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Abstract: We studied the impacts of moderate and severe drought on different pot marigold (Calendula
officinalis L.) genotypes, evaluating the antioxidant performance of leaves and flowers concerning the
levels of proline and malondialdehyde, the activity of antioxidant enzymes (catalase, peroxidase, and
ascorbate peroxidase), as well as impacts on flower production. Overall, we found high resilience to
moderate drought. However, the severe drought significantly affected flower production, despite
the high level of antioxidants, proline, and malondialdehyde. Results also indicate significant
variation in drought tolerance among pot marigolds, providing an opportunity to identify valuable
tolerance traits.
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1. Introduction

Drought stress is a major abiotic stress, limiting crop production and yield [1,2].
Drought decreases photosynthesis and chlorophyll synthesis, and alters nutrient metabolism,
ion uptake, and translocation, ultimately limiting plant vegetative growth. Drought also has
an impact on flower number and size, affecting the viability and durability of flowers [3].
The abortion of reproductive organs is a major limiting factor for flower production under
water stress. Thus, understanding its impacts has become a major aim for the sustainability
of the floricultural industry.

Drought triggers the overproduction of reactive oxygen species (ROS), which are toxic
and cause damage to proteins, lipids, carbohydrates, and DNA, leading to oxidative stress
and, ultimately, plant death [4,5]. To cope with the effects of drought, plants activate the
antioxidant system that includes a variety of ROS scavengers, such as superoxide dismutase
(SOD), ascorbate peroxidase (APX), peroxidase (POX), and catalase (CAT), as well as non-
enzymatic metabolites such as carotenoids, flavonoids, and proline [6]. Malondialdehyde
(MDA) produced by membrane lipids in response to ROS, is often used as a drought
indicator to evaluate the degree of membrane damage and the level of drought tolerance
since plants with low amounts of MDA are generally considered to be more tolerant to
drought [7]. Nevertheless, the antioxidant response is highly dependent on the level
and duration of drought and the species, and even varies within genotypes of the same
species [8–10].

Calendula officinalis L. (pot marigold or calendula), from the plant family Asteraceae, is
a widely used plant in ornamental horticulture, as well as in traditional healing treatments,
due to its wide range of secondary metabolites, flavonoids, and carotenoids content [11].
It has recently been proposed as an oilseed crop since the oil from its seeds has high
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amounts of fatty acids [11]. Nevertheless, it is highly affected by drought, although some
genotypes show some tolerance to water scarcity [12]. For instance, drought caused a
significant decline in the number of leaves and leaf area in Calendula cv. Orange King [13].
In measurements performed under field conditions, drought increased the activity of CAT,
POX, and APX, as well as the levels of MDA and leaf and root proline while reducing seed
yield in several pot marigold genotypes [12]. Nevertheless, high variation in responses was
found between genotypes [12]. Drought can be a significant constraint in this species, but
studies performed under controlled conditions remain scarce. Consequently, this study
aims to understand the impacts of moderate and severe drought in four different pot
marigold genotypes under a controlled environment. Specifically, we aim to understand
the response of the pot marigold antioxidant machinery to drought, namely, the levels of
proline and malondialdehyde, and the enzymatic activity of catalase (CAT), peroxidase
(POX), and ascorbate peroxidase (APX) in the leaves and flowers. We also aim to detect the
impact of drought on the production of flowers.

2. Material and Methods
2.1. Plant Experimental Design

The antioxidant performance of Calendula officinalis was tested in four different geno-
types: cv. Indian Prince, Golden Emperor, Orange Prince, and Sun Glow. Seeds were grown
in 2 L capacity pots in a controlled environmental chamber under a long-day photope-
riod (16 h light), at a temperature of 23/1 ◦C (light/dark period) and relative humidity
of 72–76%. Plants were watered every two days using the Hoagland nutritive solution.
One-month-old Calendula plants were subjected to different water treatments (control, 100%
field capacity (FC); moderate drought, 60% FC; and severe drought, 35% FC) and followed
for three weeks [12]. Each treatment consisted of 10 biological replications per cultivar.

2.2. Non-Enzymatic Activities in Leaves and Flowers

Proline was determined according to acid–ninhydrin and toluene methods [14]. Ab-
sorbance was determined at 520 nm. Results are expressed in micrograms of proline per
gram of dry weight. Lipid peroxidation was quantified according to [15] and measured in
terms of malondialdehyde content (MDA). Absorbance was measured at 532 nm. Results
are expressed as nmol of MDA per gram of dry weight.

2.3. Antioxidative Enzyme Activities in Leaves and Flowers

The activity of catalase (CAT) was determined in a 1.5 mL reaction mixture with 50 mM
K-phosphate buffer (pH 7.0), 10 mM H2O2, and the enzyme following [16], and measured
at 240 nm. The results were expressed in CAT mg−1 of protein. Peroxidase activity (POX)
was determined as described by [17], measuring the absorbance at 430 nm. Results are
expressed in units mg−1 of protein. Ascorbate peroxidase (APX) was determined according
to [18], measured at 290 nm. Results are expressed in APX mg−1 of protein. Data are
expressed in dry weight (DW).

2.4. Impacts of Drought on the Production of Flowers

For each genotype and experimental treatment, we quantified the total number of
flowers produced. The dry matter content was acquired by drying samples to a constant
weight using a thermo-ventilated oven at 65 ◦C.

2.5. Statistical Analysis

Mean values (±SE) were calculated from 10 replicates per cultivar using IBM SPSS v.22.
To analyze the effects of salinity, we used a multivariate ANOVA or a t-test after checking
the homogeneity of variance using Levene’s Test for Equality of Variances. Significant
differences between means were also subjected to Tukey’s test for post hoc comparisons (at
the 1% significance level).



Biol. Life Sci. Forum 2023, 27, 53 3 of 6

3. Results and Discussion
3.1. Non-Enzymatic Activities in Leaves and Flowers

Moderate drought had no significant effects on the levels of proline in the leaves of
the Calendula genotypes (F2,11 = 0.341, p = 0.871), while some slight significant increases
were already reported in the flowers of Golden Emperor and Sun Glow (respectively,
F2,11 = 11.872, p < 0.05; F2,11 = 10.201, p < 0.05; Figure 1A). In contrast, severe drought
significantly increased the levels of proline in all genotypes, either considering leaves or
flowers (Figure 1A). The accumulation of proline under drought stress has been reported
in many plant species [19], including Calendula [12]. Proline is mainly synthesized in
the leaves and transported to other areas to balance osmotic pressure and scavenge ROS,
allowing plants to cope with drought [20]. Under stress, proline also maintains cell turgor
or osmotic balance, stabilizes membranes, and prevents oxidative bursts in plants. Thus,
the increase found in this study suggests its role in protecting Calendula cultivars from the
effects of severe drought.
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Figure 1. Effects of moderate drought (MD) and severe drought (SD) related to control conditions
recorded in the leaves and flowers of four Calendula officinalis genotypes. (A) Increases in proline
content related to control conditions (µg g DW−1). (B) Increases in malondialdehyde levels related to
control conditions (MDA; nmol g DW−1). Mean values ± SE (n = 10). Asterisks indicate significant
differences between MD or SD and control conditions for the same species (t-test at p < 0.001),
considering only leaves or flowers.

The levels of MDA showed no significant differences between the control conditions
and moderate drought when recorded in the leaves (F2,11 = 0.121, p < 0.05; Figure 1B).
However, slight increases were already felt in the flowers of the Golden Emperor and Sun
Glow genotypes (Figure 1B). The highest increase in MDA was recorded under severe
drought, in all genotypes, especially in the Golden Emperor and Sun Glow genotypes
(Figure 1B). ROS induces lipid peroxidation, giving rise to MDA, an indicator of membrane
damage, especially during stress. Overall, the more the plant is stressed, the higher its MDA
content. Thus, this stress marker indicates that the flowers of some Calendula genotypes
were already affected by moderate drought, while severe drought had strong negative
effects on lipid peroxidation in the leaves and flowers of all genotypes. The level of MDA
can be used in future studies to evaluate the degree of plasma membrane damage and the
ability of Calendula plants to tolerate drought stress.

3.2. Antioxidative Enzyme Activities in Leaves and Flowers

Under moderate drought, the enzymatic activities of catalase (CAT), peroxidase (POX),
and ascorbate peroxidase (APX) measured in the leaves showed no significant differences
from control conditions in all genotypes (Table 1). Nevertheless, the flowers of some geno-
types already showed a significant increase in the activity of CAT (Golden Emperor, Orange
Prince, and Sun Glow) and POX (Indian Prince) under moderate conditions (Table 1).
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Table 1. Enzyme activities of catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX),
expressed as mg of protein/DW under control water conditions, moderate drought (MD), and severe
drought (SD) in four Calendula officinalis genotypes. Results indicate measurements in leaves/flowers.
Results are expressed as means ± SE (n = 10). Different superscripts indicate significant differences
between water levels for the same species (ANOVA followed by a Tukey test at p < 0.001) considering
only leaves or flowers.

Control MD SD

CAT
Indian Prince 11.23 ± 2.21 a/8.14 ± 1.17 a 11.66 ± 3.44 a/8.11 ± 1.19 a 28.37 ± 4.22 b/10.14 ± 1.29 a

Golden Emperor 14.25 ± 2.74 a/7.89 ± 1.15 a 14.23 ± 3.01 a/8.55 ± 2.20 b 21.99 ± 4.05 b/10.31 ± 2.17 c

Orange Prince 12.07 ± 2.22 a/7.99 ± 1.11 a 12.03 ± 2.66 a/9.01 ± 1.25 b 16.28 ± 3.31 b/14.20 ± 1.99 c

Sun Glow 10.03 ± 2.00 a/6.45 ± 1.11 a 10.20 ± 2.11 a/7.25 ± 1.19 b 17.25 ± 3.07 b/9.29 ± 2.33 c

POX
Indian Prince 1.24 ± 0.22 a/0.33 ± 0.07 a 1.51 ± 0.44 a/1.03 ± 0.98 b 3.25 ± 0.22 b/2.07 ± 0.01 c

Golden Emperor 0.98 ± 0.21 a/0.41 ± 0.11 a 1.03 ± 0.11 a/0.48 ± 0.67 a 2.71 ± 0.56 b/1.06 ± 0.23 b

Orange Prince 1.08 ± 0.22 a/0.37 ± 0.13 a 1.13 ± 0.66 a/0.41 ± 0.21 a 2.08 ± 0.71 b/1.03 ± 0.01 b

Sun Glow 1.12 ± 0.19 a/0.56 ± 0.212 a 1.18 ± 0.18 a/0.23 ± 2.21 a 2.01 ± 0.98 b/1.20 ± 0.21 b

APX
Indian Prince 9.44 ± 2.01 a/4.55 ± 1.04 a 9.51 ± 2.03 a/4.23 ± 2.01 a 18.23 ± 3.05 b/5.20 ± 2.24 b

Golden Emperor 10.21 ± 2.33 a/3.03 ± 1.89 a 10.25 ± 2.26 a/2.99 ± 2.28 a 16.39 ± 2.56 b/4.56 ± 1.98 b

Orange Prince 11.23 ± 2.04 a/6.21 ± 2.23 a 10.99 ± 3.01 a/6.15 ± 1.99 a 14.99 ± 2.27 b/8.05 ± 2.01 b

Sun Glow 8.05 ± 2.31 a/4.02 ± 1.89 a 8.12 ± 2.01 a/4.11 ± 2.17 a 11.13 ± 2.27 b/6.73 ± 2.35 b

The activities of all enzymes increased significantly under severe drought in all geno-
types and considering both leaves and flowers (Table 1). However, significant variation in
enzyme activities was found between genotypes (always p > 0.05). The highest enzymatic
activities in the leaves were reported in the genotype Indian Prince under severe drought,
while the highest enzymatic values were recorded in the flowers of the genotype Orange
Prince, also under severe drought (Table 1). An increase in the activity of antioxidant
enzymes was also found in other Calendula genotypes subjected to drought, although high
variation was found between genotypes [12]. Together with the increase in the content of
proline, the higher antioxidant enzyme activities found under drought suggest a good an-
tioxidant mechanism to cope with drought. Altogether, these enzymatic and non-enzymatic
components help to reduce the oxidative stress in Calendula triggered by drought, as re-
ported in other plants [18,21]. Calendula plants can keep ROS under control through this
efficient and versatile scavenging system. This would help to protect cellular structures and
functions as well as to maintain water balance and the efficiency of physiological processes.

3.3. Impacts of Drought on the Production of Flowers

Although flowers are crucial for the floriculture industry, studies on understanding
the impacts of abiotic stresses, especially concerning Calendula species, are remarkably
scarce. In this study, flower production decreased by 5.01% in Indian Prince, 4.39% in
Golden Emperor, 6.99% in Orange Prince, and 6.81% in Sun Glow under moderate drought.
However, a harsh effect was felt under severe drought, decreasing the production of flowers
by 23.67% in Indian Prince, 25.66% in Golden Emperor, 37.53% in Orange Prince, and 39.88%
in Sun Glow. In general, drought decreases flower production in many species [22] since
flower development and the related reproductive processes are very sensitive to stress, and
also because resources are allocated to plant survival under stress conditions. Therefore, it is
not surprising to find that drought also has a strong impact on Calendula plants. However, as
impacts vary between genotypes, it is crucial to conduct further tests on drought tolerance
by screening additional Calendula plants. Understanding the effects of stress on flower
development or abortion would help to develop high-yield cultivars that can cope with
environmental changes using traditional and molecular breeding approaches.
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4. Conclusions

Calendula plants showed high resilience to moderate drought, in contrast with severe
drought, which had a harsh impact on most genotypes. The levels of proline and MDA
can be used in future studies as stress markers to understand the impacts of drought on
these plants. The antioxidant machinery studied here increased under the harsh drought
effect but did not prevent negative effects on flower production, which was significantly
affected by drought. As drought showed a negative impact on flower production, future
studies should focus on understanding its effects on flower development and fertility.
Additionally, high variation was found between pot marigold genotypes, suggesting
differences in drought tolerance, which can be used to screen useful tolerance traits. Apart
from adjustments in the antioxidant system, it should be noted that drought tolerance
depends on additional plant features, which should be measured to characterize the severity
of drought. Useful traits for future studies should include, for example, net photosynthesis,
the abundance of osmoprotectants, ABA content, and membrane integrity. It would also be
useful to identify genes that respond to abiotic stresses in Calendula plants.
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