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Abstract: Fully printable carbon-based perovskite solar cells (C-PSCs) represent some of the most
promising perovskite solar cell (PSC) architectures. Highly scalable, stable, and low in cost—these
devices consist of a TiO2 compact layer (C-TiO2) and three sequentially screen-printed mesoporous
layers of TiO2, ZrO2, and carbon, through which perovskite is infiltrated. While there has been
remarkable progress in optimizing and scaling up deposition of mesoporous layers and perovskite,
few publications have focused on optimizing C-TiO2. In this work, we investigate the potential
for substituting commonly used spray pyrolysis with more easily scaled screen-printing. It was
found that when comparing layers of similar thickness, 1 cm2 devices fabricated with printed C-TiO2

exhibited similar power conversion efficiency (PCE) to those fabricated with spray pyrolysis. In
contrast, thicker-printed C-TiO2 led to lower efficiency. The influence of TiCl4 treatment on the quality
of produced compact layers was also examined. This proved beneficial, mostly in the printed films,
where a champion PCE of 13.11% was attained using screen-printed, TiCl4 treated C-TiO2. This work
proves that screen-printing is a viable replacement for spray pyrolysis in C-PSCs fabrication.

Keywords: compact TiO2 layer; screen printed C-TiO2; TiCl4 treatment; carbon-based perovskite
solar cells; enhanced efficiency

1. Introduction

Organic–inorganic lead halide perovskite materials have been successfully used as
light absorbers in efficient photovoltaic devices due to their exceptional optoelectronic
properties. The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has
risen very rapidly since 2009, with the latest record standing at 25.7%, competing with the
performance of commercially available photovoltaic devices [1–7]. However, problems
such as the high cost of hole transporting materials (HTMs) and metal electrodes, as well
as issues related to stability and upscaling devices, still represent significant barriers to
commercialization [8,9].

All printable, hole transporter-free carbon-based perovskite solar cells (C-PSCs), first
presented by Ku et al. in 2013 [10], currently show the most potential to overcome the above
issues. This device (Figure 1) consists of a conductive fluorine-doped tin dioxide (FTO) glass
substrate, a layer of compact titania (C-TiO2), an n-type mesoporous layer (usually TiO2),
a mesoporous insulating layer (usually ZrO2 or Al2O3), and a porous conductive carbon
top contact. The perovskite precursor solution is deposited by liquid infiltration through
the stack [11,12]. The absence of expensive noble metals and HTMs significantly decreases
the device cost. Additionally, replacing noble metals with a hydrophobic carbon electrode
prevents moisture accessing the perovskite and improves device stability [13,14]. In fact,
in 2020 a printable (5-AVA)XMA1-XPbI3 C-PSC passed >9000 h IEC61215:2016 standard
maximum power point tests without significant performance loss [14].
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Figure 1. (a) Schematic representation and fabrication method of standard C-PSC. (b) Image of a 1 
cm2 active area C-PSC. 

C-PSCs are often cited as promising candidates for commercialization, because of 
their low cost, high stability, and the use of industrially applicable screen-printing pro-
cesses [15,16]. Multiple publications exist on enhancing efficiency by optimizing the func-
tional layers (electron transporting layer, insulator, and carbon) [17–21] and modifying 
the perovskite formulation, with the current highest reported PCEs standing at more than 
18% [22–24]. The use of mixed cations/anions perovskites has typically delivered solar 
cells with high efficiency and stability; however, in the case of triple mesoporous C-PSCs, 
MAPbI3 perovskite is the most well-established absorber due to its convenience and effec-
tiveness in infiltration [15,16]. In addition, the use of (5-AVA)XMA1-XPbI3 has led to the 
most stable carbon perovskite solar cell reported, achieved through the strengthening of 
the MAPbI3 with the bifunctional organic molecule 5-AVA leading to a reduction in de-
composition or reconstruction [14]. In terms of the industrially applicable screen-printed 
processes, large-area modules have been produced already using MAPbI3∙AVA perov-
skites, with recorded PCEs of 10 and 11% at 10 × 10 cm2 [25,26], ~6% at A4 size [27], and 
>9% at 220 cm2 with the use of an alternative, nontoxic solvent system [28].  

In the majority of these publications, the mesoporous layers are deposited using 
screen-printing, whereas the C-TiO2 layer is usually deposited via spray pyrolysis. This 
fact represents one significant barrier to the fabrication of large area C-PSC devices, since 
spray pyrolysis does not allow high versatility in pattern control, and it is not as easily 
scalable as screen-printing.  

The compact layer is essential to PSC performance as it prevents direct contact be-
tween holes formed in the perovskite and FTO electrode. Such contact results in signifi-
cant charge recombination and voltage loss for the device [29–34]. Therefore, an efficient 
C-TiO2 needs to be uniform and pinhole-free. Furthermore, it has to be transparent: if the 
transmittance of C-TiO2 reduces, the PCE falls due to decreased light absorption. Moreo-
ver, the compact layer thickness must be minimised to reduce series resistance. It has also 
been proven that the thickness of this layer can strongly affect the hysteresis and the per-
formance of C-PSCs [35] and of planar perovskite devices as well [36]. 

Due to the limited scalability of spray pyrolysis, alternative deposition methods for 
C-TiO2 have been studied. In conventional architectures, Smith et al. used commercially 
available glass substrates that incorporate chemical vapor deposited fluorine doped tin 
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1 cm2 active area C-PSC.

C-PSCs are often cited as promising candidates for commercialization, because of
their low cost, high stability, and the use of industrially applicable screen-printing pro-
cesses [15,16]. Multiple publications exist on enhancing efficiency by optimizing the
functional layers (electron transporting layer, insulator, and carbon) [17–21] and modifying
the perovskite formulation, with the current highest reported PCEs standing at more than
18% [22–24]. The use of mixed cations/anions perovskites has typically delivered solar
cells with high efficiency and stability; however, in the case of triple mesoporous C-PSCs,
MAPbI3 perovskite is the most well-established absorber due to its convenience and ef-
fectiveness in infiltration [15,16]. In addition, the use of (5-AVA)XMA1-XPbI3 has led to
the most stable carbon perovskite solar cell reported, achieved through the strengthening
of the MAPbI3 with the bifunctional organic molecule 5-AVA leading to a reduction in
decomposition or reconstruction [14]. In terms of the industrially applicable screen-printed
processes, large-area modules have been produced already using MAPbI3·AVA perovskites,
with recorded PCEs of 10 and 11% at 10 × 10 cm2 [25,26], ~6% at A4 size [27], and >9% at
220 cm2 with the use of an alternative, nontoxic solvent system [28].

In the majority of these publications, the mesoporous layers are deposited using
screen-printing, whereas the C-TiO2 layer is usually deposited via spray pyrolysis. This
fact represents one significant barrier to the fabrication of large area C-PSC devices, since
spray pyrolysis does not allow high versatility in pattern control, and it is not as easily
scalable as screen-printing.

The compact layer is essential to PSC performance as it prevents direct contact between
holes formed in the perovskite and FTO electrode. Such contact results in significant charge
recombination and voltage loss for the device [29–34]. Therefore, an efficient C-TiO2 needs
to be uniform and pinhole-free. Furthermore, it has to be transparent: if the transmittance
of C-TiO2 reduces, the PCE falls due to decreased light absorption. Moreover, the compact
layer thickness must be minimised to reduce series resistance. It has also been proven
that the thickness of this layer can strongly affect the hysteresis and the performance of
C-PSCs [35] and of planar perovskite devices as well [36].

Due to the limited scalability of spray pyrolysis, alternative deposition methods for
C-TiO2 have been studied. In conventional architectures, Smith et al. used commercially
available glass substrates that incorporate chemical vapor deposited fluorine doped tin
oxide C-TiO2 [37]. Perovskite devices produced with this substrate proved superior to those
where C-TiO2 was deposited via spray pyrolysis. In C-PSCs, the atomic layer deposition
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(ALD) has been reported as a successful alternative method for depositing the compact
layer [38]. Screen-printing has been trialled in other perovskite solar cell architectures but
was previously found to be less effective than chemical bath deposition or spin coating
due to low C-TiO2 coverage on the FTO substrate [39]. In this work, we overcome these
previous challenges and present pinhole-free screen-printed compact layers, with optimum
thickness that leads to highly efficient C-PSCs, proving that this is a viable method for
device fabrication.

It has also been proven that the high temperature annealing of C-TiO2 forms oxygen
vacancy defects, which act as charge recombination centres [40]. In the case of screen-
printed compact layers, the TiCl4 treatment is potentially more important, if we consider
the less even screen-printed areas, which could be more prone to oxygen vacancies at high
temperature as they are rougher and, therefore, have higher surface areas.

Post-annealing treatment with TiCl4 has been widely used for reducing such surface
traps, decreasing charge recombination at the TiO2/perovskite interface in perovskite solar
cells and C-PSCs [41–45]. However, while some publications have previously reported
highly efficient C-PSCs that incorporate TiCl4 treated screen-printed C-TiO2 [46,47], they
did not focus on the compact layers and the effect of the TiCl4 treatments was not discussed.
Here, we investigate the impact of such treatments on different deposited compact layers
and subsequent device performance, to further understand the influence of TiCl4, in
MAPbI3.AVA triple mesoporous C-PSCs.

2. Materials and Methods
2.1. Materials

Conductive fluorine-doped tin oxide glass (FTO, TEC7, XOP) was used as the sub-
strate. Samples and devices were prepared using the following: anhydrous 2-propanol (IPA,
99.5%), carbon paste (Gwent electronic materials (UK)), ZrO2 paste (Solaronix (Switzer-
land)), TiO2 paste (30NR-D, Dyesol (Australia)), terpineol (95%, Sigma-Aldrich (UK)), tita-
nium diisopropoxide bis(acetylacetonate) (TAA, 75% in IPA, Sigma-Aldrich), Ti-Nanoxide
BL/SP (Solaronix), and Titanium (IV) chloride tetrahydrofuran complex (Sigma Aldrich).
PbI2 (99%, Sigma-Aldrich), MAI (CH3NH3I, anhydrous, Dyesol), 5-ammonium valeric acid
iodide (5-AVAI, Dyesol), and γ-Butyrolactone (Sigma Aldrich) were used as received for
the preparation of perovskite precursors.

2.2. Fabrication of TiO2 Compact Layers

FTO substrates were cleaned with a solution of ~2% Hellmanex in deionised water,
rinsed with acetone and IPA, and a 5 min plasma clean in O2. Samples with sprayed
compact TiO2 layers were prepared by spray pyrolysis of 10% titanium diisopropoxide
bis(acetylacetonate) in IPA at 300 ◦C. Two different screen-printed compact layers, in terms
of thickness, were prepared as well. One printing of Ti-Nanoxide BL/SP commercial paste
with a screen of 130-34 led to similar thickness to the sprayed one, while two printings with
the same conditions led to higher thickness. After the printings, the samples were annealed
at 550 ◦C.

For the TiCl4 treatment, samples were dipped into a 0.05 M TiCl4 solution in H2O for
30 min. Samples were then copiously rinsed and calcined at 500 ◦C.

2.3. Device Fabrication

For the device fabrication, FTO substrates were patterned with a Nb:YVO4 laser
(532 nm) before the cleaning procedure. After the deposition of C-TiO2 (by spray pyrolysis
or screen-printing together with the TiCl4 treatment), the mesoporous TiO2 paste was
diluted 1:1 by weight in terpineol, screen-printed, and sintered at 550 ◦C. Next, the meso-
porous ZrO2 and carbon were sequentially screen-printed, and each annealed at 400 ◦C.
A perovskite precursor solution (0.439 g PbI2, 0.1514 g MAI and 0.0067 g 5-AVAI in 1 mL
γ-Butyrolactone) was then drop cast (15 µL) onto the cooled stack. Devices were left in air
for 10 min to allow the solution to percolate through the stack, before annealing in an oven
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for 1 h at 50 ◦C (Figure 1). The finished cells were then exposed to a standard 70% relative
humidity process at 40 ◦C for 24 h to induce a recrystallisation [48] and then dried under
vacuum before measuring.

2.4. Characterization Techniques

Optical transmission spectra of the tested TiO2 compact layers was examined using
a Perkin Elmer UV/vis/NIR spectrophotometer Lambda 750 with a 100 mm InGaAs
integrating sphere. Scans from 800 to 300 nm were taken with a 10 nm data interval at
266.75 nm min−1 with transmission mode.

The morphology of the tested films was examined using a HITACHI scanning electron
microscope (SEM), while films thicknesses (Figure 1) were measured with a DEKTAK
150 profilometer system.

Cyclic voltammetry (CV) was conducted using a Zahner ZENNIUM X electrochemical
workstation. Samples were mounted against an O-ring to define the area exposed to the
electrolyte (~1 cm2). Measurements were performed at a scan rate of 50 mV s−1 in an
electrolyte containing 0.5 mM potassium ferricyanide/ferrocyanide in aqueous 0.5 M KCl
against a Ag/AgCl (3M KCl) reference electrode

IV testing of the cells was performed under a class AAA solar simulator (Newport
Oriel Sol3A) at AM1.5 and 100 mW cm−2 illumination, calibrated using a KG5 filtered
reference cell. The cell area was masked to 0.49 cm2 and devices were light soaked for 3 min
before current density (J)–voltage (V) sweeps were performed from open-circuit voltage
(VOC) to short-circuit current density (JSC) and vice-versa, at a rate of 330 mV/s using a
Keithley 2400 source meter. For stabilised power output measurements, device bias was
set to the maximum power point voltage as determined by the J–V sweep and current
monitored under 100 mW cm−2 illumination for 200 s.

3. Results and Discussion

To investigate the viability of screen-printing for the C-TiO2 deposition, two different
thicknesses were screen-printed on FTO substrates and compared to those deposited with
the standard spray pyrolysis method. The sprayed control samples (C) were found to be
40–50 nm. For the screen printed, a single print (S1) formed a 45–60 nm film, while two
prints (S2) (without drying between printing) formed a 70–90 nm layer. Samples of each
type were also exposed to a TiCl4 treatment, to produce C+, S1+, and S2+ (Table 1).

Table 1. Nomenclature of the different C-TiO2 samples.

Type of C-TiO2 Samples Nomenclature

Sprayed control samples C

Single printing samples S1

Two printing samples S2

Control samples (sprayed) + TiCl4 treatment C+

Single printing samples + TiCl4 treatment S1+

Two printing samples + TiCl4 treatment S2

During PSC operation, light accesses the device via the glass/FTO substrate. Therefore,
the most efficient compact layers will exhibit high transmission. Figure 2 shows optical
transmission spectra for all tested compact layers, as well as plain FTO glass. Although
coated samples exhibit lower transmission to plain FTO glass, they still exhibit high average
optical transmissions of between 77% and 84% across the visible spectrum. Printed layers
record higher transmission than sprayed, while the TiCl4 treatment reduces the value by
around 4% for each case.
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similar, with both showing good FTO coverage. However, in the case of S2, there are some 
visible white spots, which likely correspond to pinholes. These pinholes can be attributed 
to the excessive thickness of the S2 sample: previous reports have proved that the cracking 
of TiO2 layers increases with the thickness of the layer, especially at FTO crystal bounda-
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Figure 2. Optical transmission spectra for the tested compact layers and plain FTO glass. The
embedded table shows the average transmission (AT) of the samples across the visible spectrum.

Surface SEM was performed to examine the C-TiO2 surface coverage and check for
pinholes. As shown in in Figure 3, the sprayed sample and S1 printed sample look very
similar, with both showing good FTO coverage. However, in the case of S2, there are some
visible white spots, which likely correspond to pinholes. These pinholes can be attributed
to the excessive thickness of the S2 sample: previous reports have proved that the cracking
of TiO2 layers increases with the thickness of the layer, especially at FTO crystal boundaries,
due to higher tension forces exerted on films in these areas [36,49]. Such pinholes could
act as charge recombination centres and compromise Voc and the fill factor (FF) of the
corresponding S2 C-PSCs.
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Surface SEM images with higher resolution are shown in Figure 4, where we can
more clearly observe individual C-TiO2 crystals and see the impact of TiCl4 treatment. The
printed samples are very conformal, with more angular crystals compared to the sprayed
one. In addition, the impact of the TiCl4 treatment is significantly evident on the printed
samples (especially on the S2), whereas not so evident on the surface of the sprayed sample.
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This fact suggests that the angular crystals of the printed layers are potentially a more
suitable surface for the binding of TiCl4.
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Cyclic voltammetry is an electrochemical technique that can provide useful informa-
tion for the quality of a compact layer on an FTO surface [50]. Figure 5 shows cyclic
voltammograms of different C-TiO2 films and plain FTO exposed to potassium ferri-
cyanide/ferrocyanide electrolyte. In this experiment, the ferricyanide/ferrocyanide solu-
tion acts as a model redox system in a three-electrode cell, while the tested sample acts
as a working electrode. The molecules of the potassium ferricyanide/ferrocyanide redox
couple are small enough to penetrate small pinholes and cracks in the C-TiO2 to reach
the underlying FTO. The C-TiO2 surface coverage can therefore be estimated using the
magnitude of the anodic current density in the cyclic voltammogram, as the C-TiO2 should
form a dielectric contact with the redox couple and so repress the anodic current. Therefore,
any anodic current will be a consequence of exposed FTO.

As there is minimal current, all the C-TiO2 samples present blocking ability over the
voltage range compared to bare FTO. TiCl4 treatment decreases the anodic current in all
the samples but has a higher effect in the case of the S2 printed layer, which seems to be of
worse quality compared to S1 and sprayed layers. This result confirms our observations
from the surface SEM images where the presence of some pinholes on S2 surface were
evident and the TiCl4 treatment had higher impact on it.

C-PSCs fabricated with the different C-TiO2 layers and the statistical results of their
performance are shown in Figure 6 and Table 2. S1 devices recorded average PCEs of
11.61 ± 0.37%, which is comparable with the average PCEs of the sprayed C-TiO2 de-
vices (11.72 ± 0.24%). Printed devices exhibited higher currents compared to the cells
with sprayed C-TiO2, which could be due to the slightly higher transmittance. Higher
transmittance results in higher light absorption into the perovskite layer and, therefore,
higher current. In contrast, devices with thicker S2 layers recorded lower average efficiency
(9.60 ± 0.20%) due to lower values of Voc and FF, likely a consequence of the pinholes
observed in Figure 3. TiCl4 treatment was beneficial for all devices, particularly impacting
those with printed compact layers. More specifically, TiCl4 treatment increased the average
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PCE from 11.61 ± 0.24% for S1 to 12.87 ± 0.18% for S1+, while TiCl4 in thicker S2 layers in-
creased the average efficiency from 9.60 ± 0.2% to 11.55 ± 0.22%. In the case of the sprayed
compact layer, the improvement is less marked (from 11.72 ± 0.24% to 12.2 ± 0.18%).
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Table 2. Average values of photovoltaic parameters of C-PSCs with different TiO2 compact layers.

Device PCE (%) Jsc (mA/cm2) Voc (Volts) FF (%)

C 11.72 ± 0.24 21.27 ± 0.42 0.88 ±0.01 62.78 ± 2.71
S1 11.61 ± 0.37 22.39 ± 0.70 0.86 ± 0.01 60.08 ± 1.71
S2 9.60 ± 0.20 23.03 ± 0.48 0.83 ± 0.01 50.5 ± 0.99
C+ 12.20 ± 0.18 22.85 ± 0.13 0.9 ± 0.00 59.63 ± 0.76
S1+ 12.87 ± 0.18 22.9 ± 0.33 0.9 ± 0.00 62.52 ± 0.06
S2+ 11.55 ± 0.22 22.08 ± 0.13 0.9 ± 0.00 57.85 ± 0.77
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These results correlate well with the CV measurements, where TiCl4 had the greatest
impact on the thick, lower quality S2 samples. The higher impact of TiCl4 can also be
explained by the surface SEM images in Figure 4, where TiCl4 is more evident on the
angular crystals.

The current density (J)–voltage (V) of the best performing C-PSCs, are shown in
Figure 7, with detailed photovoltaic parameters presented in Table 3. A champion PCE
of 13.11% was recorded for an S1+ device, while the untreated S1 champion exhibited
a PCE of 12.14%. In the case of S2 samples the PCE of the champion device was lower
(9.8%). However, the use of TiCl4 increased the efficiency to 11.96%. The device with the
sprayed compact layer, recorded a champion PCE at 11.86%, which increased with the
TiCl4 treatment (12.48%). The higher Jsc in the case of printed C-TiO2 can be attributed to
the higher transmittance of these layers, while the higher Voc and FF of the sprayed sample
can be attributed to the lower incidence of pinholes.
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Table 3. Photovoltaic parameters of champion devices with the different C-TiO2 blocking layers.

Samples PCE (%) Jsc (mA/cm2) Voc (Volts) FF (%)

C rev. 11.86 20.71 0.87 65.46
C for. 9.68 20.78 0.81 57.21

S1 rev. 12.14 23.77 0.86 59.19
S1 for. 10.38 24.1 0.76 56.29

S2 rev. 9.8 22.55 0.84 51.48
S2 for. 9.22 23.21 0.74 53.317

C+ rev. 12.48 22.72 0.9 61.12
C+ for. 11.9 23.14 0.87 59.46

S1+ rev. 13.11 23.26 0.9 62.64
S1+ for. 11.61 23.6 0.82 60.09

S2+ rev. 11.96 22.32 0.9 59.38
S2+ for. 11.59 22.95 0.86 58.88

Dark current measurements of the champion devices are shown in Figure 8. In
these measurements, increased onset voltage values indicate a reduction in the electron–
hole recombination between perovskite and the TiO2 and FTO conduction bands [38]. It
is obvious that the devices with printed compact layers show increased recombination
phenomena since the onset voltage value is low, especially in the case of the S2 device.
This is reasonable if we consider observed pinholes, which act as charge recombination
centres (Figure 3). However, this behaviour is not apparent after TiCl4 treatment, where the
onset voltage is increased in all the samples, particularly S2. This confirms our previous
conclusions from SEM and CV characterisations regarding the contribution of TiCl4 in
improving the printed C-TiO2 quality compact layers.
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To provide additional confidence in the device performance, stabilised current mea-
surements were also performed on the devices and the corresponding graphs of the cham-
pion cells are shown in Figure 9.
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These measurements confirm the observed trend from the J–V measurements, where
devices with S1 and sprayed compact layers recorded similar PCEs, while thicker blocking
layers (S2) led to lower efficiencies. As with other measurements, all devices with TiCl4
treated layers showed improved PCEs, with the highest improvement obtained in the case
of the S2 device. Once again, the use of S1+ layer led to the highest efficiency (10.81%).
The conversion efficiencies become stable between 50 and 100 s after the start of the
measurement, and in all the samples, the recorded J-V PCE is higher than the stabilised
PCE. This behaviour is frequently observed in C-PSCs and is attributed to imbalanced
charge extraction, as electrons are generated close to TiO2 electron transporting layer while
holes need to travel through a thick ZrO2 layer to access the carbon electrode [51,52]. It is
also noteworthy that devices were light soaked for 3 min before current density (J)–voltage
(V) sweeps were performed from open-circuit voltage (VOC) to short-circuit current density
(JSC) and vice-versa. This light soaking is important for C-PSCs to achieve their highest
performances as the presence of the AVA molecule inhibits the movement of ions [53].
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All the above results confirm the criticality of C-TiO2 layer thickness, in accordance
with previous publications [34,36,44,49]. Films with thickness from 40–60 nm (sprayed and
S1) are pinhole-free (Figure 3), with high blocking ability (Figure 5). The comparable PCE
results of the devices with the S1 and sprayed C-TiO2 layers show that screen-printing
is a viable substitution for spray pyrolysis in depositing C-TiO2 films for highly efficient
C-PSCs. The fact that S1 cells exhibit higher Jsc is also encouraging. Films with thicknesses
of more than 70 nm present pinholes (Figure 3) due to higher tension forces exerted on the
films, which result in C-TiO2 cracking of layers at FTO crystal edges. These pinholes act
as charge recombination centres and, thus, the corresponding cells record lower Voc and
FF, and as a result, lower PCE. It should also be noted that TiCl4 treatments proved more
beneficial in the case of printed compact layers. The more angular crystals in these printed
layers (Figure 4) may provide cleaner, more easily accessible binding sites for the TiCl4
reducing the impact of random printing flaws and improving the layer quality.

4. Conclusions

In this work, we study the surface morphology and the optical and electrochemical
properties of screen-printed TiO2 compact layers, in order to investigate their viability for
application in C-PSCs. A high quality, pinhole-free, screen-printed compact layer with
over 84% transmittance and similar thickness to the standard sprayed blocking layer was
obtained. C-PSCs fabricated with such printed layers exhibited 11.86% average PCE, com-
parable to that of devices produced via spray pyrolysis. Furthermore, TiCl4 treatment was
found to drastically improve the quality of the screen-printed films, with the corresponding
devices producing a champion PCE of 13.11%.

In summary, the screen-printing was found to be a suitable method for depositing
C-TiO2 in C-PSCs. Additionally, layer quality and device performance may be significantly
enhanced by employing a TiCl4 treatment. As screen-printing is cheap and easy to scale
up, these results could enhance the production of highly efficient solar cells and modules,
hence facilitating the production of commercially competitive C–PSCs.
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