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Abstract: Plant-soil sensing devices coupled with Artificial Intelligence autonomously collect and
process in situ plant phenotypic data. A challenge of this approach is the limited incorporation of
phenotype data into decision support systems designed to harness agricultural practices and forecast
plant behavior within the intricate context of genotype, environment, and management interactions
(G × E × M). To enhance the role of digital phenotyping in supporting Precision Agriculture, this
paper proposes a sensing network based on the Internet of Things. The developed system comprises
three modules: data collection, communication, and a cloud server. Several processes co-occur in
the server, namely data visualization to confirm the correct sensors and data stream functioning.
In addition, a crop growth model (CGM) runs on the server, which is powered by the collected
data. The simulations generated by the model will support agricultural decisions, obtaining, in
advance, insights about plant behavior considering several G × E × M scenarios. To assess the
performance of the proposed network to provide reliable data to the model, a greenhouse was
equipped with several sensors that collect plant, environment, and soil data (e.g., leaf numbers,
air temperature, soil moisture). The proposed network can provide real-time causal support for
advanced agricultural practices, evolving from a data-driven approach to an integrative framework
where context (G × E × M) drives decision making.

Keywords: computer vision; decision support system; embedded systems; image analysis; Precision
Agriculture; robotics

1. Introduction

Precision Agriculture (PA) based on the continuous monitoring of plant growth is of
paramount importance. It involves taking into consideration the profound impact that
environmental conditions and agricultural management practices can exert on the perfor-
mance of a specific genotype (G × E × M). This understanding forms the foundation for
crafting robust decision support systems (DSSs) aimed at optimizing input applications and
bolstering crop yields, profitability, and the environment [1]. Digital phenotyping (DP) is a
cutting-edge application that combines advanced sensing devices (e.g., RGB/hyperspectral
cameras) and data analysis techniques (e.g., Artificial Intelligence (AI)) to diagnose plant
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phenotypic traits (i.e., observable plant traits resulting from the performance of a genotype
in a specific environment), namely morphological [2], physiological [3], and phenologi-
cal [4] traits related to growth, health, and development [5]. Most of the literature describes
high-throughput phenotyping facilities that analyze model plants in expansive laboratory
conditions (e.g., [6]), while low-cost field applications are limited [7]. Nevertheless, DP
data can be analyzed to identify trends and relations between phenotypes and G × E × M
conditions, enabling more knowledgeable agronomic decisions.

Autonomous sensing systems such as robots and drones represent a great advance-
ment in the realm of data collection for field phenotyping, offering remarkable improve-
ments in terms of speed, repeatability, and accuracy [8]. However, beyond the technical
challenges like localization and path planning, there exist critical constraints related to data
management and analysis. Given the diverse array of phenotypic data sources and the
complexity of the spatiotemporal scales involved, it becomes imperative to develop robust
data management techniques that not only preserve data relevance but also facilitate easy
access and analysis [6].

Therefore, the establishment of resilient sensing networks is paramount to compre-
hensively characterize prevailing environmental conditions and seamlessly link them to
the collected phenotypic data. In this context, it is essential to accompany phenotypic data
with metadata, thereby promoting their reuse and ensuring interoperability in contexts
distinct from their original acquisition [9,10].

Regarding data analysis, although DP uses advanced AI techniques that establish
genotype–phenotype relationships within G × E × M interactions [11,12], it has constraints
depicting the dynamics of these relationships. Some progress has been made in combining
DP and process-based models, optimizing data analysis through multi-scale frameworks.
Process-based models (a group of crop growth models (CGMs)) simulate plant growth and
predict crop yield through differential equations that consider the mechanistic understand-
ing of how a plant grows [13]. In this way, fundamental processes and their interactions
over time are represented (e.g., nutrient cycling, water fluxes). Thus, it is possible to as-
sess the crop’s behavior in future climate and management scenarios, improving decision
making [14,15].

A process-based model can extract relevant traits using knowledge in advance, simpli-
fying the actual analysis systems (AI-based) [16–18]. Furthermore, DP can be integrated
into a process-based model to estimate unknown parameters, replacing its subroutines and
describing complex processes (e.g., nitrogen dynamics [19]).

Yet, few studies present joint approaches, barely integrating phenotype data in advanced
DSSs [10]. To overcome this shortcoming, we propose a sensing network based on the Internet
of Things (IoT). The network comprises three modules: data collection, communication,
and data management/analysis. The aim is to test the feasibility of cost-effective sensors to
collect high-throughput phenotypic and environmental data, establish methods that guarantee
data relevance and interoperability, and integrate data into a CGM. Thus, a continuous
swap of data will be created between the physical entities and the simulated ones. This
digital twin [20] approach can provide real-time, spatiotemporal causal support for advanced
PA practices, evolving from a data-driven approach to an integrative framework, where
G × E × M conditions are the driver of advanced decision making.

2. Methods

Figure 1 describes the overall architecture of the proposed sensing network.
To allow the network to be versatile, given the diversity of data sources, it is proposed

that a microprocessor be used to ensure uniform data transfer, regardless of the sensor’s
intrinsic communication protocol. In order to ensure robust spatiotemporal communication
that can be transferred to an agricultural environment, the connection between sensors
and the microcontroller and from this to the microprocessor must be physical (e.g., USB).
The role of the microprocessor is to ensure the transfer of data to the server. In this case,
the transfer must be wireless (e.g., Wi-Fi).
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Figure 1. Overall architecture of the proposed sensing network. Bold arrows represent physical
connections, dashed arrows represent wireless connections. CGM—crop growth model.

On the server, the information is routed to its proper destination via the communication
broker. This is connected to the visual interface, allowing data visualization in real time. It
is also connected to the programming interface, which allows the conditional execution of
scripts; this results in actions such as sending data to the database or activating the CGM.

The programming interface must ensure that the data received are matched by the
relevant metadata. It must also deploy the appropriate processing operations. In this case,
numerical data can be distinguished from non-numerical data. While the former can be
sent directly to the intended destination, the latter must be processed in order to extract
information from the raw data. For example, to extract phenotypic traits from images,
classic techniques (e.g., color thresholding) or more complex ones (e.g., Deep Learning
models) must be applied.

3. Results and Discussion

To test the proposed network a sensing network was installed in a greenhouse at
INESC TEC headquarters in Porto, Portugal. Figure 2 depicts the installation.

Figure 2. Sensing network framework installed in a phenotyping greenhouse. Bold arrows represent
physical connections, dashed arrows represent wireless connections. PAR—Photosynthetically Active
Radiation, ETa—actual evapotranspiration.
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Stationary sensors were in charge of collecting environmental parameters (e.g., air tem-
perature), phenotypic traits (e.g., actual evapotranspiration), and soil parameters (e.g., mois-
ture). The choice of devices was based on cost-effective commercial solutions compatible
with the remaining network’s components. Furthermore, some devices were developed
from scratch, namely a weighing lysimeter (Figure 3).

Figure 3. Custom weighing lysimeter. (A)—components view: (1) 10 kg load cell, (2) HX711 amplifier,
(3) custom hardware. (B)—fully assembled prototype.

All the sensors share a common feature: they are connected to custom hardware
based on the RP2040 microcontroller, which allows the signals to be processed from the
sensors’ intrinsic protocol to the CAN protocol. This protocol was chosen because it applies
differential communication, which minimizes noise in the signal and allows for a longer
range between connections, which is a must in agricultural environments. The sensors’
microcontrollers, “slaves”, are connected to another microcontroller, the “master”. This,
in turn, is connected via USB to a Raspberry Pi Zero W, which sends data requests to the
“master” microcontroller that distributes them to the respective “slaves”. The Raspberry
is also connected to a camera (Raspberry Pi Camera) for imaging operations. The data
received by the Raspberry are sent to the server via Wi-Fi, according to the MQTT (Message
Queuing Telemetry Tracking) publish–subscribe protocol.

The greenhouse was also equipped with robotics-assisted sensors. PixelCropRobot,
a mobile cartesian robot designed for phenotyping operations [21,22], was implemented
for autonomous phenotypic data collection. In addition to 2D RGB imaging operations,
the robot is equipped with a custom multispectral sensor and a LiDAR that allows the
measurement of leaf pigments—related to the physiological response to abiotic stresses—
and the canopy characterization, respectively. The robot is equipped with a Raspberry
Pi 4 and, as mentioned above, the data are sent to the server via Wi-Fi, according to the
MQTT protocol.

This means that in both cases, the Raspberry Pi acts as a client and sends the messages
to the MQTT broker, which filters the messages by topic and distributes them to the corre-
sponding subscribers, which are defined in the scripts of the programming interface or in
the functions of the visual interface. By default, all the data received by the broker are sub-
scribed to a Python script that combines the relevant metadata, according to the metadata
guidelines of the DEMETER-AIM ontology, and then forwards them to the database.

The visual interface was developed using Node-RED (Figure 4). To ease real-time
data visualization (e.g., air temperature), some functions of the visual interface act as
subscribers, directly receiving the corresponding messages from the broker. Furthermore,
through this interface, it is possible to retrieve historical data (stored in the database) and
trigger the CGM.
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Figure 4. Node-RED user interface. From left to right: overview—tracking of the STICS simulations,
CO2—CO2 concentration, Weather Station—air temperature and humidity, Radiation—PAR levels.

The dynamic process-based model STICS (Simulateur mulTIdiscplinaire pour les
Cultures Standard) [23] was the chosen CGM. STICS is a daily time-step model with
input variables relating to soil, climate, and the cropping system. The model simulates
the growth of a defined genotype for which a physical medium and a crop management
schedule are defined. This model presents some features that fit with the sensing network
designed, namely its generality, robustness, and modularity, enabling its application to a
wide range of crops, climate conditions (even several ones), and the design of new modules
or functions, complementing the model.

To ensure that the proposed network provides reliable data to run STICS, continuous
data collection was monitored during a lettuce growing season (42 days), according to the
frequencies shown in Table 1.

Table 1. Characterization of the data collected by the sensing network during the lettuce grow-
ing season.

Sensor Quantity (n) Daily Requests (n) Average Size

Stationary

RPi Camera 1 24 10 MB
AS7341 2 24 400 B

HTU21D 2 24 170 B
SEN0159 1 24 120 B
Lysimeter 12 24 160 B
SEN0308 12 24 170 B

PixelCropRobot

RPi Camera 1 5 10 MB
Multispectral sensor 1 5 400 B

LiDAR 1 5 370 B

Given the daily time-step of STICS, it is likely that the dataflow shown in Table 1 is
enough to run the simulations. However, losses were detected during data transfer to
the server. These did not exceed 5% and were mainly due to interruptions in the Wi-Fi
connection. Although these are significant losses, since the aim is to keep the model online
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continuously, they can be easily addressed. For example, one can reinforce the Wi-Fi
connection or create a local database that stores the data in the event of Wi-Fi interruptions.
In line with Droutsas et al. [24], who proposed the integration of machine learning models
into a process-based model, the described network aims to enhance actual data analysis
systems and reduce modeling fine-tuning processes. Although further tests are needed,
the proposed sensing network has the potential to overcome the phenotyping pitfalls
identified by Saint-Cast et al. [10], namely the lack of common semantics and thorough
data exchange platforms.

4. Conclusions

This article presents an IoT-based sensing network for digital phenotyping. Associated
with this network, a DSS was developed, based on a CGM with the purpose of optimizing
agricultural practices. However, further testing is needed to validate the network when fully
working under real field conditions. In the future, we intend to enhance the capabilities
of this approach. The model simulations will support decision rules, processed by an
actuator that will carry out a specific operation. Thus, a continuous swap of data will be
created between the physical entities and the simulated ones. This digital twin approach
will provide real-time, spatiotemporal causal support for advanced Precision Agriculture
practices, evolving from a data-driven approach to an integrative framework, where G × E
× M conditions are the driver of advanced decision making.
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