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Abstract: For a photovoltaic (PV) generator, knowledge of the parameters describing its equivalent
circuit is fundamental to deeply study and simulate its operation in any weather conditions. In the
literature, many papers propose methods to determine these parameters starting from experiments.
In the most common circuit, there are five of these parameters, and they generally refer to specific
weather conditions. Moreover, the dependence on irradiance and temperature is not investigated for
the entire set of parameters. In fact, a few papers present some equations describing the dependence of
each parameter on weather conditions, but some of their coefficients are unknown. As a consequence,
this information cannot be used to predict the PV energy in any individual weather condition. This
work proposes an innovative technique to assess the generated energy by PV modules starting from
the knowledge of their equivalent parameters. The model is applied to a highly efficient PV generator
with all-back contact, monocrystalline silicon technology, and rated power of 370 W. The effectiveness
of the model is investigated by comparing its energy prediction with the value estimated by the most
common model in the literature to assess PV energy. Generated energy is predicted by assuming PV
power to be constant for a time interval of 1 min.

Keywords: high efficiency PV module; equivalent parameters; single diode model; parameters
extraction; simulated annealing; Nelder–Mead; Osterwald model; energy prediction

1. Introduction

In recent years, energy demand has been rapidly increasing due to many factors,
including the urbanization process and the increasing human population. Despite fossil
fuels still supplying most of the energy demand, one of the actual challenges is reducing
pollution by improving the exploitation of renewable energy sources (RES), and, thus, the
self-sufficiency [1] and self-consumption [2] by RES-based systems. In this context, the
most important and reliable technology is the photovoltaic (PV) device thanks to its low
installation, operation, and maintenance costs [3], its absence of polluting emissions, and
its high availability [4].

Researchers in the PV sector are focusing on different lines of research, and one of the
most important is the determination of the parameters in equivalent circuits [5], aiming
to fully describe the performance of PV modules. The knowledge of these parameters is
fundamental to deeply study and simulate the operation of a PV generator in any weather
condition. Indeed, the current-voltage (I-V) curve of a PV generator can be traced starting
from these quantities. Moreover, this information can be used in many applications such as
mismatch studies in complex grid-connected PV systems [6,7], performance investigation
of maximum power point trackers (MPPTs) under different weather conditions [8,9] or
in reliability studies to reduce the maintenance operations in PV plants [10]. In this field,
many models and algorithms are proposed in the literature to determine the equivalent
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parameters starting from experimental I-V curves [11]. The proposed models can be of three
types: empirical, analytical [12], or evolutionary [13]. The first category is created starting
from the observation of experimental data; it does not include complex models, but it may
provide unrealistic results and large experimental datasets are required to minimize this
risk. Analytical models are mathematical models able to provide a closed-form solution,
i.e., the solution is estimated using systems of analytic functions [14]. They provide fast,
stable, and exact solutions [15], however, their efficiency significantly decreases under
certain conditions, e.g., in case of nonlinear problems. Finally, evolutionary models are
effective solutions to investigate the performance related to the design and optimization
of complex problems [16]. They use optimization algorithms, and they are applicable
to complex geometries and nonlinear problems. However, the provided solutions are
approximated, and the solving process may be complex and requires a high computational
cost [17]. In the PV context, numerical models are, generally, used because they permit us
to determine the parameters of equivalent circuits at any condition. In particular, the most
common algorithms are the Levenberg–Marquardt [18], the simulated annealing (SA) [19],
the Nelder–Mead (NM) [20], the Newton–Raphson [21], the genetic [22], and the particle
swarm optimization algorithms [23].

This work uses a numerical model and proposes an innovative technique to assess
the generated energy by PV modules starting from the knowledge of their equivalent
parameters. The model is applied to a highly efficient PV generator with all-back contact
technology and rated power of 370 W. The quality of the model is investigated by estimating
the energy generated by the module: these data are compared with the experiments and
with the prediction by the most common model in the literature to assess PV energy [24].

The paper is organized as follows: Section 2 describes the main steps of the proposed
methodology. Section 3 presents the measurement system to acquire the current-voltage
(I-V) curve of the PV module under test. In Section 4, the main electrical specifications of
the tested module are reported. Section 5 presents the results of the methodology, while
Section 6 contains the conclusions.

2. Innovative Methodology

The present paper proposes an innovative methodology to assess the generated energy
by PV generators. This technique aims to provide lower deviations from experimental data
with respect to the model commonly used in the literature. This method consists of four
steps. The flowchart of the procedure is reported in Figure 1.
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2.1. Step #1—Data Preprocessing

Experimental data may be affected by mismatch, shading, measurement errors, or
other issues. In this step, proper filters are applied to the dataset under analysis to exclude
I-V curves affected by these issues. In this work, the I-V curves are traced by charging
an external capacitive load. However, after the closing of the circuit, fast current peaks
and fluctuations may occur with low voltage across the capacitor terminals due to internal
parasitic parameters (typically, junction capacitance and, sometimes, inductance linked
to the series connection of many cells). Therefore, the first filter aims to remove these
current peaks and fluctuations. In the present work, at the beginning of the acquisition, the
capacitor is negatively pre-charged. This procedure permits current peaks and fluctuations
when the voltage across the terminals of the capacitive load is still negative. Hence, this
filter excludes I-V points with V < 0.

Then, a weighted reduction of experimental points may be performed to make the
distribution of points in the curves almost uniform between the short-circuit and the open-
circuit states. The voltage step between each I-V point is computed, and the data are filtered
in order to keep a specific number of points in each curve. In this work, each I-V curve
consists of 200 points.

A third filter based on the evaluation of the monotonicity index Imon for the curves is
applied to remove I-V curves affected by mismatch or mechanical defects (i.e., cracks). For
each curve, Imon, which ranges between 0 and 1 (perfectly monotonic curve), is computed
as follows:

Imon =

∣∣∣∣N−1
∑

k=1

f (Ik+1−Ik)
N−1

∣∣∣∣
f (Ik+1 − Ik) = 1 i f Ik+1 > Ik
f (Ik+1 − Ik) = 0 i f Ik+1 = Ik

f (Ik+1 − Ik) = −1 i f Ik+1 < Ik

(1)

where Ik and Ik+1 are the kth and (k + 1)th current values in the I-V curve, respectively, and
N is the number of points of each characteristic curve.

Finally, an additional filter removes the curves acquired under variable irradiance and
wind speed (vwind). This filter computes the irradiance difference ∆G between the values
at the beginning (Ginit) and at the ending (Gend) of the I-V curve tracing, removing the
curves with:

∆G
Ginit

> 3%, vwind > 5
m
s

(2)

2.2. Step #2—Parameters Extraction

The I-V curve of PV generators can be described by proper equivalent circuits with
different parameters. In this step, the five parameters of the single diode model (SDM) [25]
are numerically determined using proper algorithms. First, the following acceptance ranges
for the five parameters of the SDM are set (Table 1):

Table 1. Suggested acceptance ranges for the parameters of the SDM.

Parameter Range

Iph 0–15 A

I0 0–10−3 A

n 0–4

Rs 0–1 Ω

Rsh 0–20,000 Ω

Measurements with numerically determined parameters not included in these ranges
will be excluded from the analysis.
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Then, the main constraints of the adopted algorithms are set. In this case, a cascading
combination of the simulated annealing and Nelder–Mead algorithms is used. Indeed, the
convergence of the Nelder–Mead algorithm is not guaranteed because its behavior in the
neighborhood of local minima of the objective function is not optimal. For this reason, first,
the simulated annealing algorithm is applied to identify an initial set of parameters for the
Nelder–Mead algorithm sufficiently far from local minima. The suggested constraints for
the two algorithms are the following in Table 2:

Table 2. Suggested constraints for the SA/NM algorithms.

Tolerance 10−30

Maximum number of iterations 10,000

The initial values for the parameters of the SDM are analytically determined accord-
ing to the method proposed in Section II of [26]. Then, the parameters are numerically
determined with the algorithms by solving the following equation of the SDM:

I = Iph − I0·
(

e
q·Vj

n·kB ·T − 1

)
− (V + Rs I)

Rsh
(3)

where q is the electron charge (1.6·10−19 C), kB is the Boltzmann constant (1.38·10−23 J/K),
Vj is the voltage across the terminals of the p-n junction, Iph is the photogenerated current,
I0 is the reverse saturation current, n is the diode ideality factor, Rs is the series resistance,
and Rsh is the shunt resistance.

Finally, their values are validated. First, it is verified that the obtained parameters
are included in the acceptance ranges of step #2a. Then, the I-V curve is traced according
to previous equation using the obtained parameters, and the power deviation ∆P at the
maximum power point is evaluated. Curves with ∆P > 1% are excluded from the analysis.
The flowchart of step #2 is reported in Figure 2.
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2.3. Step #3—Nonlinear Regression

As previously mentioned, the equations describing the dependency of each parameter
on weather conditions are the following [18]:

Iph = a · [1 + α · (Tc − Tc,STC)] ·
G

GSTC
(4)

where α is the temperature coefficient for short-circuit current (1/K), Tc is PV temperature,
Tc,STC is 25 ◦C, G is solar is solar irradiance (W/m2), GSTC is 1000 W/m2, a is the coefficient
to be optimized, which is the photogenerated current at STC.

I0 = b ·
(

Tc

Tc,STC

)3
· exp

((
Eg,STC

TSTC
−

Eg(Tc)

Tc

)
· 1

kB

)
(5)

where Eg(Tc) and Eg,STC are the energy gap of the semiconductor material evaluated
at temperature Tc and at STC, respectively. The coefficient b will be optimized, and it
corresponds to the reverse saturation current at STC.

n = c + d · G + e · Tc (6)

The behavior of n is not clear in the literature. Thus, a polynomial dependence on
G and Tc is supposed by means of coefficients c, d and e. This assumption will be valid
according to the results of step #3.

Rs = f · Tc

Tc,STC
·
(

1 − g · log
(

G
GSTC

))
(7)

where g is an adimensional coefficient quantifying the dependence of Rs on G, while the
coefficient f is the series resistance at STC.

Rsh = h · GSTC

G
(8)

where h corresponds to the shunt resistance at STC.
However, [18] does not provide information regarding the green coefficients. In this

step, these coefficients are numerically determined and optimized: nonlinear regressions
are applied using iterative least squares estimations starting from the parameters deter-
mined from the experiments. In particular, the following least squares indicator needs to
be minimized:

min
N

∑
i=1

(
yi,exp − yi,mod

)2 (9)

This indicator evaluates the deviation between the generic parameter from experi-
ments (yi,exp) and the parameter estimated by the model (yi,mod) at the ith couple of weather
condition (irradiance and temperature). Its minimization is iterative and permits to identify
the optimal coefficients in green.

2.4. Step #4—Power and energy estimation

This step consists of using the optimized equations to evaluate, for each weather
condition (irradiance and temperature) from the experimental campaign, the maximum
PV power, and the generated energy in the campaign. For each measurement, the corre-
sponding weather conditions are used to estimate the values of the parameters for the SDM
according to the optimized equations from previous step. Then, the I-V curves are traced
by solving Equation (3), and the maximum power is identified. This value is compared
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with the experimental data and with the corresponding quantity estimated by the most
common model used in the literature, i.e., the Osterwald model (OM) [24]:

P = PSTC·G/GSTC·(1 + γ·∆T) (10)

where PSTC is the rated power in STC, γ is the temperature coefficient for power (provided
by the manufacturer), and ∆T = (Tc − 25 ◦C). Finally, the generated energy is computed
by assuming PV power to be constant for an extended time interval (1 min) with respect
to the duration of the transient charging of the capacitor (<<1 s at high irradiance). The
deviations between the experimental data and the values estimated by the different models
are calculated as:

∆Eopt =
(
Eopt − Eexp

)
/Eexp (11)

∆Eopt =
(
EOst − Eexp

)
/Eexp (12)

where Eopt and EOst are the energy values evaluated by the optimized equations and by the
OM, respectively, and Eexp is the quantity from experiments.

3. Measurement System

Four procedures can be adopted to trace the I-V curve of PV generators and they are
based on different principles of operation to control the current provided by the PV module
between the short-circuit (V = 0, I = Isc) and the open-circuit state (V = Voc, I = 0) [27]. In
particular, they are based on the transient charge of a capacitive load, on a resistive load
with variable resistance, on an electronic load, or on a MPPT.

In this work, the first method is used: the PV generator feeds a capacitive load that
is initially discharged. In the circuit, a power breaker permits control of the opening and
closing of the circuit. When the breaker closes the circuit, the load is fulfilled by the PV
generator from short-circuit to open-circuit conditions. A common issue with this method
is that current peaks may occur at the beginning of the charging transient, i.e., immediately
after the circuit is closed. A common practice is to exclude this first part of the acquired
signals from subsequent analyses. However, this operation leads to a loss of information
close to the short-circuit point. To solve this issue, a negative pre-charge may be applied
to the capacitive load: this procedure permits current peaks when voltage is still negative.
As a consequence, the excluded region of the I-V curve is not of interest and the loss of
information is avoided. The capacitance of the capacitive load must be properly selected
as a function of the desired duration of the charging transient t. Indeed, according to [28],
this quantity is a function of the short-circuit current Isc, the open-circuit voltage Voc, the
number of parallel-connected PV strings Np, the number of PV modules in series per
string Ns (each module consists of Nc series-connected cells), and the capacitance C of the
capacitor in the following way:

t = 1.82·C·Ns·Voc

Np·Isc
(13)

During the measurement of single PV modules, a capacitor with C equal to 10 mF
is suggested in order to achieve a transient duration between 0.1 and 0.2 s. In this work,
the I-V curves of the PV module are traced using an automatic data acquisition system
(ADAS) to store simultaneously the irradiance G, the air temperature Ta, and the current
and voltage signals. The acquisition of the I-V curves is performed with a capacitive load,
and the duration of its charging transient is < 1 s at each irradiance level. The ADAS is
periodically calibrated and it consists of the components listed below [29]:

• A notebook PC with a LabVIEW software to emulate a digital storage oscilloscope.
• A multifunction data acquisition board with one A/D converter (successive approxi-

mation technology, 16 bit-resolution, sampling rate up to 1.25 MSa/s, maximum input
of ±10 V, internal amplifier gains for lower ranges) and multiplexer.

• A differential voltage probe with two attenuation ratios 20:1 and 200:1 for voltage
levels up to 140 V and 1400 V, respectively.
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• Two current probes (Hall effect) with an output sensitivity of 100 mV/A for current
values up to ±30 A, one for current measurement and the other one for trigger source.

• A pyranometer to acquire irradiance with uncertainty < 2%.
• A thermometer to acquire ambient temperature.
• A temperature probe to acquire the temperature on the rear side of the module.
• A capacitive load with capacitance equal to 10 mF.

The schematic of the measurement circuit is presented in Figure 3.
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4. PV Module under Test

The procedure presented in this work is applied to an all-back contact monocrystalline
PV module. The performance of the module was tested before applying the proposed
technique: in particular, the I-V curve of the module was determined at standard test con-
ditions (STC) and it was compared with the data provided by the manufacturer. Moreover,
an electroluminescence (EL) test [30] was performed to check the presence of defects or
mechanical cracks. In particular, the power deviation with respect to manufacturer data is
in the uncertainty range of the measurement system, and the EL image in Figure 4 confirms
the absence of defects and cracks. According to the manufacturer datasheet, the main
electric parameters of the analyzed PV module are summarized in Table 3.

Table 3. Electrical parameters of PV module from manufacturer datasheet.

Rated power PPV 370 W

Short-circuit current Isc 10.82 A

Open-circuit voltage Voc 42.8 V

Current temperature coefficient α 0.04%/◦C

Voltage temperature coefficient β −0.24%/◦C

Power temperature coefficient γ −0.3%/◦C

Nominal Operating Cell Temperature NOCT 44 ◦C

Number of cells in series Nc 60
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5. Results

The experimental campaign of the module under analysis took place at the Politecnico di
Torino (Turin, Italy) in 2021 from March to May, being tested in different weather conditions
(62 I-V curves acquired). Figure 5 shows the distribution of the irradiance (yellow bars) and
module temperature (blue bars) levels at which the PV performance was measured.
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Figure 5. Irradiance (a) and module temperature (b) distribution.

In particular, the irradiance levels range between ≈150 W/m2 and ≈1100 W/m2, while
the module temperature is in the range ≈25 ◦C−≈60 ◦C. Moreover, the temperature of
the module and the wind speed were checked before each test in order to perform the
measurements under constant module temperature and in absence of wind. Regarding the
numerical extraction of the parameters, a combination of the simulated annealing and the
Nelder–Mead algorithms was adopted. Figure 6 shows the distribution of the normalized
root mean square error (NRMSE) for the I-V curve and of the error at the maximum power
point (MPP). The first quantity estimates the deviation between the experimental data and the
curve determined by the parameters of the equivalent circuit, and it is evaluated as follows:

NRMSE =

√
∑N

i=1(Ii,mod−Ii,exp)
2

N

∑N
i=1 Ii, exp

N

· 100 (14)
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where Ii,exp is the current value for the ith point of the I-V curve from experiments, and
Ii,mod is the corresponding current value calculated by the model using the parameters
of the equivalent circuit. The second parameter is the percentage deviation between the
power evaluated at the MPP from experiments and using the parameters.
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The numerical extraction was properly performed, obtaining most of NRMSEs < 6·10−3

and most of the errors at the MPP are in the range −0.5% − +0.5%. The results of step #3 are
presented in Figure 7.
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Figure 7. Parameters of the equivalent circuit as functions of G and Tc: Iph (a), I0 (b), n (c,d), Rs (e,f),
and Rsh (g).

The optimized equations (blue curves) and the parameters from experiments (red
dots) are presented for each quantity. The optimized coefficients are reported in Table 4.

Table 4. Coefficients of the optimized equations.

a 10.47 A

b 4.17·10−8 A

c 2.48

d 7.37·10−4 m2/W

e −4.62·10−3 1/K

f 0.0037 Ω

g 17.19

h 112.1 Ω

The effectiveness of the technique is validated by estimating the generated PV power
in the measurement conditions. These values (blue curve in Figure 8) are compared with
the experiments (green dots) and with the prediction by the OM (red curve). The technique
performs better than Osterwald, providing a NRMSE in power prediction of 6.7%. The
improvement with respect to the Osterwald error (9.1%) is ≈26%. The energy estimation
is performed by assuming constant PV power in a time interval of 1 min. The proposed
model underestimates the generated energy (∆Eopt = −0.19%), while the prediction by
the OM is overestimated (∆EOst = +8.28%) with respect to the experiments. In a future
work, this method will be applied to wider experimental datasets. Figure 9 presents the
irradiance and air temperature distribution for a reference year in Turin (hourly updated,
for a PV installation with azimuth = 0◦ and tilt angle = 30◦) during sunlight hours.

According to Figure 8, the Osterwald model performs better in the irradiance range
≈600–≈800 W/m2: however, according to Figure 9, most of irradiance levels (≈86%)
are not included in this range. Thus, the proposed model is expected to outperform the
Osterwald model with wider datasets as well.
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6. Conclusions

For a PV generator, the knowledge of its equivalent parameters is fundamental to
deeply study and simulate its operation in any weather condition. In the literature, many
papers propose methods to extract these parameters from measurements. However, gen-
erally, they refer to specific weather conditions, and their dependence on irradiance and
temperature is not investigated. Moreover, a few papers present some equations describing
the dependence of each parameter on weather conditions, but some of their coefficients are
unknown. As a consequence, this information cannot be used to predict the PV energy in
any weather condition. This work proposes an innovative technique to assess the generated
energy by PV modules starting from the knowledge of their equivalent parameters. The
model is applied to a highly efficient PV generator with all-back contact, monocrystalline
silicon technology, and rated power of 370 W. An experimental campaign was carried out
for this module at Politecnico di Torino (Turin, Italy) in three months of 2021. The module
was tested under a wide range of irradiance (width of 850 W/m2) and module temperature
(35 ◦C width of the range). Starting from the equations known in the literature to describe
the dependency of each parameter on weather condition, experimental data were used to
optimize the values of their coefficients. The PV power generated during the experimental
campaign was estimated according to these optimized equations and with the Osterwald
model. The deviations with respect to the experiments are quantified by evaluating the
corresponding NRMSE for power estimation and estimating the energy deviations from ex-
perimental data. The results show that the optimized equations outperform the Osterwald
model, reducing the NRMSE on power prediction by ≈26%. Moreover, regarding energy
prediction, the error by the model (−0.19%) is noticeably lower than Osterwald (+8.28%).
In the future, this method will be applied to wider experimental datasets, and is expected to
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outperform the Osterwald model in this condition as well. Finally, in future works, more PV
modules will be tested, and the risk of overfitting will be minimized by proposing different
sets of coefficients for different groups of PV modules. The classification of the modules
will be performed according to some criteria (for example, according to the manufacturing
date, the rated power, the position of the electrical contacts or other properties).
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