for most cereals [5,15], 2280 ± 55 mg/kg for P, 31,652 ± 938 mg/kg
for K, 169 ± 38 mg/kg for Na and 80 ± 7 mg/kg for Zn (Table 1).

Table 1. Concentration of Ca, Fe, Mg, Mn, P, K, Si, Na and Zn (mg/kg shoot dry weight) in shoots
of wheat grown for 21 days in acidic soil containing intact extraradical mycelium of arbuscular
mycorrhiza associated to Ornithopus compressus L.

Element mg/kg Shoot Dry Weight

P 2280 ± 55
Mg 1707 ± 115
Mn 61 ± 6
Na 169 ± 38
Si 1132 ± 148
K 31,652 ± 938
Fe 136 ± 14
Zn 80 ± 7
Ca 2253 ± 129

Silicon and Ca showed a different pattern in the adaxial side, and heat maps displayed
a higher abundance of these elements in the midrib in comparison to the interveinal
zones, which can indicate a higher translocation of these elements. In the abaxial side,
their distribution pattern closely resembles that of the other elements (Figure 1k,l,s,t).
Additionally, Si in high proportions appeared in punctuated areas on both sides, which
may be attributed to areas with trichomes. Shoot tissue concentrations for Ca and Si were
2253 ± 129 and 1132 ± 148 mg/kg, respectively (Table 1).
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Figure 1. Light micrograph (a,b) and laser ablation coupled to inductively coupled plasma mass 
spectrometry heat maps of phosphorus (c,d), magnesium (e,f), manganese (g,h), sodium (i,j), sili-
con (k,l), potassium (m,n), iron (o,p), zinc (q,r) and calcium (s,t) of the adaxial (a,c,e,g,i,k,m,o,q,s) 
and abaxial (b,d,f,h,j,l,n,p,r,t) sides of leaves of 3-week-old wheat plants grown in undisturbed 
soil with previously grown Ornithopus compressus L. associated arbuscular mycorrhizal fungi. Bar 
= 1 mm. 

The ridged midrib in the adaxial side appeared to show lower levels of these elements 
which made the remaining tissue show a higher response (warmer colours). In the abaxial 
side, differences were not so marked, but a clear difference could still be seen between the 
interveinal zones and veins. Whole tissue element analysis quantified 136 ± 14 mg/kg for 
Fe, 1707 ± 115 mg/kg for Mg, 61 ± 6 mg/kg for Mn, well below the 100 to 200 mg/kg thresh-
old considered toxic for most cereals [5,15], 2280 ± 55 mg/kg for P, 31,652 ± 938 mg/kg for 
K, 169 ± 38 mg/kg for Na and 80 ± 7 mg/kg for Zn (Table 1). 

Figure 1. Light micrograph (a,b) and laser ablation coupled to inductively coupled plasma mass
spectrometry heat maps of phosphorus (c,d), magnesium (e,f), manganese (g,h), sodium (i,j), silicon
(k,l), potassium (m,n), iron (o,p), zinc (q,r) and calcium (s,t) of the adaxial (a,c,e,g,i,k,m,o,q,s) and
abaxial (b,d,f,h,j,l,n,p,r,t) sides of leaves of 3-week-old wheat plants grown in undisturbed soil with
previously grown Ornithopus compressus L. associated arbuscular mycorrhizal fungi. Bar = 1 mm.

4. Discussion

Colonization of plant roots with AMF can lead to extensive changes in chemical and
biochemical processes in the plant hosts. Its most notable effect on element concentration
is the increase in concentrations of P and N in the host, nevertheless other elements can
also be influenced. In a study using LA-ICP-MS to compare the effect of AMF colonization
between grain element concentration in wheat and barley, the localizations of the metals
Zn, Fe, Mn, Cu, Co and Ni appeared more deeply influenced in wheat than in barley while
those of the macronutrients P, Mg, K and S were more influenced in barley grains, after
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AMF colonization [16]. This indicates that AMF influence on the mechanisms of element
redistribution can be extremely dependent on species. The preliminary work herewith
presented allows establishing a basis of comparison for the analysis of the intensity in
which previous growth of different mycotrophic plants can affect element distribution in
succeeding wheat grown under Mn toxicity associated to acidic soil. For this effect, the
methodologies established in this work will be applied, in future studies, to leaves of wheat
grown in soil with the previous growth of native plants with diverse levels of mycothrophy,
such as Silene gallica L., Rumex bucephalophorus L. or Lolium rigidum L., and where no native
plant was planted. Agronomic practices that include the pre-establishment of native stress
adapted ERM with low to no tillage techniques can benefit from this knowledge in the
selection of native AMF Developers that favor crop growth while contributing to the
biofortification of host nutritional composition.
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