
Citation: Hassan, S.; Dhimish, M. A

Survey of CNN-Based Approaches

for Crack Detection in Solar PV

Modules: Current Trends and Future

Directions. Solar 2023, 3, 663–683.

https://doi.org/10.3390/

solar3040036

Academic Editor: Marko Topič
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Abstract: Detection of cracks in solar photovoltaic (PV) modules is crucial for optimal performance
and long-term reliability. The development of convolutional neural networks (CNNs) has significantly
improved crack detection, offering improved accuracy and efficiency over traditional methods. This
paper presents a comprehensive review and comparative analysis of CNN-based approaches for
crack detection in solar PV modules. The review discusses various CNN architectures, including
custom-designed networks and pre-trained models, as well as data-augmentation techniques and
ensemble learning methods. Additionally, challenges related to limited dataset sizes, generalizability
across different solar panels, interpretability of CNN models, and real-time detection are discussed.
The review also identifies opportunities for future research, such as the need for larger and more
diverse datasets, model interpretability, and optimized computational speed. Overall, this paper
serves as a valuable resource for researchers and practitioners interested in using CNNs for crack
detection in solar PV modules.
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1. Introduction

The urgent need for the development of renewable energy sources is becoming in-
creasingly evident in today’s world, in which environmental challenges are ongoing and
traditional fossil fuel reserves are rapidly declining [1,2]. Among these energy sources, PV
technologies have emerged as the most promising due to their remarkable advantages [3].
PV systems offer energy efficiency, reliability, and environmental sustainability, making
them an ideal choice for sustainable power generation [4]. By utilizing the abundant energy
available from sunlight, PV technologies pave the way for a cleaner and greener future.
With their ability to convert sunlight into electricity, PV systems provide an efficient and
environmentally friendly way to meet modern society’s growing energy demands [5].

However, the range of defects that can occur in PV modules is diverse and can include
a variety of physical, chemical, and structural anomalies. Among the most prevalent are
microcracks, which are often too small to detect with the naked eye but which can spread
and worsen over time. Additionally, material delamination, corrosion, and oxidation can
potentially contribute to further deterioration. Other defects, such as hotspots, shadows,
and soiling, can arise from environmental factors and adversely impact PV energy output.

However, ensuring the optimal performance and longevity of PV modules is crucial
for maximizing their energy-production potential. In recent years, CNN has emerged as
a powerful tool in crack detection, enhancing the accuracy and efficiency of PV module
inspection [6]. These deep learning algorithms have demonstrated their effectiveness
in detecting and classifying cracks in solar PV modules, enabling timely and effective
maintenance and repair. An overview of the CNN flowchart for detecting cracks in PV is
shown in Figure 1.
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Convolutional neural networks (CNNs) are a class of deep learning algorithms specifi-
cally designed for processing grid-like data, such as images or audio. They have revolu-
tionized image-analysis tasks and are highly effective for tasks like object recognition and
detection. These networks consist of several key components. The core building blocks are
the convolutional layers, which apply a set of learnable filters (kernels) to the input data.
Each filter convolves across the input image to detect specific features. For instance, early
layers might detect edges, while deeper layers may learn more complex patterns.
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dressed the vanishing-gradient problem in deep networks [11] by introducing shortcut 
connections that bypass one or more layers, enabling the training of very deep networks. 
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Pooling layers come next, downsampling the spatial dimensions of the data. This
reduction in computational complexity is achieved while retaining important informa-
tion. Common pooling operations include max pooling and average pooling. Non-linear
activation functions, such as ReLU (Rectified Linear Unit), are applied to the output of
convolutional layers. They introduce non-linearity into the network, allowing it to learn
complex relationships. In the latter part of the network, fully connected layers are typically
employed. These layers connect every neuron in one layer to every neuron in the next layer,
allowing for high-level reasoning.

Several notable architectures and techniques have been developed within the CNN
framework. LeNet, created by Yann LeCun, was one of the earliest successful CNN
architectures and was primarily used for recognition of handwritten digits [7]. AlexNet,
introduced by Alex Krizhevsky et al., gained significant attention by winning the ImageNet
Large Scale Visual Recognition Challenge [8]. It employed deep layers and GPU acceleration
and set a new standard in CNN performance. VGG, proposed by the Visual Geometry
Group, stands out for its simple and uniform structure. It is characterized by its use of
small 3 × 3 filters within a deep architecture [9].

GoogLeNet (Inception) introduced the concept of inception modules, which allowed
the network to learn multi-scale features [10]. It used 1 × 1 convolutions to reduce com-
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putational complexity. Residual Networks, or ResNet, introduced by Kaiming He et al.,
addressed the vanishing-gradient problem in deep networks [11] by introducing shortcut
connections that bypass one or more layers, enabling the training of very deep networks.
SqueezeNet was designed for efficiency, achieving accuracy comparable to that of larger
networks with significantly fewer parameters [12]. This efficiency made it an attractive
choice for resource-constrained environments where computational resources are limited.

CNNs have demonstrated their efficacy in identifying physics-related features relate
to detecting cracks in solar cells. Various methods can be leveraged to extract and interpret
relevant physical and chemical characteristics. For example, CNNs can recognize specific
textures linked to distinct crack types. Microcracks, for instance, may exhibit unique
textural patterns compared to macrocracks. Through extensive training on a diverse
dataset, CNN can differentiate between these textures.

Moreover, CNNs are effective in recognizing repeated patterns or structures within
images and thus have promise for identifying patterns characteristic of specific crack types.
This application includes identifying stress patterns around microcracks or recognizing
specific shapes associated with defect categories. Materials’ physical properties may affect
the appearance of a crack. For example, material brittleness or hardness can impact crack
shape and propagation. CNNs associate specific features with material properties.

Solar cells exhibit unique reflectance and absorption spectra that can be influenced
by cracks or defects. CNNs are capable of recognizing alterations in these spectra that
potentially indicate cracks. Similarly, thermal imaging of solar cells reveals temperature
variations correlated with defects. CNNs, when trained on thermal images, can potentially
identify temperature gradients or changes corresponding to cracks.

In addition to their success in crack detection in solar cells, CNN-based architectures
have demonstrated significant efficacy in diverse domains, particularly in materials science.
These instances of success not only highlight the adaptability of CNN models, but also
serve as convincing evidence of their robustness in defect detection across various materials.
For instance, Lew et al. presented a deep learning model that predicts fracture mechanisms
in graphene, a material known for its exceptional strength and potential for applications in
various industries [13]. This breakthrough in understanding fracture mechanisms at the
nanoscale exemplifies the power of CNN in materials science.

Moreover, Chang et al. utilized a CNN to predict crack patterns and stress-crack
width curves in 3D-printed concrete structures, a material of increasing importance in
construction and engineering applications [14]. CNNs’ successful application to predicting
crack behavior in such complex materials underscores their versatility. Elapolu et al.
introduced an innovative approach utilizing machine learning algorithms, including CNNs,
to study crack propagation in polycrystalline graphene [15]. This pioneering work delves
into crack behavior at the microstructural level, showcasing CNNs’ potential for use in
materials science research.

Additionally, Perera et al. explored the use of graph neural networks (GNNs) for
simulating crack coalescence and propagation in brittle materials [16]. While it does
not examine a CNN, this study exemplifies the broader application of neural network
architectures, including CNNs, in simulating crack behavior in materials. These studies
collectively constitute a compelling body of evidence demonstrating the efficacy of deep
learning techniques, including CNNs, in predicting and understanding crack patterns
across various materials.

The selection of literature for this review paper followed a rigorous and systematic
process to ensure the inclusion of high-quality, relevant studies. A comprehensive search
was conducted in reputable academic databases, including but not limited to IEEE Xplore
and Google Scholar. Keywords such as “PV module defect detection,” “solar cell crack
detection,” and “CNN-based defect detection” were used to retrieve relevant articles.

The initial selection of literature was based on predefined inclusion criteria. Only
studies published in peer-reviewed journals or presented at reputable conferences were
considered. The publication date range was limited to the past four years (2013–2023) to
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ensure the inclusion of the latest advancements in CNN-based defect-detection methods
for PV modules.

Titles and abstracts of the retrieved articles were screened to determine their relevance
to CNN-based defect detection in PV modules. Studies not related to this domain were
excluded. The remaining articles were subjected to a thorough full-text evaluation. Each ar-
ticle was carefully examined for its methodology, experimental setup, results, and relevance
to the review’s objective.

Articles were excluded if they did not apply CNN-based defect-detection techniques
to PV modules. Additionally, studies lacking adequate experimental validation or those
with insufficient detail on the CNN architecture were excluded. Special attention was
given to including recent studies that demonstrated significant advancements in the field.
Moreover, studies that provided comprehensive experimental data, comparative analyses,
and practical implications were prioritized.

In this review paper, we aim to provide an extensive overview and comparative
analysis of different CNN architectures and methodologies specifically utilized for crack
detection in solar PV modules. By exploring advancements in this domain, we seek to shed
light on the significant contributions made by CNNs to enhance PV module inspection
detection capabilities and performance. Through a comprehensive examination of various
CNN approaches, including their strengths, limitations, and real-world applications, we
aim to provide valuable insights into state-of-the-art techniques and establish a basis for
further advancements in the detection of cracks in PV modules.

2. Solar PV Module Cracks Impact on PV Output Power

Cracks in solar cells are one of the most prevalent defects in PV modules [17]. These
cracks can occur in the form of a microcrack, as shown in Figure 2a, or in the form of a major
breakdown, as depicted in Figure 2b. Multiple factors can contribute to the cracking of
solar cells, such as extreme temperature fluctuations, mechanical stress, contraction, and
thermal expansion, among others [18–20]. While these factors can cause cracking in solar
cells, the severity of the damage depends on the number and size of the cracks that form, as
well as the material properties of the solar cell itself. Cracking can reduce the efficiency of
the solar cell and lead to a decrease in the amount of power that it can generate. Therefore,
it is important to identify and address the causes of cracking to maximize the performance
of the solar cells.
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The presence of cracks in solar cells can contribute to the development of photovoltaic
(PV) hotspots due to several factors. Firstly, PV cracks can contribute to moisture intrusion
into the module, resulting in the formation of localized areas of high temperature known
as hotspots. Secondly, PV cracks can create an electrical short circuit, leading to an increase
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in electrical current flow and subsequent hotspot formation. Lastly, PV cracks can lead to
a decrease in power output, which in turn can cause an increase in temperature and thence
to hotspot formation [21].

In a recent study [22], cracks in solar cells were investigated by using different crack
sizes grouped into four different modes, the first mode being crack-free, the second mode
including microcracks, the third mode including shading areas, and the fourth mode
representing breakdown. That study found that a larger crack results in increased power
loss, ultimately accounting for about 60% of the total power loss, as shown in Figure 3.
Moreover, another study suggests that larger cracks lead to higher temperatures in the
solar cell. Higher temperatures have a detrimental effect on the PV module’s performance
and can ultimately contribute to power degradation [23].
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As the effects of cracks on the PV modules are known, it is possible to take several
measures to minimize these effects. First and foremost, it is advisable to use PV modules
that are more resistant or flexible [24]. A second approach is to make sure that the PV
modules are properly sealed to ensure that extreme temperature fluctuations are prevented.
Another approach is to inspect the PV modules regularly to prevent cracks from occurring
and to handle the PV properly during all maneuvers and transportation [25]. Finally, it is
important to design installations that account for unusual environmental conditions, such
as strong winds, to ensure the durability and optimal performance of the PV modules [26].

3. Solar PV Module Cracks Detection Techniques

Detecting cracks is one of the most challenging tasks in PV, as it requires sophisticated
technical equipment. Moreover, detection of cracks tends to be difficult, as cracks are often
small or hidden. A variety of methods are available for detecting cracks in solar cells,
including using ultrasonic resonance vibrations (RUVs) to examine the solar cell. It is easy
to find cracks using this method, but it is not possible to pinpoint their exact locations [27].
Furthermore, RUVs are not always reliable and can be limited in their ability to pinpoint
the precise location of a crack.

Consequently, photoluminescence (PL) was developed to identify the location of the
crack [28]. PL is based primarily on the principle that when luminescence excites certain
particles, they pass through different states called “excited” and “equilibrated” before
returning to their normal state. During this process, there is interaction between light
and these particles. The light emitted as a result of exciting extra particles through light
exposure is referred to as PL, as shown in Figure 4a [29]. PL is, therefore, an ideal technique
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for detecting cracks, as the light emitted can be used to detect the crack and pinpoint its
location. However, there are several limitations to this method, such as the need to use
expensive cameras and the risk of irradiation light damaging the solar cells during the
inspection [30]. Additionally, PL is not suitable for inspecting certain types of materials,
such as those with a high degree of reflectivity [31].
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Alternatively, another effective method to detect cracks involves using electrolumi-
nescence (EL). This approach is performed by inducing current to the PV module, which
causes the electrons in the solar cell to become excited in the conduction band and resulting
in an EL image, as shown in Figure 4b [32]. Among the most important features of EL
imaging is its utility in inspecting both small and large cells, specifically both solar cells
and PV modules [33]. This method is more effective that others at detecting cracks because
it detects even the smallest cracks that may not be visible to the unaided eye. It is also
more reliable because it produces a clear image of the module surface, which allows for
a more accurate evaluation of any potential damage. To avoid interference between EL
waves and light waves, EL imaging should be performed at night or in a completely dark
room [34]. This need arises because EL imaging works by detecting the light emitted by
the module surface when an EL wave is applied. This light emission is visible only in
a dark environment and makes it much easier to detect small cracks. Moreover, the clear
image produced by EL imaging can provide detailed information about the module surface,
allowing for a more precise evaluation of any cracks or damage [35].

Inspection of PV modules is not typically limited to single solar cells or small-scale
PV modules; however, there are scenarios that require an examination at a larger scale of
insolation and may involve thousands of PV modules. As a result, drones were employed
for thermal imaging [36]. A drone was fitted with a thermal camera and flown over the
PV installation [37,38]. The data were then stored and used to inspect the PVs later by
identifying hotspots and malfunctions, as shown in Figure 4c. By using these drones with
thermal--imaging technology, engineers were able to quickly and accurately identify areas
of the PV installation that could be malfunctioning or overheating. This procedure allowed
for quick and precise repair of any issues, ensuring that solar power was consistently
working at peak efficiency. It is worth noting that one of the main disadvantages of this
method is that it is very labor-intensive and entails a good deal of human labor [39].

Cracks in solar cells can be inspected in a variety of ways, including both conventional
and modern methods. Each approach has its own strengths and limitations, and each is
chosen according to the demands of the situation. Figure 5 summarizes four methods for
detecting defects in solar cells. In conclusion, it is crucial to be aware of the different tech-
niques available and select the appropriate technique according to the specific application.
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4. Fundamentals of Convolutional Neural Networks (CNN)

Convolutional neural networks (CNNs) have emerged as a dominant and highly
effective deep learning technique, consistently surpassing other machine learning ap-
proaches across diverse real-world applications [40–42]. Prominent CNN architectures like
GoogleNet3, ResNet4, and DenseNet5 have achieved remarkable performance, benefiting
from the expertise of domain specialists who possess extensive knowledge in data analysis
and CNN development. However, not every user interested in a specific domain pos-
sesses such specialized knowledge [43–45]. For instance, individuals proficient in handling
data may lack the expertise to construct CNN algorithms, or conversely, those familiar
with CNNs may lack domain-specific insights. Consequently, there is a growing demand
for automation of CNN architecture design, enabling users without domain expertise to
transparently fine-tune CNN models [46–48]. The availability of CNN architecture-design
algorithms can foster widespread adoption of CNNs, contributing to the advancement of
artificial intelligence (AI) in various domains.

Different categories of CNN architecture-design algorithms can be distinguished based
on the domain knowledge required for implementation. The first category involves a combi-
nation of automatic and manual tuning, wherein expertise in designing CNN architectures
is essential but facilitated by automatic tuning. Genetic CNN methods and hierarchical
representation methods fall into this category. On the other hand, there is automatic CNN
architecture design, which eliminates the need for manual parameter adjustment by users.
“Automatic + manual” tuning designs often outperform fully automated designs, benefiting
from the additional insights provided by human expertise in CNNs [49]. However, the
automatic designs have a distinct advantage in that they require no manual tuning, making
them more appealing to users without domain knowledge of CNNs.

One notable innovation in deep CNN infrastructure is Hypotheses-CNN Pooling
(HCP) [50]. This approach incorporates multiple-object segment hypotheses as inputs,
with each connected to a shared CNN. The CNN outputs for each hypothesis are then
aggregated using max pooling to generate the final multi-label predictions. HCP infrastruc-
ture offers unique features, such as not requiring ground-truth bounding box information
for training and robustness to noise and redundant hypotheses. In another study [51],
it was discovered that significant image degradation leads to decreased performance in
classification, especially when training images fail to reflect the degradation levels seen in
test images. Visual analysis of the CNN layers revealed the loss of critical low-level features
in the early layers, which directly impacted accuracy.

Concerning medical imaging applications, a recent experiment compared three tech-
niques [52]: support vector machines with rotation and orientation-free features, transfer
learning on CNN networks, and capsule network training. CNN methods outperformed
traditional methods due to their ability to learn and select features automatically. Transfer-
learning models demonstrated the highest accuracy in the experiment.
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Convolutional neural networks (CNNs) have completely transformed various fields
by their remarkable applications. In computer vision, these networks have proven to
be incredibly powerful, helping us detect objects, classify images, and even recognize
faces accurately [53]. Their contribution to autonomous driving is especially noteworthy,
as they enable precise object detection on roads [54]. In healthcare, CNNs have played
a crucial role in interpreting medical images like MRIs and X-rays, aiding doctors in
diagnosing diseases effectively [55]. Beyond vision tasks, CNNs have also been utilized in
natural language processing, wherein they excel in understanding sentiment, translating
languages, and generating brief summaries. Additionally, industries ranging from finance,
wherein they help to detect fraudulent activities, to environmental monitoring, wherein
they analyze satellite imagery, have benefitted from CNNs’ flexibility and impact [56]. The
wide range of applications of CNNs continues to drive innovation and reshape a variety of
industries worldwide.

A CNN’s architecture is composed of several layers that serve as cornerstones, all of
which contribute to building an architecture capable of performing a specific task with
a high level of validation accuracy. Each of these layers is important for building the CNN,
which cannot be constructed without them. Table 1 summarizes each of the main layers.

Table 1. Main layers of a CNN’s architecture.

Layer Name Function References

Input layer Indicates the dimensions of the input image or volume, such as its height and
width and the number of color channels. [57]

Convolutional layer Consists of filters learned during the processing process and is smaller than
the actual image. [58]

Normalization layer maintains regularity and avoids excess fitting, while simultaneously speeding
up computation by the CNN [59]

Rectified Linear Unit (ReLU) Eliminates all negative digits and substitutes their values with zero. [60]

Pooling layer Retrieves values from segments of images bounded by kernels. [61]

Fully connected layer Linearly transforms input vectors are linearly using weight matrices in order
to solve problems. [62]

SoftMax function Layer Predicts a distribution of probabilities in a multiple-classification situation [63]

Classification layer Utilizes a set of rules to classify inputs into categories. [64]

When assessing the performance of CNN-based models in defect detection for PV
modules, several standard evaluation metrics are employed. These metrics help to quantify
the models’ accuracy, effectiveness, and reliability. Accuracy is one of the most straight-
forward metrics, representing the ratio of correctly predicted instances to total instances.
It provides an overall measure of how well the model classifies defects. Precision, also
known as positive predictive value, calculates the proportion of true positives (correctly pre-
dicted defects) to the sum of true positives and false positives (instances wrongly classified
as defects).

Recall, also known as the true positive rate or sensitivity, is the ratio of true positives
to the sum of true positives and false negatives (instances of defects wrongly classified
as non-defects). It quantifies the model’s ability to identify actual defects. The F1 score is
the harmonic mean of precision and recall. It provides a balanced measure of a model’s
precision and recall, making it an effective metric when dealing with imbalanced datasets.
Specificity is the ratio of true negatives (correctly predicted non-defects) to the sum of
true negatives and false positives. It indicates the model’s ability to correctly classify non-
defective instances. Mean absolute error (MAE) measures the average absolute difference
between predicted and actual values. It is used in regression tasks and provides insight
into the accuracy of model predictions.
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Mean squared error (MSE) calculates the average squared difference between predicted
and actual values. It treats larger errors more severely than MAE, which can be useful in
tasks wherein larger errors are of serious concern. The root mean square error (RMSE) is
the square root of the MSE. It provides an interpretable measure of the average prediction
error and is in the same units as the predicted values. ROC curves are used for binary
classification tasks. They plot the true-positive rate against the false-positive rate at various
thresholds. AUC quantifies the model’s overall ability to discriminate between favorable
and negative classes.

A confusion matrix provides a detailed breakdown of the model’s performance by
showing the numbers of true positives, true negatives, false positives, and false negatives.
These metrics collectively offer a comprehensive evaluation of CNN-based models, consid-
ering aspects such as accuracy, precision, recall, and the ability to handle false positives
and false negatives. The choice of metrics depends on the specific goals and nature of the
defect-detection task. When assessing the performance of CNN-based models in defect
detection for PV modules, various standard evaluation metrics play a crucial role. These
metrics quantify the accuracy, effectiveness, and overall reliability of the models, providing
valuable insights into their capabilities.

5. CNN-Based Crack Detection Methods

In the last decade, the production and installation of PV modules have grown signifi-
cantly, which has in turn led to an increase in the demand for automated defect detection.
Consequently, various CNN architectures have been implemented in the PV industry.
Generally, architectures can be divided into two categories: custom architectures that are
developed from scratch and trained to perform the task, and transfer learning architectures
that, instead of being trained from scratch, utilize pre-trained architectures to perform the
task. Custom architectures require more processing power to train, while transfer learning
architectures need fewer resources and less time to develop. Transfer learning architectures
are more commonly used in the PV industry due to their efficiency and speed. They also
require less training data. However, custom architectures are better suited to more complex
tasks as they can be customized to the specific problem. This section will discuss the
state of the art and all the recent studies that describe employing CNN as an automated
defect-detection method, either as a custom architecture or as a method of transfer learning.

Based on the light CNN network, Hussein et al. developed a sophisticated CNN
architecture called PV-CrackNet that detects microcracks, as shown in Figure 6 [65]. The
study highlights the difficulty of obtaining representative data due to the ambiguous nature
of solar cells and proposes a strategy for mitigating the problem known as filter-induced
filter augmentation flow (FAI), as shown in Figure 7. FAI applies different filters to images
of PV modules to simulate various lighting and environmental conditions. According to
the study, PV-CrackNet has an accuracy of 97.42% and the highest recall and precision of all
state-of-the-art architectures. Additionally, the FAI strategy proposed in the study presents
an effective solution for mitigating the challenge of obtaining representative data, as it can
simulate various lighting and environmental conditions with the use of different filters.
This strategy helped to improve the accuracy of PV-CrackNet to 97.42%, with the highest
recall and precision among state-of-the-art architectures.

In another study [66], light CNN architecture was proposed as a novel CNN archi-
tecture approach with 93.02% accuracy. As this method was trained with fewer images,
it does not require GPU computers. To avoid data scarcity, the proposed method used
rotation and contrast flipping by rotating the images 90, 180 and 270 degrees. Through
these data-augmentation strategies, the accuracy of the data was improved by 6%, and the
proposed method was able to perform single-image prediction in 8 milliseconds. In that
study, it was suggested that the accuracy could be improved by increasing the size of the
dataset, which could then be divided into different categories of defects. By augmenting
the data through rotation and contrast flipping, the model was able to learn from both the
original images and the rotated/flipped versions, thus increasing the diversity of the data,
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which led to more accurate predictions. Furthermore, increasing the size of the dataset
also enabled the model to learn from different categories of defects, thus further improving
its accuracy.
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A recent study utilized the pre-trained CNN architecture AlexNet. By default, AlexNet
can classify more than 1000 outputs, as shown in Figure 8 [67]. However, in that study,
AlexNet was modified to classify the outputs into two categories: defective and non-
defective solar PV modules based on a training dataset of 392. The model achieved 85.16%
accuracy. However, there was insufficient training data, which limited the model’s accuracy.
The model’s accuracy was improved by using machines capable of high-performance
computing and by better training. This result demonstrates that with an increased amount
of training data, AlexNet was able to achieve higher accuracy. When machines capable of
high-performance computing are used, more training data can be processed in a shorter
amount of time, which can lead to better model accuracy. Better training techniques, such
as data augmentation, can also improve the model’s accuracy.
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A comparison study was conducted by Rahman et al. on six of the most sophisticated
transfer learning architectures—VGG-16, VGG-19, Inception-V3, ResNet50-V2, ResNet-V2,
and XCeption—for identifying microcracks [68]. The method was to identify each microc-
rack individually, then aggregate the results using ensemble methods. In the study, 2624 EL
images were used with augmentation by horizontal flip rotations of 90 and 270 degrees.
As each pre-trained individual was assessed, it was compared to the proposed method,
which is based on a method of ensemble learning in which the pre-trained networks are
combined and aggregated into a single network to achieve a final result, as shown in
Figure 9. Although there are different ensemble methods, such as voting or stacking, soft
voting was utilized in this study because it is based on taking an average of the expected
probability before applying the threshold, which minimizes the risk of error. Moreover,
soft voting works well with complex models, as averaging the probability helps to reduce
the variance of the voting system. Table 2 indicates that the ensemble method achieved
the highest accuracy for both monocrystalline and polycrystalline solar panels, 96.97% and
97.06% respectively, although all other pre-trained architectures also achieved a very high
level of accuracy, between 90.91% and 96.97% in monocrystalline and 85.29% and 94.12%
in polycrystalline. Additionally, the study noted that models’ accuracy can be enhanced by
increasing the amount of training data, as well as by increasing the training time.

According to another study [69], a hybrid method involving a CNN pre-trained
network of VGG-16 and support vector machines (SVM) has been proposed as an effective
method of detecting cracks in PV panels. This model works by extracting features from EL
images and making predictions about whether they will be accepted or not, as shown in
Figure 10. That study claims that limitations of the dataset played a significant role in the
selection of this model, based on results obtained from training the model on two different
sets of data: 2624 EL images with a resolution of 300 × 300 pixels and 2624 EL images with
a resolution of 250 × 250 pixels. SVM a supervised deep learning algorithm. Essentially,
the main objective is to determine the most appropriate dividing line by maximizing the
gaps between sets of data points.
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Table 2. Accuracy of pre-trained networks and ensemble learning for monocrystalline and polycrys-
talline solar panels [68].

Architecture
Accuracy of Pre-Trained Networks and

Ensemble Learning for Monocrystalline
Solar Panels

Accuracy of Pre-Trained Networks and
Ensemble Learning for Polycrystalline

Solar Panels

VGG-16 90.9% 91.2%
VGG-19 96.9% 88.2%

Inception-v2 96.9% 88.2%
ResNet50-v2 90.9% 88.2%

ResNet-v2 96.9% 94.1%
Xception 93.9% 85.3%
Ensemble 96.9% 97.1%
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This technique focuses on enhancing the distance between separated sets of data, as
shown in Figure 11. It is important to note that the proposed model has a high degree of
accuracy (99.49%), but the main limitation is that it does not identify cracks in the corners
of the solar cells. This limitation can be overcome by enhancing the dataset. Therefore, it is
necessary to accurately identify the optimal hyperplane that best separates the data points
while providing a high degree of accuracy for the proposed model.
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As shown in Figure 12, another study has proposed a novel CNN architecture based
on a multi-scale CNN with three branches [70]. This multi-scale architecture was modified
based on the pre-trained AlexNet architecture, which normally is composed of five con-
volutional layers. In this instance, two additional convolutional layers with dimensions
3 × 3 have been added, along with a new layer of fully connected layers. Based on a dataset
of 20,000 images, the proposed CNN architecture was trained to detect 11 different defects,
including cracking, hotspots, shadows, and soiling, as well as divisibility into anomaly and
non-anomaly. These defects were categorized to enable the network to accurately identify
anomalies and accurately classify them as either defective or non-defective. According
to the authors of the study, the multi-scale CNN was able to accurately classify defective
components with an accuracy of 97.32%, while the original AlexNet was able to do so
with an accuracy of 93.20%, demonstrating that the multi-scale CNN can correctly classify
defective components. The study’s findings indicated that the suggested approach could
be improved through the implementation of a high-quality optimization algorithm.

Using faster R-CNN as a basis for crack detection in solar cells, another study proposed
an improved sophisticated model [71]. As faster R-CNN does not normally have high
accuracy, the model in that study was modified to improve its accuracy by adding a feature
pyramid network (FPN). The FPN enhanced the feature-extraction process, and with the
addition of guided anchoring RPNs, improved the model’s ability to predict crack locations.
With the combination of the FPN and guided anchoring RPNs, the model is able to extract
more detailed features, such as edges, corners and textures, from the images. Thus, it
can more accurately identify cracks. Additionally, the FPN helps to increase the model’s
overall accuracy by providing better feature representation, while the guided anchoring
RPNs help to improve the model’s ability to localize cracks. A dataset of 5000 images
with varying brightness was used to train the model. As a result, the modified model had
higher accuracy, 94.62%, than 11% of the faster R-CNN, and the rate of crack detection
improved from 0.91 s to 0.19 s per image. Furthermore, the improved feature representation
and effective localization of the cracks allowed the new model to outperform traditional



Solar 2023, 3 676

methods and significantly reduced inference time. In addition, increasing the size of the
training dataset will lead to a significant improvement in the model’s accuracy.
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Table 3 provides an extensive evaluation of various convolutional neural network
(CNN) algorithms employed in the detection of cracks in solar cell images. The table
encompasses key metrics such as detection accuracy, which refers to the ability of the
CNN algorithm to correctly identify and classify cracks within the images. Higher accu-
racy indicates more reliable detection. Detection speed, on the other hand, pertains to
the efficiency of the algorithm in processing the images and providing results in a timely
manner. Faster detection speed enables real-time or near-real-time analysis. Network
complexity is a measure of the intricacy and depth of the CNN architecture. Complex
networks often incorporate more layers and modules, potentially leading to better per-
formance but requiring higher computational resources. Computational speed represents
the speed at which the CNN algorithm can perform computations and make predictions.
Faster computational speed allows for quicker analysis and decision-making. It is worth
noting that these different CNNs can be found in different applications and are widely
used in different programming languages such as MATLAB or Python. By considering
these factors, Table 3 reveals that certain CNN models, such as GoogLeNet, ResNet-50, and
Inception-v3, achieve high detection accuracy. However, it is important to note that these
architectures also tend to have higher network complexity and computational requirements.
Conversely, models like SqueezeNet and AlexNet strike a balance between accuracy and
computational speed, making them suitable options for applications wherein real-time
or resource-efficient processing is crucial. The table serves as a valuable resource for re-
searchers and practitioners seeking to understand the trade-offs between accuracy, speed,
network complexity, and computational requirements when selecting a CNN algorithm for
crack detection in solar cells.
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Table 3. Comparison of CNN algorithms for detection of cracks in solar cell images.

CNN
Algorithm Description Suitable for Detecting Detection

Accuracy
Detection

Speed
Network

Complexity

GoogLeNet
A deep CNN

architecture with
inception modules

Various types of cracks
including microcracks, corner
cracks, and edge cracks due to

its ability to capture
multi-scale features.

High Moderate Moderate

SqueezeNet
A lightweight CNN

architecture with
fire modules

Surface-level cracks and
defects. It efficiently processes
images, making it suitable for

real-time detection in
large-scale PV installations.

Moderate High Low

ResNet-50
A deep CNN

architecture with
residual connections

Complex cracks and defects.
Its deep structure allows it to
capture intricate details and

patterns in the images.

High Moderate High

DarkNet-53

A deep CNN
architecture used in

YOLO (You Only Look
Once) object detection

Both micro- and macro-level
cracks. It provides efficient
object detection, which is

crucial for identifying various
types of cracks.

High Moderate High

VGG-19
A deep CNN

architecture with
19 layers

Macro-level cracks and
defects. Its depth allows it to
capture significant features
indicative of larger cracks.

High Moderate High

AlexNet
A deep CNN

architecture with
8 layers

Surface-level cracks and
defects. It can efficiently

process images and is suitable
for real-time detection in

large-scale PV installations.

Moderate High Moderate

Inception-v3
A deep CNN

architecture with
inception modules

Various types of cracks
including microcracks, corner
cracks, and edge cracks due to

its ability to capture
multi-scale features.

High Moderate Moderate

6. Discussion and Comparative Analysis

The paper comprises an extensive review of the crack-detection methods used for PV
modules and solar cells via automated CNN methods. It has become evident from this
review that the transition from conventional methods to CNN’s deep learning algorithm
has done much to increase the rates of crack detection in PV modules and solar cells. CNN
has been a game-changer in this field, as it has enabled a major improvement in the accuracy
of crack detection in PV modules and solar cells. By providing a more accurate way to
detect cracks, CNN has enabled a much smoother and faster process for detecting cracks
in PV modules and solar cells. This outcome has greatly increased the process’s reliability
and efficiency. However, CNN does suffer from limitations and shortcomings, such as
the scarcity of large and diverse datasets. Most existing approaches rely on datasets of
fewer than 10,000 images, as shown in Table 4. These limited datasets may not accurately
reflect the range of conditions that actually occur. Thus, when the model is trained on
a small datasets, it may encounter difficulty in accurately identifying patterns and cracks.
As a step towards addressing this limitation, future work could focus on collecting more
diverse datasets by collaborating with industry stakeholders or research institutions to
collect high-resolution images that can be used to demonstrate deterioration over time. As
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a result of training on such datasets, models become capable of detecting cracks accurately
across a wide variety of solar-panel installations, making them more practical and reliable.

Table 4. Comparison between different CNN architectures and models.

Reference Year Architecture Description Dataset
Size Accuracy

[72] 2023 Custom
DSMP: three layers of convolutional

connected with double layers of
max pooling

300 96.97%

[73] 2023 Custom
A total of four blocks of convolutional
layers, with each block having two 2D

convolutional layers
20,000 85.35%

[74] 2023 Custom A hybrid model based on CNNs
and SVMs 8548 94%

[75] 2023 ELCN-YOLOv7

Long-Range Convolutional Network
(ELCN) module, designed to enhance

defect-detection capabilities in EL images
of PV cells, combined

with YOLOv7

4500 94.34

[76] 2023
Custom Three convolutional layers connected

with three layers of max pooling. - 99.80%

VGG-16 Fine-tuned VGG-16 99.91%

[69] 2022 SVM-VGG-16 Hybrid model of pre-trained VGG-16
and Support vector machine 2624 99.49%

[71] 2022 R-CNN
Faster R-CNN modified to improve its
accuracy by adding a feature pyramid

network (FPN)
5000 94.62%

[65] 2022 Custom
CNN Architecture composed of two
convolutional layers by connecting
filter-induced augmentation(FIA)

340 97.42%

[68] 2021

Six Pre-trained
architectures and
combining them

for ensemble
learning

Six pre-trained networks: VGG-16,
VGG-19, Inception- v2, ResNet50-v2,

Resnet-v2 and Xception, assessed
individually and aggregated by

ensemble learning.

2624
VGG-16-91.2%

ResNet-V2- 94.1%
Ensemble 97.1%

[77] 2021 U-NET
A semantic-segmentation model based
on the u-net architecture for EL image

analysis of PV modules
30 -

[78] 2021 Custom Multi-scale CNN networks, each built
based on different techniques 20,000 94.4%

[79] 2021 Custom

CNN composed of multiple
convolutional layers, pooling layers,

rectified linear unit (ReLU) layers, loss
layers and fully connected layers

684 99%

[80] 2020 Custom
Four layers of convolutional layers with
3 × 3 filters connected to four layers with

max pooling
893 99.23%

[81] 2020 Mask-RCNN
with ResNet

CNN architecture developed by
Connecting RCNN to fine-tuned

pre-trained ResNet
5983 97.3%

[82] 2020 Custom CNN with
Random Forest

CNN architecture developed from four
convolutional layers connected to four
layers of max pooling by changing the

fully connected layers to Random Forest

11,939 98.14%
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One of the limitations CNN faces when it comes to solar energy is the generalizability
of application of the different models that are available for the industry. For example,
different solar panels have different designs, textures, and manufacturing processes. Fur-
thermore, environmental conditions such as light and soiling differ from installation to
installation. Therefore, a CNN model developed for detecting cracks in one type of solar
panel will be difficult to use for various other solar panels. This difficulty arises because the
CNN model is trained on a specific dataset that has a limited scope and does not account
for variety in design, texture, and environment. Therefore, the CNN model is not able
to recognize patterns and features that are unique to specific solar panels. This problem
can be mitigated through several different approaches, including diversifying the dataset
by including samples from various solar panels, or by fine-tuning pre-trained networks
such as ImageNet to work on smaller datasets that can detect solar cracks. As a result, it
will be feasible to capture a variety of generic features by leveraging the model. Moreover,
diversifying the dataset will enable the CNN model to capture unique and specific features
of various solar panels, thus making it more accurate and reliable.

Another factor to consider is the user’s ability to interpret and explain CNN decision-
making. CNN models often seem like black boxes, and it is difficult to interpret the factors
contributing to decision-making within the model. It is crucial to building trust in CNN
models that the models provide a level of interpretability and explainability such that
users can understand why the model made a particular prediction, for example, why it
classified a specific cell as cracked. This change will ensure that CNN models can be trusted
as reliable and accountable. Therefore, explainability and interpretability must be part of
the model-building process. This goal can be achieved by providing visualizations of the
model’s decision-making process, as well as by providing assessment methods that can be
used to determine which features were most important in the model’s predictions. There
are a number of methods that can be applied to improve the interpretability of the model,
such as attention mechanisms, which show what parts of the input image are crucial for
the model’s to decision-making. Alternatively, saliency maps highlight the pixels in the
input image that played a significant role in making a decision.

As part of CNN implementation in solar farms, it is also necessary to consider real-
time detection because it is crucial to minimizing damage to or power loss from the PV
modules; the greater the size of the PV modules, of the more data the CNN has to process.
Real-time detection is important because the faster any potential faults are identified, the
quicker the response time that will allow the user to mitigate damage and avoid power
losses. Furthermore, the larger the PV modules are, the more data must be processed by
CNN to detect any potential problems, making it even more important that the detection
be quick and accurate. In order to improve this feature, design of a lightweight CNN or
optimization of the inference speed can be achieved by quantization, which reduces the
weight, or pruning in order to remove unnecessary parameters from the algorithm. As
a result, these techniques can help to ensure that the CNN is able to detect potential
problems quickly and accurately, even with large PV modules.

Furthermore, it is imperative to acknowledge the dynamic nature of the solar in-
dustry, which necessitates adaptability in crack-detection methodologies. Different solar
panels exhibit diverse designs, textures, and production processes, while environmental
conditions fluctuate from one installation to another. This variability poses a challenge to
applying a single CNN model across the board. To surmount this difficulty, a concerted
effort to diversify datasets, incorporating samples from various solar panels, is essential.
Additionally, fine-tuning pre-trained networks like ImageNet for smaller datasets holds
promise for allowing models to recognize unique features across different panel types.

7. Conclusions

In conclusion, the application of convolutional neural networks (CNNs) has signifi-
cantly improved the accuracy and efficiency of crack detection in PV modules and solar
cells. The reviewed studies demonstrated the effectiveness of CNN-based approaches for
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detecting cracks and other defects in solar cells, with high accuracy rates ranging from
85.16% to 99.91%.

One of the key factors in achieving high accuracy rates is the availability of diverse
and representative datasets. The studies highlighted the importance of data-augmentation
techniques such as rotation, contrast flipping, and filter-induced augmentation flow to
enhance the training process and improve the accuracy of the CNN models. Additionally,
the use of pre-trained CNN architectures, such as VGG-16, AlexNet, and GoogLeNet, in
transfer learning approaches proved to be efficient and effective in crack detection.

However, CNN-based crack-detection methods still face challenges and limitations.
The scarcity of large and diverse datasets specific to different types of solar panels and
environmental conditions remains a significant limitation. Future work should focus on
collecting more diverse datasets to improve the capabilities of CNN models for generaliza-
tion. Interpretability and explainability of CNN models are also crucial to building trust
and reliability. Methods such as attention mechanisms and saliency maps can help provide
insights into the decision-making process of CNN models, making them more transparent
and accountable. Real-time detection is another important aspect to consider, especially for
large-scale PV installations. Optimizing the computational speed and efficiency of CNN
models through techniques like quantization and pruning can enable quicker and more
accurate detection, reducing potential damage and power losses.

Overall, CNN-based crack-detection methods have great potential to improve the
reliability and efficiency of PV modules and solar cells. As the existing limitations are
addressed and as research in this field continues, CNN models will be able to further
enhance crack detection and maintenance in the solar industry, contributing to the optimal
performance and longevity of solar energy systems.
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39. Starzyński, J.; Zawadzki, P.; Harańczyk, D. Machine Learning in Solar Plants Inspection Automation. Energies 2022, 15, 5966.
[CrossRef]

40. Nazzicari, N.; Biscarini, F. Stacked Kinship CNN vs. GBLUP for Genomic Predictions of Additive and Complex Continuous
Phenotypes. Sci. Rep. 2022, 12, 19889. [CrossRef] [PubMed]

41. Tapeh, A.T.G.; Naser, M.Z. Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: A Scientomet-
rics Review of Trends and Best Practices. Arch. Comput. Methods Eng. 2022, 30, 115–159. [CrossRef]

42. Kim, E.C.; Hong, S.J.; Kim, S.Y.; Lee, C.H.; Kim, S.; Kim, H.J.; Kim, G. CNN-Based Object Detection and Growth Estimation of
Plum Fruit (Prunus mume) Using RGB and Depth Imaging Techniques. Sci. Rep. 2022, 12, 20796. [CrossRef] [PubMed]

43. Meng, J.; Zhuang, C.; Chen, P.; Wahib, M.; Schmidt, B.; Wang, X.; Lan, H.; Wu, D.; Deng, M.; Wei, Y.; et al. Automatic Generation of
High-Performance Convolution Kernels on ARM CPUs for Deep Learning. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2885–2899.
[CrossRef]

44. Liu, W.; Wu, G.; Ren, F.; Kang, X. DFF-ResNet: An Insect Pest Recognition Model Based on Residual Networks. Big Data Min.
Anal. 2020, 3, 300–310. [CrossRef]

45. Sharma, V.; Mir, R.N. A Comprehensive and Systematic Look up into Deep Learning Based Object Detection Techniques:
A Review. Comput. Sci. Rev. 2020, 38, 100301. [CrossRef]

46. Su, Y.; Jiang, X. Prediction of Tide Level Based on Variable Weight Combination of LightGBM and CNN-BiGRU Model. Sci. Rep.
2023, 13, 9. [CrossRef]

47. Hwang, I.C.; Choi, D.; Choi, Y.J.; Ju, L.; Kim, M.; Hong, J.E.; Lee, H.J.; Yoon, Y.E.; Park, J.B.; Lee, S.P.; et al. Differential Diagnosis
of Common Etiologies of Left Ventricular Hypertrophy Using a Hybrid CNN-LSTM Model. Sci. Rep. 2022, 12, 9. [CrossRef]
[PubMed]

48. Fathi, A.; Masoudi, S.F. Combining CNN and Q-Learning for Increasing the Accuracy of Lost Gamma Source Finding. Sci. Rep.
2022, 12, 2644. [CrossRef] [PubMed]

49. Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; Rhee, W. Basic Enhancement Strategies When Using Bayesian Optimization for
Hyperparameter Tuning of Deep Neural Networks. IEEE Access 2020, 8, 52588–52608. [CrossRef]

50. Shinde, B.; Wang, S.; Dehghanian, P.; Babakmehr, M. Real-Time Detection of Critical Generators in Power Systems: A Deep
Learning HCP Approach. In Proceedings of the 2020 IEEE Texas Power and Energy Conference, TPEC, College Station, TX, USA,
6–7 February 2020. [CrossRef]

51. Pei, Y.; Huang, Y.; Zou, Q.; Zhang, X.; Wang, S. Effects of Image Degradation and Degradation Removal to CNN-Based Image
Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1239–1253. [CrossRef] [PubMed]

52. Yadav, S.S.; Jadhav, S.M. Deep Convolutional Neural Network Based Medical Image Classification for Disease Diagnosis. J. Big
Data 2019, 6, 113. [CrossRef]

53. Ben Fredj, H.; Bouguezzi, S.; Souani, C. Face Recognition in Unconstrained Environment with CNN. Vis. Comput. 2021, 37,
217–226. [CrossRef]

54. Li, X.; Xie, Z.; Deng, X.; Wu, Y.; Pi, Y. Traffic Sign Detection Based on Improved Faster R-CNN for Autonomous Driving. J.
Supercomput. 2022, 78, 7982–8002. [CrossRef]

55. Rajpurohit, K.; Sandhan, T. Improved Pneumonia Diagnosis of Radiological Images Using Hybrid Loss with Conventional
CNN. In Proceedings of the 2023 International Conference on Microwave, Optical, and Communication Engineering (ICMOCE),
Bhubaneswar, India, 26–28 May 2023; pp. 1–4. [CrossRef]

56. Poonkuntran, S.; Abinaya, V.; Moorthi, S.M.; Oza, M.P. Efficient Classification of Satellite Image with Hybrid Approach Using
CNN-CA. Int. J. Comput. Commun. Control. 2022, 17, 4485. [CrossRef]

57. Stahl, R.; Hoffman, A.; Mueller-Gritschneder, D.; Gerstlauer, A.; Schlichtmann, U. DeeperThings: Fully Distributed CNN Inference
on Resource-Constrained Edge Devices. Int. J. Parallel Program. 2021, 49, 600–624. [CrossRef]

58. Hassan, S.; Dhimish, M. Enhancing Solar Photovoltaic Modules Quality Assurance through Convolutional Neural Network-Aided
Automated Defect Detection. Renew. Energy 2023, 219, 119389. [CrossRef]

59. Wang, Z.; Xie, X.; Zhao, Q.; Shi, G. Filter Clustering for Compressing CNN Model with Better Feature Diversity. In IEEE
Transactions on Circuits and Systems for Video Technology; IEEE: Piscataway, NJ, USA, 2022. [CrossRef]

60. Bhusal, A.; Alsadoon, A.; Prasad, P.W.C.; Alsalami, N.; Rashid, T.A. Deep Learning for Sleep Stages Classification: Modified
Rectified Linear Unit Activation Function and Modified Orthogonal Weight Initialisation. Multimed. Tools Appl. 2022, 81,
9855–9874. [CrossRef]

https://doi.org/10.1016/j.rser.2022.112616
https://doi.org/10.1016/j.measurement.2023.112466
https://doi.org/10.3390/drones6110347
https://doi.org/10.3390/coatings11111361
https://doi.org/10.3390/en15165966
https://doi.org/10.1038/s41598-022-24405-0
https://www.ncbi.nlm.nih.gov/pubmed/36400808
https://doi.org/10.1007/s11831-022-09793-w
https://doi.org/10.1038/s41598-022-25260-9
https://www.ncbi.nlm.nih.gov/pubmed/36460731
https://doi.org/10.1109/TPDS.2022.3146257
https://doi.org/10.26599/BDMA.2020.9020021
https://doi.org/10.1016/j.cosrev.2020.100301
https://doi.org/10.1038/s41598-022-26213-y
https://doi.org/10.1038/s41598-022-25467-w
https://www.ncbi.nlm.nih.gov/pubmed/36470931
https://doi.org/10.1038/s41598-022-06326-0
https://www.ncbi.nlm.nih.gov/pubmed/35173217
https://doi.org/10.1109/ACCESS.2020.2981072
https://doi.org/10.1109/TPEC48276.2020.9042552
https://doi.org/10.1109/TPAMI.2019.2950923
https://www.ncbi.nlm.nih.gov/pubmed/31689183
https://doi.org/10.1186/s40537-019-0276-2
https://doi.org/10.1007/s00371-020-01794-9
https://doi.org/10.1007/s11227-021-04230-4
https://doi.org/10.1109/ICMOCE57812.2023.10166471
https://doi.org/10.15837/ijccc.2022.5.4485
https://doi.org/10.1007/s10766-021-00712-3
https://doi.org/10.1016/j.renene.2023.119389
https://doi.org/10.1109/TCSVT.2022.3216101
https://doi.org/10.1007/s11042-022-12372-7


Solar 2023, 3 683

61. Jeevanantham, R.; Vignesh, D.; Abdul, R.A.; Angeljulie, J. Deep Learning Based Plant Diseases Monitoring and Detection System.
In Proceedings of the 2nd International Conference on Sustainable Computing and Data Communication Systems, ICSCDS
2023—Proceedings, Erode, India, 23–25 March 2023; pp. 360–365. [CrossRef]

62. Waheed, S.R.; Rahim, M.S.M.; Suaib, N.M.; Salim, A.A. CNN Deep Learning-Based Image to Vector Depiction. Multimed. Tools
Appl. 2023, 82, 20283–20302. [CrossRef]

63. Fan, C.L.; Chung, Y.J. Design and Optimization of CNN Architecture to Identify the Types of Damage Imagery. Mathematics 2022,
10, 3483. [CrossRef]

64. Shahzad, A.; Raza, M.; Shah, J.H.; Sharif, M.; Nayak, R.S. Categorizing White Blood Cells by Utilizing Deep Features of Proposed
4B-AdditionNet-Based CNN Network with Ant Colony Optimization. Complex Intell. Syst. 2022, 8, 3143–3159. [CrossRef]

65. Hussain, M.; Al-Aqrabi, H.; Hill, R. PV-CrackNet Architecture for Filter Induced Augmentation and Micro-Cracks Detection
within a Photovoltaic Manufacturing Facility. Energies 2022, 15, 8667. [CrossRef]

66. Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. CNN Based Automatic Detection of
Photovoltaic Cell Defects in Electroluminescence Images. Energy 2019, 189, 116319. [CrossRef]

67. Verma, S.; Scholar, P.D.; Kumar Taluja, H.; Chaudhary, P. Automatic Defect Classification of Electro-Luminescence Images of
Photovoltaic Modules Based on Deep Learning CNN. Int. J. Mech. Eng. 2022, 6, 974–5823.

68. Rahman, M.R.; Tabassum, S.; Haque, E.; Nishat, M.M.; Faisal, F.; Hossain, E. CNN-Based Deep Learning Approach for Micro-
Crack Detection of Solar Panels. In Proceedings of the 2021 3rd International Conference on Sustainable Technologies for Industry
4.0, STI, Dhaka, Bangladesh, 8–19 December 2021. [CrossRef]

69. Et-taleby, A.; Chaibi, Y.; Allouhi, A.; Boussetta, M.; Benslimane, M. A Combined Convolutional Neural Network Model and
Support Vector Machine Technique for Fault Detection and Classification Based on Electroluminescence Images of Photovoltaic
Modules. Sustain. Energy Grids Netw. 2022, 32, 100946. [CrossRef]

70. Korkmaz, D.; Acikgoz, H. An Efficient Fault Classification Method in Solar Photovoltaic Modules Using Transfer Learning and
Multi-Scale Convolutional Neural Network. Eng. Appl. Artif. Intell. 2022, 113, 104959. [CrossRef]

71. Liu, L.; Zhu, Y.; Ur Rahman, M.R.; Zhao, P.; Chen, H. Surface Defect Detection of Solar Cells Based on Feature Pyramid Network
and GA-Faster-RCNN. In Proceedings of the 2nd China Symposium on Cognitive Computing and Hybrid Intelligence, CCHI,
Xi’an, China, 21–22 September 2019; pp. 292–297. [CrossRef]

72. Hassan, S.; Dhimish, M. Dual Spin Max Pooling Convolutional Neural Network for Solar Cell Crack Detection. Sci. Rep. 2023,
13, 11099. [CrossRef]

73. Le, M.; Le, D.V.; Ha Thi Vu, H. Thermal Inspection of Photovoltaic Modules with Deep Convolutional Neural Networks on Edge
Devices in AUV. Measurement 2023, 218, 113135. [CrossRef]

74. Benghanem, M.; Mellit, A.; Moussaoui, C. Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules
Using Thermographic Images. Sustainability 2023, 15, 7811. [CrossRef]

75. Fu, H.; Cheng, G. Convolutional Neural Network Based Efficient Detector for Multicrystalline Photovoltaic Cells Defect Detection.
Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 8686–8702. [CrossRef]

76. Kellil, N.; Aissat, A.; Mellit, A. Fault Diagnosis of Photovoltaic Modules Using Deep Neural Networks and Infrared Images under
Algerian Climatic Conditions. Energy 2023, 263, 125902. [CrossRef]

77. Pratt, L.; Govender, D.; Klein, R. Defect Detection and Quantification in Electroluminescence Images of Solar PV Modules Using
U-Net Semantic Segmentation. Renew. Energy 2021, 178, 1211–1222. [CrossRef]

78. Le, M.; Van Su, L.; Dang Khoa, N.; Dao, V.D.; Ngoc Hung, V.; Hong Ha Thi, V. Remote Anomaly Detection and Classification of
Solar Photovoltaic Modules Based on Deep Neural Network. Sustain. Energy Technol. Assess. 2021, 48, 101545. [CrossRef]

79. Hwang, H.P.C.; Ku, C.C.Y.; Chan, J.C.C. Detection of Malfunctioning Photovoltaic Modules Based on Machine Learning
Algorithms. IEEE Access 2021, 9, 37210–37219. [CrossRef]

80. Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Ahmad, A. Automatic Detection of Photovoltaic Module Defects in Infrared
Images with Isolated and Develop-Model Transfer Deep Learning. Sol. Energy 2020, 198, 175–186. [CrossRef]

81. Zhao, Y.; Zhan, K.; Wang, Z.; Shen, W. Deep Learning-Based Automatic Detection of Multitype Defects in Photovoltaic Modules
and Application in Real Production Line. Prog. Photovolt. Res. Appl. 2021, 29, 471–484. [CrossRef]

82. Chen, H.; Hu, Q.; Zhai, B.; Chen, H.; Liu, K. A Robust Weakly Supervised Learning of Deep Conv-Nets for Surface Defect
Inspection. Neural Comput. Appl. 2020, 32, 11229–11244. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICSCDS56580.2023.10104648
https://doi.org/10.1007/s11042-023-14434-w
https://doi.org/10.3390/math10193483
https://doi.org/10.1007/s40747-021-00564-x
https://doi.org/10.3390/en15228667
https://doi.org/10.1016/j.energy.2019.116319
https://doi.org/10.1109/STI53101.2021.9732592
https://doi.org/10.1016/j.segan.2022.100946
https://doi.org/10.1016/j.engappai.2022.104959
https://doi.org/10.1109/CCHI.2019.8901952
https://doi.org/10.1038/s41598-023-38177-8
https://doi.org/10.1016/j.measurement.2023.113135
https://doi.org/10.3390/su15107811
https://doi.org/10.1080/15567036.2023.2230935
https://doi.org/10.1016/j.energy.2022.125902
https://doi.org/10.1016/j.renene.2021.06.086
https://doi.org/10.1016/j.seta.2021.101545
https://doi.org/10.1109/ACCESS.2021.3063461
https://doi.org/10.1016/j.solener.2020.01.055
https://doi.org/10.1002/pip.3395
https://doi.org/10.1007/s00521-020-04819-5

	Introduction 
	Solar PV Module Cracks Impact on PV Output Power 
	Solar PV Module Cracks Detection Techniques 
	Fundamentals of Convolutional Neural Networks (CNN) 
	CNN-Based Crack Detection Methods 
	Discussion and Comparative Analysis 
	Conclusions 
	References

