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Abstract: Maurolicus muelleri is a significant component of the marine ecosystem and has the potential
to be a valuable fishery resource. However, in the Bay of Biscay, its primary biological traits remain
unclear. This study presents data on the length distribution, age, growth, maturity ogive, spawning
season, batch fecundity, and sex ratio for Maurolicus muelleri captured in the Bay of Biscay. The
results showed that in spring, the adult spawners (ages of 1 and 2) were dominant in the catches,
while in September, immature juveniles (age of 0) born in spring were mostly found. Using standard
lengths as a basis, 50% of the fish were mature at 34.1 mm (both sexes combined), and the sex ratio,
male to female, was 0.44:0.56. The proportion of females increased with length, and a 1:1 sex ratio
was predicted at a standard length of 41.5 mm. The spawning season was allocated to at least
between March and September, with a likely peak in May. The batch fecundity ranged from 114 to
919 oocytes/female, and increased with the weight and length of females. The results allowed us
to interpret a life history strategy for this species, i.e., a high fecundity for females, which mostly
participate in one or two reproductive seasons. Therefore, any possible exploitation of age 0 fish prior
to spawning could lead to a decrease in the population from which recovery could be slow.

Keywords: pearlside; mesopelagic fish; growth; SL50; length of first maturation; sex ratio; batch
fecundity; age

1. Introduction

Mesopelagic refers to the twilight zone of the water masses [1], where surface light is
still detectable in the daytime, but at very low levels compared with the epipelagic zone.
This zone is usually considered to extend from about 200 to 1000 m in depth [2,3]. Many
of the inhabitants of this zone carry out diel vertical migrations (DVMs) [2], residing at
lower depths during the day and swimming towards the surface to feed at shallow depths
at night. DVMs are recognized today as the biggest movement of biomass on Earth [4],
with major consequences for ecology [1] and biogeochemical cycling [5]. Additionally, the
high biomass and shoaling behaviour imply a potential for fishing in some areas [6,7], and
these organisms serve as an important prey source for many predatory fishes [8].

One of the most common species inhabiting the mesopelagic ecosystem is the pearlside,
Maurolicus muelleri (Gmelin). M. muelleri occurs in a high abundance near continental slopes
in the southeast Pacific [6,9], the northwest Pacific near Japan [8], the South Atlantic [10,11],
and the northeast Atlantic [12]. Although the mesopelagic family is principally oceanic,
M. muelleri seems to be associated with land masses, spending daylight hours near the
bottom at depths from 100 to 500 m and rising into shallow water in large shoals at night
where it apparently feeds [8,9,13]. Continuous acoustic observations of pearlside sound
scattering layers (SSLs) revealed that adult fish, which constitute the deepest SSLs, did
not engage in DVMs between late autumn and early spring, whereas younger life stages,
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forming shallower SSLs, displayed DVMs during the same period [14,15]. DVMs seem to
be related to an improvement in feeding conditions [16] and/or reduced predation risk.
Previous studies suggest that pearlsides feed visually during daylight hours and that their
foraging depth and diet composition may vary seasonally [17,18].

The abundance and biomass of mesopelagic fishes are currently involved in a contro-
versial debate. The most recent estimations of the mesopelagic fish biomass by combining
acoustic and ecosystem models have reduced the previous acoustic-based estimation values
of 11–15 billion tonnes [19] to about 2 billion tonnes [20]. These high biomass estimates
sparked interest in the potential exploitation of mesopelagic species to produce fish meat,
fish oil, and nutraceuticals [21,22]. In the northeast Atlantic, a trial of the commercial
exploitation of mesopelagic resources has not been very successful [23,24] due to low catch
levels. This could be associated with temporal changes in the spatial migration patterns
of these species [22], which would have limited their availability in the fishing area. The
impact of commercial trawling on the mesopelagic fish population is uncertain. Despite
not being a target species for most fisheries, the presence of mesopelagic fish as a bycatch
in some mid-water trawls seems to be common [25,26]; although with the information
recorded at present, this does not generate large amounts of bycatch [25]. Given the ecolog-
ical significance of mesopelagic fish in the marine ecosystem, the potential exploitation of
this community should be carefully investigated.

Studies on the biology and vertical distribution of M. muelleri around the world are
extensive. In areas such as the Norwegian Fjords, South Pacific, and South Africa, the
studies date back to the late seventies. It is known that M. muelleri is a small (4–5 cm),
short-lived fish (maximum of 5 years), and only a small proportion of the population
reaches the age of 3 years [12]. In other areas, such as the Rockall Trough, the longevity may
be closer to 1 year [14]. In general, mesopelagic fish have a slower growth than epipelagic
fish [27], but due to their short life cycle, they have higher fecundity rates. Gjøsæter [28]
was the first to report fast growth until sexual maturity is reached and then very slow
subsequent growth; Goodson et al. [29] remarked on the difference between fish aged
1 year and fish aged 2 + years. The length vs. age relationships yield a high variability
in the slope values [18,29–31] due to the high dependence of this relationship on the size
range and number of samples.

The life history of M. muelleri in the Bay of Biscay is currently not well understood.
Some references to the presence of eggs and larvae were reported by Arbault and Boutin [32],
Valencia et al. [33], d’Elbée et al. [34], Rodriguez et al. [35], and Rodriguez [36] in the
southern Bay of Biscay. An increase in adult abundance that was linked to climate change
was published in the Cantabrian Sea by Puzón et al. [37]. The importance of Maurolicus in
the diet of albacore tuna was reported by several authors. Ortiz de Zarate [38] observed the
presence of M. muelleri in the stomachs of immature albacore tuna. Later, Pusineri et al. [39]
found that the diet of albacore tuna consisted mainly of Maurolicus (79%) that were ingested
at night when the Maurolicus fish performed their vertical migration.

The goal of this study is to contribute with new biological knowledge about the most
relevant demographic parameters of this species, such as the age, sex ratio, length at
first maturity, spawning season, and fecundity. These findings are then used to discuss the
history life strategy of this species in the Bay of Biscay.

2. Materials and Methods
2.1. Sampling Area and Sample Collection

Most of the data were collected during the JUVENA acoustic survey [40] that took
place in September of 2019 and 2020 in the Bay of Biscay (Figure 1, Table 1).
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Figure 1. Spatial distribution of positive (crosses) and analysed (dots) hauls of M. muelleri during the
JUVENA surveys in September of 2019 (black) and 2020 (red).

Table 1. Description of surveys contributing to the collection of M. muelleri samples in the Bay of
Biscay. We defined samples as “extra” samples, which are those taken from the AZTI database to
complete an analysis, or “ad hoc” samples, which are those collected specifically for this study. The
number of samples for each analysis is also mentioned. RM = RV Ramón Margalef, EA = RV Emma
Bardan, VE = RV Vizconde de Eza, SL = standard length, TW = total weight, EW = eviscerated weight,
GW = gonad weight, and A = age.

Survey Vessel Date Sample Type Parameters Analysis No. Specimens ST-T50m (◦C)

JUVENA 2016
RM, EA

31 August–6 October
extra SL, maturity

Maturity ogive 212 20.0–15.9
JUVENA 2017 1 September–9 October Maturity ogive 260 19.6–18
JUVENA 2018 1–30 September Maturity ogive 309 20.3–15.7

JUVENA 2019
RM, EA

1–30 September ad hoc SL, TW, EW, GW,
maturity, A

All except
fecundity 874 20.0–17.4

JUVENA 2020 1–30 September ad hoc 500 21.1–17.6

MEGS 2019 RM 1–6 April extra SL, TW, EW, GW,
maturity, A

All except
fecundity 62 12.6

BIOMAN 2020
VE, EA

4–10 May extra SL, TW, EW, GW, A All except
fecundity 138 12.7

BIOMAN 2021 4–8 May extra SL, TW, GW,
fecundity Fecundity 100 12.6

The survey area was covered by two research vessels, the Ramón Margalef and the
Emma Bardán, with the former covering the outer area (oceanic waters) and the latter
covering the shallower waters of the northern French area. An adaptive sampling scheme
was adopted to cover the whole occupation area of anchovies, thus limiting the area of
study of M. muelleri to the presence of anchovies. Sampling was carried out by following a
regular grid of transects arranged perpendicularly to the coast and spaced at 15 nm [40].

This acoustic survey focused on an annual assessment of the juvenile portion of the
anchovy population and covered an area from the coastal waters to offshore areas well
beyond the continental shelf.

With the aim of increasing the number of samples to perform some analyses (see
Table 1), we used additional samples. On the one hand, the AZTI database provided
information on M. muelleri collected during the JUVENA survey in 2016, 2017, and 2018.
On the other hand, we collected extra samples from two more campaigns in the area: the
international mackerel and horse mackerel egg survey (MEGS) in the spring of 2019 [41],
and BIOMAN in the spring of 2020 and 2021 [42]. Table 1 provides more details.

In all these surveys, M. muelleri were caught using a pelagic trawl net with a 4–10 mm
mesh size and mouth openings of 12 ∗ 25 m. For each positive haul, three sub-samples of M.
muelleri were retained and conserved in different preservatives according to the subsequent
use: in 4% formaldehyde for histological procedures, and at −20 ◦C for morphometric
studies and age determination. Additional data such as the position of capture, date and
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time, sampler and bottom depth, temperature, salinity, and dissolved oxide (if available)
were also recorded.

2.2. Laboratory Procedures

Mesopelagic species were initially identified according to the morphological char-
acteristics of the fish, mainly by the number and position of the photophores. In some
cases, when the general condition of the samples made the identification of the species
difficult, it was necessary to complement the analysis with additional characteristics for the
identification, such as the otolith form [43].

The total length, standard length, total weight, eviscerated weight (weight of fish
without gonads, digestive tract, liver, and heart), and both the stomach and gonad weight
were measured for each individual, and the otoliths were extracted. Additionally, the
sex was determined by a macroscopic analysis of the gonads. When possible, the sexual
maturity status was also assigned according to a six-key scale [44]: (1) immature, (2) early
ripening (developing, but functionally immature), (3) late ripening and/or early partially
spent (developing, but functionally mature), (4) ripe (actively spawning), (5) late partly
spent (capable of spawning), and (6) spent (regressing/regenerating).

The annual age of M. muelleri was determined from a reading of the otoliths (sagittae)
(see Figure S1). After extraction, the otoliths were washed thoroughly and dried. The
observations of entire otoliths were made under reflected light against a black background
using dissection microscopes with 20–25× magnification. The process of age determination
is a delicate task that is susceptible to many sources of error [45]. For this reason, applying
different methods of validation is strongly recommended [46,47]. To age M. muelleri, we
used the same criteria as for anchovies, namely the following: (1) An annulus consists of
one opaque ring and one hyaline ring. The age equals the number of true complete hyaline
rings previously defined. (2) The edge of the otolith is considered hyaline or opaque if this
structure is continuous all around the otolith margin. The date of capture is also considered
in the aging process. (3) The birth date was set to 1 January. For details, consult the
ICES [48]. In addition, the accuracy of the readings was checked by a calibration exercise,
where 50 of each year’s otoliths were read independently by two people and reread and
discussed if there was disagreement. If no agreement was reached, the otoliths were not
used. In this line, it is worth mentioning that some otoliths were also discarded due to
complexity in age interpretation. The timing of the formation of the hyaline and opaque
zones was defined according to Gjøsæter [12].

To estimate the maturity ogive and the sex ratio, additional samples of M. muelleri
collected in previous acoustic surveys during September of 2016, 2017, and 2018 were used
(JUVENA 2016/17/18, Table 1).

In those samples kept in a formaldehyde solution, the ovaries were removed and
processed in line with standard histological preparation techniques [49]. The lengths and
weights for individuals preserved in formaldehyde were corrected for changes due to
the preservation using a conversion factor of 1.0194 and 1.0579, respectively [50]. Once
the ovaries were removed, the ovary was used for a histological preparation or for an
estimation of the batch fecundity. The batch fecundity, defined as the number of oocytes
spawned by a female in a single spawning event, was determined by using the gravimetric
method on 50 ripe females collected in May of 2020 and 2021, which involved identifying
and quantifying the hydrated oocytes in the gonad [51]. The number of hydrated oocytes
per gram of ovary-free weight and the whole weight of the female were estimated.

2.3. Data Analysis
2.3.1. Growth Analysis

Standard length and total length: With the aim of estimating a factor to convert standard
length (SL) to total length (TL) and vice versa, a simple linear regression was fitted to the
fish SL (mm) and TL (mm) data.

Y = a + b × X (1)
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where X and Y are the SL (in mm) and TL (in mm) depending on the parameter to be
estimated.

Growth in weight with the standard length: To examine the differences in the weight vs.
length between years and sexes, a generalized linear model was first used to assess whether
the interactions among the parameters of growth, years, and sex were significant. As the
sample sizes for sex and year were not sufficient (n < 30 for each sex), the parameters of the
length–weight relationship model by sex were calculated using both years together. The
model was selected using Akaike’s information criterion (AIC). When significant, pairwise
comparisons of slopes were conducted using an ANCOVA model. When the differences
between the slopes were significant, the regression model was refitted, excluding the
interaction term. When the differences between the slopes were not significant, a new
regression model that excluded the interaction term was fitted, and both regression models
(with and without the interaction model) were compared using ANCOVA.

Relative condition factor: Two different condition indices were estimated to quantify
individual states of health. On the one hand, Fulton’s condition factor index was estimated,
which, despite being the most widely used in the literature, is known to depend on several
factors (size range, water content, both gonad and stomach weights, etc.) [52,53].

Fulton =
EW
SL3 × 100000 (2)

On the other hand, the Le Cren condition factor [54], Kn, is defined as

Kn =
EW0

EWc
(3)

where EW0 is the observed weight and EWc is the calculated weight. When Kn ≥ 1, the
fish is categorized as being in a good growth condition compared to an average specimen
of the same length, while the individual is in poor growth condition when Kn < 1. The
total weight and eviscerated weight were used when determining this parameter. By
using the eviscerated weight, seasonal differences in the fish condition, derived from the
differential contribution of gonad weight and stomach weight to the body weight, were not
accounted for.

2.3.2. Maturation Analysis

Gonadosomatic index (GSI): The gonadosomatic index was worked out as the rela-
tionship between the gonad weight (GW) and eviscerated weight (EW) as a percentage.
Its variation over time indicates the period of greatest reproductive activity. Statistical
differences amongst years were assessed using Kruskal–Wallis analyses, and pairwise
comparisons of this parameter were performed using Dunn’s multiple comparisons test.

Batch fecundity: A linear model and generalized linear model (GLM) with gamma error
distribution were used to assess the influence of the female gonad-free weight and SL (GLM
model) on the number of oocytes in the batch.

Maturity ogive: To calculate the probability of “success” for a given fish to reach ma-
turity, logistic regression was selected. The model was fit in R with a GLM binomial
distribution. To obtain a minimum number of 10 individuals per size range, the specimens
were grouped by 5 mm SL ranges. Since the number of sexed M. muelleri was low, espe-
cially for the smallest range distribution, the individuals categorized as immature were
duplicated and assigned to male or female. This allowed the distribution of the sizes to be
extended towards the smaller ranges.

The standard length at 50% maturity (SL50) was defined as the SL at which 50% of
the fish were mature. A GLM with a binomial distribution was used to account for the
binary response (mature/immature) and calculate the probability of being mature for each
length class.

The parameters of the maturity ogive (SL50 and r, the slope of the curve) were estimated
for males and females separately and for both sexes combined.
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Sex ratio: A GLM with a binomial distribution was used to assess the proportion of
females to males by SL class. The standard length at which the male-to-female proportion
reached a value of 1:1 was defined as the SL at which 50% of the fish were female.

Statistical differences in the condition factors amongst years and months were as-
sessed using Mann–Wilcox or Kruskal–Wallis analyses, and pairwise comparisons of this
parameter were performed using Dunn’s multiple comparisons test.

All models were fitted using the package MASS in R [55].

3. Results
3.1. Length Frequency Distribution and Body Size Relationships

Individuals collected in pelagic trawls in September of 2019 and 2020 in the Bay of
Biscay ranged between 18 and 52 mm for the SL in 2019 (Figure 2, Table S1) and between
18 and 55 mm for the SL in 2020 (Figure 2). Although the length distribution range was
similar between years, in 2019, very few individuals had an SL longer than 40 mm. In
2019, only 15 individuals were sexed (ten males and five females), as most of the specimens
captured that year were immature, with gonads that were too underdeveloped to assign
sex “de visu”. In 2020, the number of individuals with well-developed gonads was higher,
and we were able to identify 104 males and 92 females. The minimum and maximum sizes
depended on sex. When considering both years, the males ranged from 30 to 55 mm for
their SL, whereas females ranged from 37 to 53 mm for their SL. The length frequency
distribution of M. muelleri showed statistically significant differences (χ2 = 54.21, df = 1,
p < 0.001) in the mean size between years. In 2019, the population of M. muelleri was mainly
represented by individuals with an SL smaller than 35 mm, with 82% compared to 57% in
2020, while larger individuals (SL ≥ 40 mm) accounted for 12% and 21% in 2019 and 2020,
respectively. Several modes were observed in both years, with the most relevant being at
21.6 mm and 23.5 mm, the second at 30.6 and 29.8 mm, and the third at 44.9 and 44.5 mm
in 2019 and 2020, respectively.

The length distribution of M. muelleri obtained in additional samples from the MEGS
and BIOMAN surveys (see Table 1) varied seasonally (Figure 2). In April of 2019
(62 individuals) and May of 2020 (138 individuals), the most frequent sizes were 42 and
44 mm, respectively. This contrasts sharply with the distribution seen in September,
which was composed mostly of individuals smaller than 35 mm. In April and May, only
18 individuals were not sexually identified. The remainder were 57 males, which ranged
from 35 to 48 mm for their SL, and 125 females, which ranged from 37 to 53 mm for their
SL (Table S1).

The standard length (SL) and total length (TL) presented a strong positive linear
relationship between variables (adjusted r2 = 0.997). The SL–TL relationship was described
by the following equations:

TL = 1.727 (±0.054) + 1.134 (±0.00158) ∗ SL (ANOVA, F = 4.899 ∗ 105, p < 0.001, gl = 1567)

and

SL = −1.418 (±0.049) + 0.8793 (±0.00123) ∗ TL

The strong relationships indicated that, depending on the size of the fish, the caudal
fin would represent between 14% and 19% of the total length of the fish.

The total weight and standard length (with both variables log-transformed) had a
strong positive linear relationship (r2 = 0.97) (Figure 3, Table 2), indicating an exponential
relationship between the untransformed variables. This relationship presented significant
interannual differences (ANCOVA, F = 8649, p < 0.05) for both slopes and intercepts. The
weight–length relationship is described by the following equations:
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Figure 2. Length distribution of M. muelleri in (a) September of 2019 (n = 874), (b) September of 2020
(n = 500), (c) April of 2019 (N= 62), and (d) May of 2020 (n = 138).

In 2019: TW = 7.17 ∗ 10−6 ∗ SL 3.13

In 2020: TW = 1.08 ∗ 10−5 ∗ SL 3.03

Table 2. Results of the generalized linear model (GLM) testing the influence of year in the relationship
between standard length and total weight: logTW = log(SL) ∗ year, with 0 = 2019 and 1 = 2020. *** = 0.
(All sexes included.).

Variable Estimate S.E. t-Value p

(Intercept) −11.84508 0.06743 −175.658 <2 × 10−16 ***
Log(SL) 3.13318 0.01981 158.196 <2 × 10−16 ***

Year 0.40785 0.09519 4.285 1.96 × 10−05 ***
Log(SL):Year −0.10373 0.02764 −3.753 1.82 × 10−04 ***

gl residual: 1370; AIC: −1724.4. Model significance: 97.39%.
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Figure 3. Total weight (TW, gr) and standard length (SL, mm) relationship for M. muelleri in (a) 2019
and (b) 2020 by sex. 0 = undetermined, 1 = males, and 2 = females. Curves of the relationships are
also shown. Table S2 shows the parameters and coefficients of the potential equations of TW vs. SL
obtained for sex.

The effect of sex on the LWR parameters was also investigated. Since the number
of sexed individuals was extremely low, the analysis was carried out by merging the
2019 and 2020 data. The GLM model showed a significant effect of sex on weight vs. length
(p < 0.0001) (Table 3). A pairwise ANCOVA showed that the shaping parameter (the slope)
was independent of sex (F = 999.41, p < 0.001), but the intercepts (the scaling coefficient for
the weight vs. length of individuals) did depend on sex. The weight–length relationships
obtained by sex while considering equal slopes were as follows:

Males: TW = 1.65 ∗ 10−5 ∗ SL 2.911

Females: TW = 1.71 ∗ 10−5 ∗ SL 2.911

Table 3. Results of the generalized linear model (GLM) testing the influence of sex in the relationship
between standard length and total weight: logTW = log(SL) ∗ sex, with 1 = male and 2 = female.
*** = 0.

Variable Estimate S.E. t-Value p

(Intercept) −10.0272 0.7959 −12.5 <2 × 10−16 ***
Log(SL) 2.6409 0.2115 12.488 <2 × 10−16 ***

Sex −0.6543 0.5122 −1.278 0.202
Log(SL):Sex 0.1827 0.1357 1.346 0.179

gl residual: 389; AIC: −613.12. Model significance: 83.62%.

3.2. Condition Factors

The averaged values (±SD) of the Fulton index condition (F) for 2019 and 2020 were
9.78 (±1.24) and 10.57 (±1.27), respectively. The Kruskal–Wallis analysis detected statisti-
cally significant differences between years (χ2 = 133.43, p < 0.001).

A GLM adjusted to the F index and the SL demonstrated that the condition index
increased with length (Table 4) at a rate of 1.7% per mm (Figure 4). This was expected, as
the F index is known to depend on the SL.

Table 4. Results of the generalized linear model (GLM) testing the relationship between standard
length and the condition index (F): F = a + b ∗ SL. *** = 0.

Variable Estimate S.E. p-Value p

(Intercept) 9.545685 0.134698 70.867 <2 × 10−16 ***
SL 0.016699 0.003946 4.232 2.45 × 10−5 ***

gl residual: 1573; AIC: 5414.4.
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The Le Cren index (Kn), which compensates for changes in condition due to an
increase in length, ranged from a minimum of 0.46 to a maximum of 2.12 (Figure 5). The
Kruskal–Wallis analysis detected statistically significant differences between years for
Knt (χ2 = 334.41, p < 0.001) and Kne (χ2 = 11.98, p < 0.001), and between months for Knt
(χ2 = 372.25, p < 0.001) and Kne (χ2 = 20.9, p < 0.001) for the two estimates, but these
differences decreased for Kne. In the first case (Knt), significant differences were only found
between September of 2019 (Dunn’s test, padj < 0.01) and the other months. In the second
case (Kne), the index was only statistically different in April, but not for the other pairs
(Dunn’s test, p > 0.01).

3.3. Sex Ratio

Of the 1574 M. muelleri that were sexed, 171 (10.9%) were males with an SL from 30 to
55 mm and 222 (14.1%) were females with an SL ranging from 37 to 53 mm; the rest were
undefined (1181, 75%). The observed proportion of males to females was 0.44:0.56 among
sex-determined individuals (Table 5).

Table 5. Ratio of female to male M. muelleri by size in the Bay of Biscay.

Size Class (mm) Male Female Total Ratio (Proportion of Females)

≤35 6 0 6 0
36–39 21 14 35 0.40
40–44 82 100 182 0.55
45–49 61 95 156 0.61
>59 1 13 14 0.93

Total 171 222 393 0.56

The sex ratio presented significant differences with the SL (GLM, n = 392, p < 0.05,
Table 6). The model indicated an increase in the proportion of females with the SL. Males
predominated at the smallest size classes, whereas females dominated at the largest ones.
The model predicted a sex ratio of 1:1 at a length of 41.5 mm.
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Table 6. Results of the generalized linear model (GLM) testing the influence of the standard length
on the sex ratio. Binomial family with link = logit. *** = 0.

Variable Estimate S.E. t-Value p

(Intercept) −4.84254 1.33515 −3.627 0.000287 ***
SL 0.11695 0.03054 3.829 0.000129 ***

gl residual: 392; AIC: 526.48.

3.4. Spawning Season

Gonad maturity stages: A total of 717 individuals were analysed to study the evolution
of maturity stages in 2019 and 2020; a total of 120 males and 212 females were identified,
and the remainder were catalogued as undetermined. Due to the low number of specimens,
the yearly observations were merged. The proportion of mature (Walsh scale: 2 to 5) and
immature (Walsh scale: 1) individuals by month is shown in Table 7. The results indicated
that spring appears to be an important spawning period for this species in the Bay of Biscay
and that still, at the end of summer, a small proportion of the population was active (% of
fish running above 3%).

Table 7. Proportion of mature fish by month in the Bay of Biscay. Imm = immature (Walsh scale: 1);
Mat = mature (Walsh scale: 2 to 6); and Running = Walsh scale: 4. % Running = % in relation to
mature fish.

Month Imm (n) Mat % Mat Running % Running

April 0 55 100 13 24
May 0 66 100 38 57
Sept 401 195 33% 6 3

Ovary development: To go beyond the results of maturity that were assigned “de visu”,
a small number of ovaries were histologically processed to investigate the reproductive
cycle of M. muelleri (Figure 6). An examination of the histological sections of the gonads
showed that at the beginning of April, most fish were at an advanced stage of gonadal
development (Figure 6a). The dominant oocyte stages in these gonads were vitellogenic or
migrating nuclei, in a similar proportion. Hydrated oocytes and post-ovulatory follicles
(POFs) were also present, but still in low numbers (8%). The number of mature ovaries
with the presence of hydrated oocytes was higher in May (22%) than in April, suggesting
that the population was approaching the peak spawning season at this time (Figure 6b).
POFs in a wide range of stages were observed in both April and May, indicating that
spawning occurs during both periods. In September, the reproductive condition of the
fish was completely different. Immature gonads were clearly dominant, accounting for
71% of the gonads examined (Figure 6c). Most of them corresponded to individuals born
in the previous spring. However, in September of 2020, the observation of a few mature
ovaries (Figure 6d) with hydrated oocytes indicated that even in September, some females
were actively spawning. This was also seen in September of 2017. The mean GSI by month
(Figure 7) coincided with the microscopic description of the gonadal stages of M. muelleri.

Gonadosomatic index: The monthly evolution of the GSI presented a dome-shaped
pattern with the maximum values in mid-spring (May, 8.06 ± 3.24%, n = 72) and the
minimum values in late summer (September, 4.63 ± 2.67%, n = 131). Significant differences
in the GSI were found among the months (Kruskal–Wallis test, χ2 = 46.97, p < 0.001) for all
pair comparisons (Dunn’s test, padj p < 0.01).
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Figure 5. Boxplots of Le Cren index (Kn) calculated with (a) the total weight (Knt) and (b) the
eviscerated weight (Kne) (bottom) by months. The values Sept_19 and Sept_20 refer to September of
2019 and 2020, respectively. Red points refer to outliers, the horizontal lines in the boxes refer to the
median value of the index, and the length of the whiskers stands for the minimum and maximum
values of the index.

3.5. Maturity Ogive

The GLM model showed a significant effect of length on the proportion of mature fish
for all sexes combined (Table 8). The model indicated that the probability of being mature
increased with length. This probability varied slightly when the data were segregated by
sex. The slope estimated by the model was bigger for females, which indicates that the
increment in mature individuals with length was higher for females than for males.

Table 8. Results of the generalized linear model (GLM) testing the influence of the standard length
on the maturity for each sex and both sexes combined. Binomial family with link = logit. *** = 0.

Sex GLM Equation SL50 (mm) 95% CI p gl AIC

Female −12.39426 (±−0.82910) + 0.3465
(±0.02379) ∗ SL 35.77 35.3–36.8 <2 × 10−16 *** 755 440.23

Male −11.92772 (±−0.87702) + 0.33040
(±0.02566) ∗ SL 36.10 35.3–36.8 <2 × 10−16 *** 651 425.39

Both sexes −8.91708 (±−0.52800) + 0.26149
(±0.01542) ∗ SL 34.1 35.3–36.8 <2 × 10−16 *** 996 779.53
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Figure 6. Sections of ovarian histology, illustrating their seasonal aspects. (a) April: oocytes with 
multiple stages, MG, CA, and POFs (active spawning phase). (b) May: active developing reproduc-
tive phase, characterized by H and MG. (c) September 2019: immature-only PV oocytes. (d) Septem-
ber 2020: active developing reproductive phase, characterized by H and MG. PV = previtellogenic 
oocyte; CA = cortical alveolar oocyte; MG = migratory nucleus; POF = post-ovulatory follicle. Bar = 
200 µm. 

 
Figure 7. Boxplot of the gonadosomatic index (GSI) by month in the Bay of Biscay in 2019 and 2020, 
with the data combined. Red points refer to outliers, the horizontal lines in the boxes refer to the 

Figure 6. Sections of ovarian histology, illustrating their seasonal aspects. (a) April: oocytes with
multiple stages, MG, CA, and POFs (active spawning phase). (b) May: active developing reproductive
phase, characterized by H and MG. (c) September 2019: immature-only PV oocytes. (d) September
2020: active developing reproductive phase, characterized by H and MG. PV = previtellogenic oocyte;
CA = cortical alveolar oocyte; MG = migratory nucleus; POF = post-ovulatory follicle. Bar = 200 µm.
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the index.

The SL50 of M. muelleri is presented for each sex and for both sexes combined in Table 8.
The results indicated that 50% of the females were already mature at 35.77 mm, and 50% of
the males were mature at 36.10 mm. For both sexes combined, the SL50 was 34.1 mm.

3.6. Batch Fecundity

The size of the females for the batch fecundity analysis ranged from 41 to 51 mm for
the standard length. The batch fecundity varied from 114 to 919 oocytes/female. The mean
relative fecundity was 394 ± 156 oocytes/g (whole fish) or 433 ± 180 oocytes/g (ovary-free)
for preserved fish.

There was a clear relationship between the batch fecundity and the gonad-free female
weight and standard length (Figure 8a,b). The assumption of gamma-distributed batch
fecundity resulted in a better fit to the data (Table 9).

Table 9. Results of the linear model and generalized linear model (GLM) testing the influence of the
gonad-free weight (WGf) and standard length (SL) on the number of hydrated oocytes (BF). *** = 0,
** = 0.001. S.E. = standard error.

Model Intercept (±S.E.) Slope (±S.E.) AIC (gl)

BF vs. WGf
Linear 46.67 (±157.40) 366.23 (±133.96) ** 644.81 (45)

GLM_Gamma (link = identity) −12.25 (±164.14) 417.34 (±146.58) ** 628.3 (46)
BF vs. SL GLM_Gamma (link = identity) −2171.88 (±543.44) *** 58.86 (±12.35) *** 632.91 (45)

3.7. Age vs. Length

No specimens older than 2 years old were found in the 1085 aged individuals (447 in
2019 and 638 in 2020). For age group 0, the SL ranged from 18 mm to 44 mm, with a mean
of 28.2 mm (±5.50); for age group 1, the SL ranged from 33 mm to 55 mm, with a mean of
43.8 mm (±4.29); and, finally, for age group 2, the SL ranged from 37 mm to 51 mm, with a
mean of 42.8 mm (±2.61).
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The Kruskal–Wallis test indicated that the differences in the SL means between ages
were statistically significant (χ2 = 714.52, p < 0.001) for group 0 vs. group 1 and group
0 vs. group 2, but not between age group 1 and age group 2 (Dunn’s test, padj = 0.068).

The distribution of lengths as a function of age and month is shown in Figure 9. The
composition by age of the population of M. muelleri in the Bay of Biscay seemed to vary
monthly. Thus, while all the individuals captured in April belonged to age group 2, in
May, we found a low number of individuals of age 0 (SL = 36 mm) and some of age 1
(SL = 44.5 mm), while most of the adults belonged to age group 2 (SL = 51.2 mm). In
September, however, the population was dominated by small specimens (SL = 28.1 mm)
that came from a wide range of cohorts, as can be inferred from the shape of the length
frequency distribution histogram. The adults of age group 1 (SL = 45.5 mm) were also
represented by a lower number of individuals (23% of the total).



Hydrobiology 2023, 2 303

Hydrobiology 2022, 1, FOR PEER REVIEW 17 
 

 

 
Figure 9. Length frequency distribution of the individuals captured in April, May, and September 
in the Bay of Biscay by age. N = number of samples examined. 

4. Discussion 
This study provides comprehensive information on the biology and population dy-

namics of an important foraging species and a component of the trophic chain in the Bay 
of Biscay [37,56], M. muelleri. In the absence of exploratory campaigns capable of sampling 
the entire annual cycle of the species, we provide, for the first time, both information on 
the biology of this species and a global view of the population’s temporal dynamics. We 
are aware that some of the models fitted for the estimation of population parameters 
would be more reliable and robust if the quality of sampling was better. However, despite 
this setback, we obtained estimates of key demographic parameters for the population of 
M. muelleri inhabiting the Bay of Biscay that largely resemble those previously reported 
for this species in other areas of the northeast Atlantic (as we discuss below). Based on 
three months of sampling and the size distribution and ages, we have been able to discern 
a temporal cycle for M. muelleri. Thus, the average length of the sampled individuals was 
different in spring and summer. While in September, most of the population consisted of 
juveniles (immatures, age group 0) or young adults (age group 1), adults dominated the 
population in April–May (mature, age groups 1 and 2). 

In temperate and subtropical waters, M. muelleri generally spawns from late winter 
to early autumn (see Table 10). References are scarce for the Bay of Biscay, but eggs and 
larvae occur from February to June according to Valencia et al. [33], Rodriguez et al. [34], 
and Rodriguez [35]. In the survey data used for this study (JUVENA, MEGS, and BI-
OMAN surveys), early life stages were observed in March, April, and May, but not in 
September. However, mature individuals with spawning markers, i.e., hydrated oocytes, 
were found in September of 2020 (Table 7), indicating a spawning capability in late sum-
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months for this species in the area of Rockall Trough, describing the presence of juveniles 
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observed in the juvenile size distributions in September in the Bay of Biscay and the pres-
ence of juveniles in April suggest a potentially protracted spawning season. The poor rep-
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4. Discussion

This study provides comprehensive information on the biology and population dy-
namics of an important foraging species and a component of the trophic chain in the Bay of
Biscay [37,56], M. muelleri. In the absence of exploratory campaigns capable of sampling
the entire annual cycle of the species, we provide, for the first time, both information on the
biology of this species and a global view of the population’s temporal dynamics. We are
aware that some of the models fitted for the estimation of population parameters would
be more reliable and robust if the quality of sampling was better. However, despite this
setback, we obtained estimates of key demographic parameters for the population of M.
muelleri inhabiting the Bay of Biscay that largely resemble those previously reported for
this species in other areas of the northeast Atlantic (as we discuss below). Based on three
months of sampling and the size distribution and ages, we have been able to discern a
temporal cycle for M. muelleri. Thus, the average length of the sampled individuals was
different in spring and summer. While in September, most of the population consisted of
juveniles (immatures, age group 0) or young adults (age group 1), adults dominated the
population in April–May (mature, age groups 1 and 2).

In temperate and subtropical waters, M. muelleri generally spawns from late winter
to early autumn (see Table 10). References are scarce for the Bay of Biscay, but eggs and
larvae occur from February to June according to Valencia et al. [33], Rodriguez et al. [34],
and Rodriguez [35]. In the survey data used for this study (JUVENA, MEGS, and BIOMAN
surveys), early life stages were observed in March, April, and May, but not in September.
However, mature individuals with spawning markers, i.e., hydrated oocytes, were found in
September of 2020 (Table 7), indicating a spawning capability in late summer. Kawaguchi
and Mauchline [13] identified a prolonged spawning season of about six months for this
species in the area of Rockall Trough, describing the presence of juveniles in autumn and
winter, mixed with late larvae or adults, respectively. The range of modes observed in the
juvenile size distributions in September in the Bay of Biscay and the presence of juveniles in
April suggest a potentially protracted spawning season. The poor representation of larger
fish in late summer could be explained by different causes. On the one hand, M. muelleri
are known to perform DVMs related to foraging [16]. DVMs were also detected in the
Bay of Biscay [56], although our stomach content index did not mirror an obvious relation
with the DVM, likely because of the absence of nocturnal samples (Figure S2). Some
authors have found that larger adult fish do not perform DVMs [14,15], which could
lead to reduced accessibility to these larger fish if the net does not reach the depth where
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they are found. This does not seem to be the situation in the Bay of Biscay, since the
vertical distribution range of this species mainly comprises the first 400 m of the water
column [56], which is usually sampled with the net. However, net avoidance may be
higher at these size ranges than at smaller sizes (faster swimming of big-sized specimens),
which would also contribute to a lower accessibility [57]. On the other hand, if the higher
post-breeding mortality observed by Gjøsæter [28] in Norwegian waters also occurs in
southern areas (as in Rockall Trough [13]), it would be expected that the proportion of adult
fish of 1 or 2 years old in late summer would be reduced. Interannual differences can also
occur, as reflected by the higher percentage of larger fish (SL > 40 mm, age group 1) in
2020 compared to 2019. In order to explain these differences, some hypotheses can be put
forward. In line with the observations of other authors regarding post-spawning mortality,
this interannual change in the adult fish proportion might be interpreted in terms of lower
mortality rates for adult spawners in 2020 at the end of the spawning season. In this case,
we might attribute particularly unfavourable post-spawning hydrographic conditions in
one year compared to another as the driver of these changes. For instance, Rosland and
Giske [58] stated that turbidity close to the surface would benefit M. muelleri, since the
visibility of piscivores with long reaction distances would decrease more than the visibility
of zooplanktivores with short reaction distances. The estimated wind-induced mixing in
the Bay of Biscay for these years (Figure S3) showed no appreciable variability between
years, so this mixing effect was insufficient to cause a singular effect on the M. muelleri
mortality. An alternative hypothesis, and likely the simplest and most reasonable, is that
differences in the population biomass are responsible for this perception (the estimates of
biomass in the area were 157 and 208 ktons for 2019 and 2020, respectively—Guillermo
Boyra, personal communication). Assuming a similar proportion of adults each year, it
would be expected that the probability of catching adult fish in 2020 would be higher, as
we indeed observed for this year.

Table 10. Demographic parameters estimated/recorded for Maurolicus muelleri in this study and
by various authors from different areas. BF = batch fecundity. When available, information on
temperature and spawning season is also depicted. NA: Not applicable.

Area BF (egg/g) Fish Range
(mm) Max Age Temperature BF Method Lfirst Mat Spawning Season Author

Southeast
Australia 75–468 33.5–48.5 NA NA Number of oocytes >

500 um 32 July to October Clarke 1982

Off Japan 109–333 42–48 NA 42 late winter to early
spring Okiyama, 1971

Norwegian
waters 200–500 47–55 3 NA Number of oocytes >

500 um 39 March to October Gjosaeter, 1981

South Africa 161–738 10–52 NA 12–16.3 ◦C
(100 m)

Number of oocytes in
largest size class 24 all year, with peak in

late winter/spring Prost, 1991

Tasmania 104–942 34–54 NA

11.6–13.5 ◦C
(200 m),

12–18 ◦C
(Tsup)

Number of oocytes >
350 um NA NA Young et al.,

1987

South Africa 91–371 39–53 NA NA Number of oocytes >
500 um NA NA

Melo and
Amstrong,

1991.

Rockall
Trough 284–596 36.5–46.7 1? 9.5–13.5 ◦C

(100 m) NA 35 March to October

Kawaguchi
and

Mauchline,
1987

Norway
waters 200–500 NA NA NA Oocyte size

distribution counting NA NA Goodson et al.,
1995

Bay of Biscay 114–919 41–51 2 12.6–21.1 ◦C
(Tsup)

Hydrated oocyte
method (>650 µm) 30 March to September This study

4.1. Weight vs. Length

An analysis of the weight vs. length relationship is a rapid and simple way to describe
several biological aspects of the species. Nevertheless, it also is known that these relation-
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ships are strongly affected by several factors; the factors that stand out as the most common
are season, size range, and sex [59]. We observed interannual differences between both the
coefficient of the slope (b) and the coefficient of the intercept (a). A higher “a” value in 2020
was interpreted as a better baseline condition of fish in that year, which could be a response
to more favourable environmental conditions for growth in 2020 compared to 2019. The
larger presence of adult fish in late summer with higher weights in 2020 than in 2019
supports this hypothesis of a better condition of fish, which would have a positive influence
on their survival rates. Nevertheless, the indices of condition gave variable results. Fulton’s
condition index increased in 2020 (10.6 vs. 9.8), providing new evidence of healthier fish in
this year, while the Le Cren index (Knt) was not different between years.

The sex slightly modified the LWevR of individuals, with females being heavier than
males at larger sizes, although this result may have been influenced to some extent by the
lower numbers of large males.

4.2. GSI and Sex Ratio

The range of values of the GSI estimated here was significantly higher than those
described in the literature. The maximum value of the GSI (16%, in May) contrasts with
those reported by Rasmussen and Giske [17] and Salvanes and Stockley [60] in Norway (7%
and 5.6%, respectively), and Clark [6] in Australia (9.6%). Salvanes and Stockley [60] found
that the highest averages for the GSI were closely related to the diameter of the oocytes, that
is to say, to the maturation process of the fish gonads. In this study, the occurrence of fish
with high GSI values (about 8%) in September as well denoted that a small proportion of M.
muelleri exhibited reproductive activity in late summer. Higher GSI values in May indicated
that there was a greater investment in reproduction during this period, which coincided
with the presence of the more advanced stages of maturation in the gonad (Figure 6). This
result demonstrates that the GSI may be used as a suitable tool for the evaluation of gonadal
maturation in M. muelleri.

M. muelleri exhibits a positive bias in the ratio of females to males in larger fish
groups [6,17,18,29,61]. In the samples taken in this study, males were most abundant at
smaller size ranges, while females dominated progressively among larger sizes at a rate of
11% with the size. The overall ratio was slightly in favour of females at 0.44:0.56, whereas an
equal proportion of males to females was predicted at 41.5 mm. Although this phenomenon
seems to be common in mesopelagic species, it has not been observed in other populations
of the same gender [62]. Different theories have been proposed to explain this difference
in size. On the one hand, Rasmussen and Giske [17] suggested different mortality rates
associated with sex or sexual differences in growth. On the other hand, Kristoffersen and
Salvanes [61] proposed sex segregation by depth, which would change with age. More
recently, Staby et al. [14] observed in Norwegian fjords that post-larvae and juvenile fish
performed a normal crepuscular migration, while most of the adults remained at lower
depths throughout the diel period. If male growth is lower than female growth, the juvenile
phase of males should last longer, and the sex ratio should be in preference to juvenile
males in the lower ranges. No clear evidence regarding a differential growth between sexes
was found, probably because it was not possible to sex juvenile individuals. If there was
vertical segregation by sex or size in the Bay of Biscay, sampling should cover the entire
vertical distribution of the species to avoid bias in the sex ratio estimation. According to
Sobradillo et al. [56], M. muelleri is preferentially distributed in a range of depths between
50 and 400 m, which corresponds to the usual depth at which the samples were taken in
this study. Therefore, if one rules out these factors as likely to be responsible for the change
in the sex ratio proportion by size, it seems that differential mortality may be the cause of
the higher presence of females in larger fish groups.

4.3. Female Maturity

This is the first time that data on the reproductive parameters in terms of ovarian
development, length at maturity, maturity ogive, and batch fecundity are presented for
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M. muelleri in the Bay of Biscay. The SL50 was only slightly larger in females than in
males (35.7 mm and 36.1, respectively) and somewhat lower in sex-combined than in sex-
separated samples (34.1 mm). There is no information on this parameter for M. muelleri,
but for sex-combined samples, our estimate for SL50 was slightly larger than that of M.
sthemanni (SL50 = 32 mm), according to Almeida et al. [62]. The age and length at matu-
ration show considerable variability within the same species, and this plasticity seems to
be genetically defined and modelled by environmental variables [63]. For instance, the
results showed that the size of the smallest mature female was 30 mm (by histological
observation), which is within the range reported in the literature for different areas (20 to
40 mm [6,14,17,29,64–67]). Nevertheless, it would have been reasonable to expect a lower
size at maturity in the Bay of Biscay if the sampling during the spawning peak (May or
June) had been more intense, since in this period, reproductive activity occurs amongst
individuals with a wider range of sizes [29].

Vazzoler (1996, in Almeida et al. [62]) defined the “critical minimum size” as the length
at which the critical reproductive processes start, and proposed that species with a short
life span and a small Lmax (r strategists), as is the case with M. muelleri, achieve mature
gonadal stages before those species with a longer life span and a larger Lmax (k strategists).

The reproductive load (RL = Lm/Lmax) defines the relationship between the minimum
size at maturation (Lm) and the maximum size a certain fish is likely to reach (Lmax). Froese
and Binohland [68] compiled information from the literature for over 1100 fish and found
that the Lm is, above all, a function of size. The values of these parameters are determined
mainly by the interaction between the supply of oxygen and its demand [69]. According to
these authors, the relationship varied between 0.4 and 0.9 and tended to be greater in smaller
fish than in larger ones. With the aim of testing this hypothesis, we estimated this parameter
(RL = 0.55) by taking the recorded minimum size at first maturation (SLm = 30 mm) and
the maximum size observed (SLmax = 55 mm) of females as a reference. Our estimate was
similar to the values reported by Almeida et al. [62] (Table 2) for the Maurolicus genus from
different locations (about 0.5), with the exception of the populations located in Japan [64]
and Tasmania [66]. This value is attributed to the ability of fish to perceive environmental
stimuli that induce them to spawn [70]. This relationship seems to be genus-specific, so
it will remain invariant within the same taxonomic group, and though environmental
changes may cause modifications in both the SL50 and SLmax, they will not influence the
relationship between these parameters.

4.4. Fecundity Strategy

In general terms, fish undergo two types of fecundity: determinate and indetermi-
nate [71], and reproductive parameters have to be estimated according to the reproductive
strategy of the fish. In the case of determinate fecundity, all oocytes predestined to be
spawned would be recognized at the beginning of the spawning season, and no new
spawning oocytes would be recruited from the primary growth stocks, as is the case with
indeterminate species [49]. Salvanes and Stockley [60] assumed an indeterminate fecundity
for M. muelleri and estimated a total fecundity that ranged from 13,331 to 36,848 eggs in
specimens from the northern Norwegian sea. Previously, Goodson et al. [29] found that
the total fecundity of M. muelleri did not decrease when the spawning season progressed,
indicating that new oocytes were being recruited. According to this evidence, M. muelleri
should be regarded as an indeterminate species, and for that reason, the yearly fecundity
should be calculated by estimating the spawning frequency, i.e., the percentage of females
spawning per day, and the batch fecundity [51].

The batch fecundity was found to fluctuate greatly, both among individuals of the same
population and between populations from different locations (Table 10). Our estimates of
batch fecundity in May seem to be in the upper range of the values observed in different
populations of this species distributed worldwide for individuals of a similar size (Table 10).
This might mirror a differential life history strategy in the Bay of Biscay, where the fish, for
the most part, seemingly reproduce no more than twice while alive and then die, while in
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other areas, fish live longer and take part in more than one spawning season. However, due
to variations in the oocyte size thresholds used to determine the batch fecundity on the one
hand, and the distinct range of fish analysed in each study on the other, the comparisons
should be treated with caution.

We found correlations between the batch fecundity and the size or weight, as has been
found by other authors [6,13,17,72]. However, in other studies [2,8,12,66,67], no significant
relationship between these variables was noticed. The lack of correlation between batch
fecundity and size/weight could be attributed to different factors: firstly, because the range
of weights is too short to obtain a relationship between the parameters, and secondly,
due to the high dispersion of the batch fecundity, mainly in larger individuals. The high
scatter amongst these individuals may indicate that these fish have already begun to spawn,
diminishing their fecundity and increasing the variance in the data. This can be largely
avoided by selecting only ovaries that do not present spawning markers, such as post-
ovulatory follicles, as we did in this study. This seems to be the reason why we obtained a
significant correlation, even though the range of fish sizes was narrow.

In this study, we provide some new insights into the biological sustainability of M.
muelli as a basis for stock assessment in the Bay of Biscay. However, the exploitation of this
resource is delicate and there is a lack of information in this regard. To date, no trial fishing
for mesopelagic fish has been conducted in the Bay of Biscay, and it is unknown whether
these species are captured as a bycatch and discarded by the trawling fleet that operate in
this region. Further actions focused on these gaps are strongly recommended to prevent
the misuse of this potential resource.

5. Conclusions

According to our findings, the population of M. muelleri in the Bay of Biscay is rep-
resented mostly by individuals of ages 0 and 1 in late summer (September) and age 2
in spring (April–May). While the age 2 group is absent in late summer, the age 1 fish
represent a minor portion of the catches and could possibly be overrepresented, since mesh
escapement is likely to be higher for the younger age 0 fish. Therefore, it appears that the
number of fish surviving after spawning is low enough to offset poor recruitment in a
given year. The length vs. weight relationships showed no clear differences by sex. The
sex ratio was length-dependent, with larger fish being females. The batch fecundity was in
the upper range of values compared to other world populations, which can be interpreted
as a life history strategy of fish in the Bay of Biscay. In this area, most fish apparently
spawn once and then die, while in other areas, they live longer and take part in more than
one reproductive season. Consequently, a high mortality rate during the early life stages
throughout the entire spawning season or the heavy exploitation of age 0 fishes before
spawning could lead to a significant population decline from which recovery could be
quite slow. Hence, if this population is ever exploited by a fishery, it should be regulated in
such a way that fishing does not take place in an age 0 group before spawning.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/hydrobiology2020019/s1, Figure S1: Image of one pair of sagitta
otoliths of a specimen of M. muelleri captured on 10 September 2020 in the Bay of Biscay. SL of fish
44 mm, Age 1. The “x” in red marks the first annual ring. Figure S2: Boxplot of the hourly pooled
stomach index across the day in the Bay of Biscay for the 2019 and 2020 data combined. The dashed
red line shows the overall mean value and the dashed black line is the standard deviation. Figure
S3: The wind-induced mixing in 2019 and 2020 at 45◦ N, 2.5◦ W. The wind-induced turbulent mixing
was calculated as the cube of the surface wind speed obtained from the NCEP/NCAR Reanalysis 1
project. Table S1: Main biological characteristics of M. muelleri collected during the surveys carried out
in the Bay of Biscay. UN-DET = undetermined. Table S2: Length-weight parameters for each study
year for undetermined, male and female individuals. df = degrees of freedom, R2
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