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Abstract: Doped ZnO are among the most attractive transparent conductive oxides for solar cells
because they are relatively cheap, can be textured for light trapping, and readily produced for
large-scale coatings. Here, we focus on the development of alternative Na and K-doped ZnO
prepared by an easy low-cost spray pyrolysis method for conducting oxide application. To enhance
the electrical properties of zinc oxide, alkali-doped Zn1−x MxO (x = 0.03) solid solutions were
investigated. The resulting layers crystallize in a single hexagonal phase of wurtzite structure
with preferred c-axis orientation along a (002) crystal plane. Dense, well attached to the substrate,
homogeneous and highly transparent layers were obtained with great optical transmittance higher
than 80%. The optical energy band gap of doped ZnO films increase from 3.27 to 3.29 eV by doping
with Na and K, respectively. The electrical resistivity of the undoped ZnO could be decreased from
1.03 × 10−1 Ω.cm to 5.64 × 10−2 Ω.cm (K-doped) and 3.18 × 10−2 (Na-doped), respectively. Lastly,
the carrier concentrations increased from 5.17 × 1017 (undoped ZnO) to 1 × 1018 (doped ZnO).

Keywords: oxide materials; semiconductors; thin films; electronic properties

1. Introduction

Transparent conductive oxides (TCOs) are suitable materials for photovoltaic (PV)
applications, light-emitting diodes, and others that can be functionalized depending on the
requisites of its uses [1–3]. For many years, numerous other materials and devices have
been proven with the ultimate goal to make photovoltaic energy widely available. Thin film
technology is a suitable option for the replacement of the classical silicon crystalline solar
cells [4]. The request of the TCOs layers needs high transparency as well as a low sheet
resistivity. Most of the current commercial devices are designed with tin-doped indium
oxide In2O3:Sn (ITO) and fluorine-doped tin oxide SnO2:F (FTO) due to their good optical
and electrical features [5–7]. Mainly, ITO is the most widely used TCO, because of its
two crucial properties, its excellent electrical conductivity and optical transmittance [8,9].

In contrast, TCO based on ZnO films are widely used because they are relatively cheap,
can be modulated for light absorption and readily shaped for large-scale coatings [10,11].
The direct bandgap for ZnO is EG = 3.37 eV, so these may lead to many applications, for
example, in photonics [12]. On the other hand, the high exciton binding energy that ZnO
has, around 60 meV at room temperature, is an important material property regard. In
addition, ZnO is resistant to oxygen and moisture and it has very good optical transparency,
easy solution processing, and a flexible host crystal lattice able to accept a variety of dopant
substitutions [13]. ZnO exhibits an unintentional n-type character; it possesses a high
number of electron donors. Additional doping could increase the donor concentration [14].
It is well known that the process of thin films doping with elements of group 13 of the
periodic table (Al, Ga, and In) improves its electrical properties [15,16]. Another material
property for a high number of applications where the electronic charge has to be transmitted
is the mobility of charge carriers (electrons and holes). The values of the electron and holes
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mobility are also highly important considering the potential of this material in applications
such as TCO: thanks to this, ZnO exhibits high charge carrier mobilities as compared
to other compounds used in photovoltaic devices [17]. Different technologies for the
preparation of TCOs layers are used, predominantly physical techniques such as magnetron
sputtering and chemical vapor deposition [18], instead of chemical routes (sol-gel or spray
pyrolysis) [19]. In general, chemical methods are promising ways for TCOs production
due to their efficient material use and high throughput. The uses of sodium (Na) such
as a ZnO dopant to obtain p-type heterojunctions onto Si or (1-102) sapphire substrates
was researched, and they conclude the importance of Na concentration for exhibit n- or
p-conductivity [20,21]. Recently, several groups reported obtaining p-type of ZnO by
potassium (K) [22,23]; although, the deposited ZnO:K onto glass substrate suffers the same
problem or exhibits n- or p-conductivity depending on the K doping, and the results of
resistivity will also improve [24].

In this context, the influences of alkali doping (Na and K) on the ZnO properties were
investigated. In this paper, we report the electrical, optical, and photochemical properties
of doped ZnO (Zn0.97M0.03O, where M = Na, K) thin films prepared by low-cost and facile
spray pyrolysis deposition onto a soda-lime glass substrate.

2. Materials and Methods
2.1. Synthesis and Deposition

A solid solution of Na and K-doped ZnO (Zn1−x MxO, x = 0.03) was prepared by
the spray pyrolysis method [25]. Undoped ZnO for comparison studies was synthesized
using the same method. The raw materials applied for the desired compounds were:
Zn(CH3COO)2·2H2O (PanReac Applichem, 99.5%,), Na(CH3COO) (Labkem, 99.9%), and
KNO3 (Labkem, 99%). The precursor solution was performed by dissolving the alkaline
salts into the mixture of ethanol (EtOH) (25 mL) and methanolamine (MEA-C2H7NO)
(1.12 mL) in M+/Zn3+ (M = Na, K) molar ratio = 3%; under constant stirring on a hot plate
at room temperature.

The resulting solutions were applied by handmade Dual Action Gravity Feed Airbrush
with flow rate was 5.75 mL/min onto a soda-lime glass substrate, previously treated by a
mixture of HCl:HNO3 (1:2) for surface texturing. Then, the samples were heated at 425 ◦C
at atmospheric pressure on a hot plate to eliminate the organic compounds. To increase
the crystallinity of the coating, thermal treatment at 350 ◦C (heating rate 20 ◦C/min in a
reductive atmosphere was performed.

2.2. Characterization Techniques

The crystal structure of doped ZnO thin film was studied using Grazing incidence
X-ray diffraction (GIXRD) measurements. X-ray diffractometer (D4 Endeavor, Burker-
ASX) equipped with a Cu Kα radiation source was used. Data was collected by step-
scanning from 10◦ to 80◦ with a step size of 0.05◦ 2θ and 3 s counting time per step. The
measurements were performed at a grazing-incident angle, greater than the so-called
critical angle for total external reflection, at which X-rays penetrate the sample. The critical
angle (around 1◦) was determined experimentally.

Scanning electron microscopy (SEM) model JEOL 7001F was employed to study
the morphology of the films. The layer thickness was determined from cross-section
micrographs. The surface chemical analysis was investigated by X-ray photoelectron
spectroscopy (XPS) on a Sage 150 photoelectron spectrometer for the multi-technique
surface analysis system. This system was equipped with a MAC 2 CAMECA RIBER double
stage cylindrical mirror electron-energy analyzer. The photon source was a CAMECA SCX
700 dual anode X-ray. A non-monochromatized Al Kα X-ray source (hν = 1486.6 eV) was
used as the excitation source in all cases. Electrical measurements were carried out by the
four-probe method using Ossila T2001A3 with a target current of 0.001A and a voltage
increment of 0.01 V per point to a maximum of 10 V to obtain the sheet resistance and
resistivity data.
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The optical properties and band gap energy of the TCOs were conducted by UV–vis–
NIR spectroscopy in the wavelength range 200–1000 nm (step size 1 nm) using a Cary
500 Scan Varian spectrophotometer. The transmittance spectra were obtained applying
BaSO4 integrating sphere as white reference material.

The photoelectrochemical measurements were realize in a three-electrode system. The
Na, and K-doped ZnO onto a soda-lime glass substrate was used as a working electrode
having a surface area of about 0.6 cm2, Pt wire was used as work electrode and Ag/AgCl
was used as a reference electrode, respectively. The electrolyte used for the measure was 1 M
KCl solution. The measurements were carried out with Autolab potentiostat/galvanostat
PGSTAT302. Electrochemical impedance spectroscopy (EIS) measurements were completed
between 50 mHz and 1 MHz with 20 mV amplitude perturbation, with a step potential
of 64 mV in the anodic direction. The EIS data were evaluated with ZView software
(Scribner Associates).

3. Results and Discussion
3.1. Crystallographic Properties of M-Doped ZnO (M = Na, K) Thin Films

In this study, structural changes in ZnO films deposited onto a soda-lime glass as a
result of Na or K incorporation have been studied by Grazing incidence X-ray diffraction
(GIXD). XRD patterns of undoped ZnO, ZnO:Na, and ZnO:K thin films were shown in
Figure 1. All films show a strong peak at 2θ near 34, 42◦ and weak peaks at 31.80◦, 36.21◦,
56.60◦, 62.85◦, and 67.94◦ could be assigned, respectively, to the (002), (100), (101), (110),
(103), and (112) crystal planes. This preferred c-axis orientation along the (002) plane is not
new, it can be seen in other studies with different types of deposition techniques [26,27].
ZnO wurtzite structure could be occupied in principle by a Zn interstitial atom (Zni) in the
tetrahedral site or the octahedral site. Zn interstitial will be more stable at the octahedral
site where the geometrical constraints are less relentless. Moreover, the density-functional
calculations indicate a large displacement of Zni along the c-axis instead of occupying
the ideal octahedral site, resulting in an increased Zni–Zn distance [28,29]. Furthermore,
all the observed diffraction peaks for TCO films which correspond to Bragg reflections
of the wurtzite structure (JCPDS File No.79-2205). The absence of impurity peak shows
that as-obtained films are highly phased pure. The different TCO thin films change the
intensity, but the peak position does not change, depending on the type of doping within
the sensitivity of the method.
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3.2. Morphological and Structural Properties of M-Doped ZnO (M = Na, K) Thin Films

Figure 2 shows the plan and cross-section images of the M-doped ZnO thin films. In
all cases, dense and well attached homogeneous layers were observed in terms of particle
size and distribution. Furthermore, a good separation could be seen between the film and
the soda glass. The samples showed a thickness between 600 nm and 740 nm due to the
manual method used.
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To calculate the contained of the different dopant concentration in the films and to
determinate the chemical state of the film composing elements, XPS analysis was carried
out for undoped, 3% Na and 3% K-doped ZnO films, and calibrated according to the C 1s
peak at ~285 eV. The XPS results confirm that Na and K elements have been doped into
the ZnO film but the value of the atomic percentage of M-dopants in the thin film surface
was variable. In the case of Na and K, the percentage the values of atomic percentage in
the surface of the thin film (2.8% and 2.1%, respectively) are smaller than expected in the
nominal composition in the solution (3% of dopant).

Figure 3a gives XPS data of the Zn 2p3/2 in the undoped ZnO films, Na and K-doped
ZnO films. These peaks could be attributed to the position of Zn 2p in pure ZnO, and no
metallic Zn with binding energy about 1021.6 eV is observed; it concludes that Zn can only
found as the oxidized state. The Zn binding energy decreases while O binding energy
increases when comparing undoped ZnO to Na or K-doped ZnO in the XPS data by other
authors [30].

XPS spectrum and simulated lines of Na 1s in the ZnO:Na film is shown in Figure 3b.
The peak position was at the binding energy of 1071.10 eV. This binding energy corresponds
to Na+ oxide; it concludes that Na element doped as Na+ in the Na-doped ZnO film.
Figure 3c reveals that K has been doped into ZnO crystal by the K 2p peaks that are
observed in Figure 3b, similarly to previously report [31]. The binding states of O 1s
coming from to the undoped ZnO, ZnO:Na, and ZnO:K are shown in Figure 3d. The
asymmetric O 1s peak was coherently fitted by three Gaussian components, which are low
binding energy peak (OA), medium binding energy peak (OB), and high binding energy
peak (Oc) [32]. The OA peak of the 1s spectrum could be associated to the O2- ions on
the wurtzite structure of the hexagonal Zn2+ ion array, which are encircled by zinc atoms
with the full supplement of neighbor O2− ions [33]. Therefore, The OA peak of the 1s
spectrum can be related to the Zn-O bonds [34]. The higher-binding energy (OC) is related
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to chemisorbed or dissociated oxygen or different species; for example, OH species on
the surface of the ZnO films; for instance, CO3, adsorbed H2O, or absorbed O2 [35]. The
OB of the O 1s peak is related to O2- ions that are in oxygen-deficient regions in the ZnO
matrix [36,37]. The difference between the intensity of the peaks could attribute with
the variation in the concentration of the oxygen vacancies (VO) [38]. The intensity of OA
peaks in comparison with OB and OC explains the strong Zn-O bonding in ZnO thin films,
the value of the binding energy for the different peaks (OA, OB, and OC) decrease when
comparing undoped ZnO to Na or K-doped ZnO in other words when the atomic radio of
the dopant increases the bonding energy of Zn-O decrease owning to the wurtzite structure
was distorted.
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3.3. Optical and Electrical Properties of M-Doped ZnO (M = Na, K) Thin Films

Figure 4 exhibit the optical transmittance spectra of undoped and doped ZnO thin
films deposited on a soda-lime substrate. In the visible region with wavelengths rang-
ing from 400 nm to 800 nm, all the samples were highly transparent with the average
optical transmittance of 80% and 78% for Na and K dopants, respectively. The crystal
dimensions were similar in the three dopants; therefore, the values of the transmittance
were related to the thickness of the films when the thickness increased the value of the
transmittance decreased.
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The absorption coefficient (α) values were calculated using Lambert’s Law as the
following equation [39]:

α =
1
t

ln
(

1
T

)
(1)

where t is the film thickness and T is the transmittance. An optical band gap of thin films
was estimated using the equation x by the extrapolation of (αhν)2 vs. hν.

αhv = A(hv − Eg)
1
2 (2)

where hv is the photon energy, A is a constant, and Eg is the optical band gap. ZnO,
ZnO:Na and ZnO:K films optical band gaps are shown in Figure 5, the energy band gap
was determined by extrapolating linear region of the plot to energy axis where α2 = 0 [40].
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ZnO thin film presented a wide band gap of 3.28 eV. The optical band gap values of
ZnO:Na and ZnO:K thin films were 3.285 and 3.29 eV, respectively. The fitting results show
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that the energy band gaps increased with an increase in the atomic radio of the dopant and
suggests that the band gap could be tuned for the applications in various electronic and
optical applications.

Electrical properties of the ZnO films doped with 3% of different alkalines were
measured at room temperature using a four-point probe working station are listed in
Table 1. The current–voltage characteristics were measured by a digital electrometer and
stabilized power supply. The mobility was calculated multiplying the measured resistivity
with the doping/carrier density.

Table 1. Electrical properties of M-doped ZnO thin films.

Dopants
(at 3%)

Resistivity
(Ωcm)

Mobility
(cm2 /Vs)

Carrier Concentration
(cm−3)

Conduction
Type

Undoped ZnO 1.03 × 10−1 1 × 102 5 × 1017 n
Na 3.18 × 10−2 1 × 102 1 × 1018 n
K 5.64 × 10−2 9 × 101 1 × 1018 n

The method used a linear sequence of four equally-spaced tips that were pressed on
the surface of the material. A small current I from a constant-current source was passed
through the outer two probe tips and the voltage drop V was measured between the inner
two probe tips. The resistivity values were calculated using the following equation [41]

ρ = C
(

V
I

)
w (3)

where w is the thickness, ρ the resistivity, V the voltage, C is a geometrical correction factor,
and I the current. At the limit when the probe tips spacing, s, was much less than the
lateral dimension of the sample, C becomes (π/ln2) = 4.54. The following equation gives
the electrical conductivity.

σ =
1
ρ

(4)

where σ is conductivity.
The samples showed a different value of resistivity, the lowest value was obtained

for the ZnO:Na sample. K doping greatly increased the defect creation, and it could act
as scattering centers, and it produced an increase in the resistivity because the mobility
decreased; therefore, the value of the resistivity of ZnO:K increased [42]. As a result, the
presence of the alkali dopants, in our samples, always improved the value of resistivity
than that of the undoped ZnO thin film.

The Mott–Schottky equation could be used to determine the flat-band potential and the
carrier concentration of the semiconductor. Understanding its derivation was essential for
this experiment because it reinforces many key concepts associated with the semiconductor–
electrolyte interface. However, the starting point for the derivation is Poisson’s [43].

d2φ

dx2 =
−ρ

εε0
(5)

where ρ corresponds to the charge density at a position x away from the semiconductor
surface, ε is the dielectric constant of the semiconductor, and ε0 is the permittivity of
free space. Using the Boltzmann distribution to describe the distribution of electrons in
the space charge region and Gaus’s law relating the electric field through the interface
to the charge contained within that region, Poisson’s equation can be solved to give the
Mott–Schottky equation [44,45].

1
C2 =

2
εrε0 A2eND

(
V − Vf−

κBT
e

)
(6)
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where C is the capacitance, A is the interfacial area, ND the number of donors, V the applied
voltage, Vf is the flat band potential, κB is Boltzmann’s constant, T the absolute temperature
(taken as 298 K), and e is the electron charge, ε0 is the permittivity in the vacuum, and εr is
the relative permittivity of soda-lime glass (taken as 7.3) [46].

Therefore, a plot of C−2 vs. V (Figure 6) should yield a straight line from which Vf can
be determined from the intercept on the V axis. The value of ND can also be conveniently
found from the slope knowing ε0 , εr, and A.
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The conduction mechanism could be determined by the polarity carrier concentration.
Figure 6 shows that the value of the slope was negative in all the dopants; as a result, the
polarity carrier concentration was negative, so it concludes that films are n-type. This
linearity deviation in the Mott–Schottky plots may be associated with the polycrystalline
nature of the samples and high interface defects. ZnO is considered n-type semiconductor
due to a large number of point defects, Zn vacancy or interstitial sites, as well as oxygen
vacancy [47]. ZnO could have either Zn interstitial or oxygen vacancy or both, which
lead to the excess unpaired electron that enhances n-type conductivity [48]. The oxygen
vacancy has frequently been associated as the source of unintentional n-type conductivity,
but recent researches indicate that this assignment cannot be correct [49]. However, this is
statement is not useful for any elements. Hence, p-type conduction in ZnO requires the
incorporation of shallow acceptor levels which may be possible by substituting monovalent
atoms (as elements from the group I) at Zn sites that create one hole per alkali atom in the
neighboring oxygen atom. However, the literature has reported that group-I elements (Na,
K) tend to occupy the interstitial site, thereby acting as a donor, not as an acceptor [48].
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Table 1 shows that all the thin films regardless the dopant exhibit n-type conduction,
whereas the Na doping n-type conduction may be related to the increase in the donor-like
V0 density and the compensation of Nai for the NaZn acceptor. The conduction mechanism
for the K doping shows that n-type conduction behavior had arisen due to the preferential
occupation of K into the interstitial sites and acted as donors to supply electrons [50]. The
samples show electron conduction behavior (n-type) with a carrier concentration in the
region of ~1018 cm−3. It is important to note that a solid solution of Na, and K-doped ZnO
increase the carrier concentration of the undoped ZnO thin film.

4. Conclusions

We developed very low resistant and highly transparent alkali-doped ZnO thin films
for transparent conductive oxide applications by an easy low-cost spray pyrolysis tech-
nique. The structural, morphological, optical, and electrical properties of the coating with
composition Zn1−x MxO (x = 0.03) were characterized. All samples crystallize in a single
hexagonal phase of wurtzite structure with preferred c-axis orientation along a (002) crystal
plane. Highly transparent layers were obtained with an average optical transmittance
of 80%. The energy band gap of doped ZnO films increased from 3.27 to 3.29 eV by a
rising of the atomic number of dopants. The samples show n-type electron conduction
behavior with a carrier concentration in the region of ~1018 cm−3. The alkali-doped ZnO
films obtained by the easy and low-cost method has great potential for photovoltaics (PV)
as interconnecting layer in tandem technology based on the monolithic integration of
interdigitated back-contacted c-Si solar cells devices as bottom cells, with wide band-gap
semi-transparent kesterite top cells in a four contacts configuration, this being compatible
with future industrialization of the technology.
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