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Abstract: Two Streptomyces strains, named N11-26 and DC10-5, were isolated from deep-sea and
non-photosynthetic stony coral, respectively. Strain N11-26 produces lobophorin C and divergolides,
which are antimicrobial substances. This study aimed to classify these strains and reveal their
cryptic potential to synthesize other secondary metabolites, such as polyketides and nonribosomal
peptides. Strains N11-26 and DC10-5 showed 16S rRNA gene sequence similarities of 100% and
99.9% to Streptomyces olivaceus NRRL B-3009T, respectively. By digital DNA–DNA hybridization
using whole-genome sequences, these strains were classified as Streptomyces olivaceus. Strain N11-26
was closer to the type strain of S. olivaceus than strain DC10-5 and possessed 17 clusters of polyketide
synthase (PKS) and/or nonribosomal peptide synthetases (NRPS) genes, whereas strain DC10-5
harbored 19 clusters. Putative products by these gene clusters were predicted by bioinformatic
analyses. Although 15 clusters were conserved between the two strains, two and four clusters were
specific in strains N11-26 and DC10-5, respectively. This represents a diversity of potential polyketide
and nonribosomal peptide compounds between strains of S. olivaceus. To the best of our knowledge,
this is the first report annotating all the PKS and NRPS gene clusters in S. olivaceus strains with their
putative products to provide useful information for genome mining.
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1. Introduction

Microbial secondary metabolites, such as antibiotics, are a promising pharmaceutical
source of antimicrobial materials, many of which have been developed as therapeutic
agents [1]. Terrestrial environments are recognized as the main habitat of members of the
genus Streptomyces, which is the representative genus in actinomycetes and well-known as
a rich source of useful secondary metabolites. Recently, marine-derived Streptomyces strains
have been attracting attention as an untapped and promising source for new compounds.
Many bioactive substances have indeed been discovered from them [2]. In recent years,
whole-genome sequencing of Streptomyces strains revealed their greater potential to syn-
thesize diverse secondary metabolites, than expected through bioactivity-based screening.
Genome mining is a currently developed and often employed approach for the search for
novel secondary metabolites [3]. Accessible whole-genome sequences of many strains are
essential for the progress of genome mining in this research field. To progress the approach,
whole-genome sequences of publicly available strains, such as culture collections, should
be sequenced and published with useful information to enrich the materials.

During our search for new bioactive secondary metabolites, a Streptomyces strain desig-
nated as N11-26 was isolated from deep-sea water in the Sea of Japan and found to produce
lobophorin C, divergolides C and D, and germicidins (1 to 4 in Figure 1) by the chemical
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screening using HPLC coupled with a photodiode array detector [4]. Lobophorins, diver-
golides and germicidins are spirotetronate-, ansamycin- and alpha-pyrone-compounds and
their backbones are biosynthesized by polyketide synthases (PKSs) [5–7]. Lobophorins
and divergolides show antimicrobial activities [8–10], whereas germicidins inhibit spore
germination and hyphae growth [11]. Another Streptomyces strain named DC10-5 was
isolated from a non-photosynthetic stony coral in the Pacific Ocean. This strain is phylo-
genetically close to N11-26. In this study, whole-genome sequences of these two strains,
which are available from the NBRC Culture Collection, were sequenced to provide infor-
mation useful for genome mining. Subsequently, we classified these strains at the species
level and investigated their potential to synthesize other polyketide and nonribosomal
peptide compounds by analyzing polyketide synthase (PKS) and nonribosomal peptide
synthetase (NRPS) gene clusters since nonribosomal peptides as well as polyketides are
major secondary metabolites in actinomycetes [12]. Type-I PKSs are large multifunctional
enzymes composed of multiple domains, such as ketoacylsynthase (KS), acyltransferase
(AT), acyl carrier protein (ACP), dehydratase (DH), enoylreductase (ER), ketoreductase
(KR) and thioesterase (TE) domains, whereas NRPS are those such as condensation (C),
adenylation (A), a peptidyl carrier protein (PCP), epimerization (E) and TE domains. Back-
bones synthesized by type-I PKS and NRPS gene clusters can be bioinformatically predicted
according to the domain organizations of these enzymes in each cluster with substrates of
each AT and A domain [13]. Consequently, this study revealed the diversity of strains in
Streptomyces olivaceus.
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Streptomyces sp. N11-26 and Streptomyces sp. DC10-5 formed an independent clade with S. 
olivaceus. The other species showing > 99.0% similarities to these strains were separated 
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Figure 1. Chemical structures of lobophorin C (1), divergolides C (2) and D (3) and germicidins (4).

2. Results
2.1. Classification of Streptomyces Strains N11-26 and DC10-5

Strain N11-26 showed 16S rRNA gene sequence similarities of 100, 99.3 and 99.1%
to the type strains of Streptomyces olivaceus, Streptomyces parvulus and Streptomyces mala-
chitospinus, respectively, as the closest species whereas strain DC10-5 were 99.9, 99.4 and
99.2% to them. The difference in 16S rRNA gene sequences was only 1 bp between strains
N11-26 and DC10-5. In a phylogenetic tree based on 16S rRNA gene sequences (Figure 2),
Streptomyces sp. N11-26 and Streptomyces sp. DC10-5 formed an independent clade with
S. olivaceus. The other species showing >99.0% similarities to these strains were separated
from the clade.
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Figure 2. Phylogenetic tree based on 16S rRNA gene sequences. Type strains of species showing 
sequence similarities of > 99.0% to strains N11-26 and DC10-5 are included in this tree. Numbers on 
the branches are the confidence limits estimated by bootstrap analysis with 1000 replicates, and 
values above 50% are indicated at branching points. Streptomyces albus NBRC 13014T (AB490769) 
was used as an outgroup (not shown) to show the root. 
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Figure 2. Phylogenetic tree based on 16S rRNA gene sequences. Type strains of species showing
sequence similarities of >99.0% to strains N11-26 and DC10-5 are included in this tree. Numbers
on the branches are the confidence limits estimated by bootstrap analysis with 1000 replicates, and
values above 50% are indicated at branching points. Streptomyces albus NBRC 13014T (AB490769) was
used as an outgroup (not shown) to show the root.

Subsequently, we sequenced the whole genomes of the two strains. As shown in
Table 1, the draft genome sequences were composed of six contig sequences. Their genome
sizes and G+C contents were close to those of S. olivaceus NRRL B-3009T.

Table 1. Whole-genome sequences of Streptomyces sp. N11-26, Streptomyces sp. DC10-5 and a type
strain of their closest species.

Strain Contig Genome Size G+C Content WGS Project Sequenced in

Streptomyces sp. N11-26 6 8.44 Mb 72.5% BNEG01 This study
Streptomyces sp. DC10-5 6 8.66 Mb 72.5% BNEF01 This study

S. olivaceus NRRL B-3009T 188 8.58 Mb 72.4% JOFH01 Reference [14]

DNA–DNA relatedness of the two strains to S. olivaceus NRRL B-3009T were 88.0 and
80.5% (Table 2). As these values exceeded 70%, the threshold for species delineation in
procaryotes, these two strains were identified as S. olivaceus. Streptomyces sp. N11-26 is
closer to S. olivaceus NRRL B-3009T (88.0%) than to Streptomyces sp. DC10-5 (80.5%). These
distances are also supported by the 16S rRNA gene sequence similarities.

Table 2. DNA–DNA relatedness and 16S rRNA gene similarities among Streptomyces sp. N11-26 (1),
Streptomyces sp. DC10-5 (2) and S. olivaceus NRRL B-3009T (3).

Strain
DNA–DNA Relatedness

1 2 3

1. Streptomyces sp. N11-26 - 80.5% 88.0%
2. Streptomyces sp. DC10-5 99.9% - 80.5%

3. S. olivaceus NRRL B-3009T 100% 99.9% -

16S rRNA gene sequence similarity

2.2. Secondary Metabolite-Biosynthetic Gene Clusters Encoding PKSs and/or NRPSs

S. olivaceus N11-26 harbored four type-I PKS, one type-II PKS, two type-III PKS, six
NRPS and four hybrid PKS/NRPS gene clusters in its genome, whereas S. olivaceus DC10-5
harbored four type-I PKS, two type-II PKS, two type-III PKS, eight NRPS and three hybrid
PKS/NRPS gene clusters. Except for the duplication, 21 PKS and NRPS gene clusters were
found in these two strains, as listed in Table 3.
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Table 3. PKS and NRPS gene clusters in the genomes of S. olivaceus N11-26, DC10-5 and NRRL B-3009T.

Gene
Cluster Putative Product

S. olivaceus

N11-26 DC10-5 NRRL B-3009T

t1pks-1 decaketide (5) for alkenyl-franone + + +
nrps-1 Coelichelin (6) + + +

nrps-2 * Streptopeptolin-like, partial (7) - + +

t1pks-2 Divergolides (such as 2 and 3 in
Figure 1) + + +

nrps-3 Mirubactin (8) + + +
nrps-4 Coelibactin (9) + + +
nrps-5 unknown (with Val) + + +
nrps-6 SF2768 (10) + + +

t1pks-3 * arsono-polyketide (11) - + -
pks/nrps-1 Pactamide (12) + + +

t2pks-1 * Rishirilides (13a), Lupinacidin (13b),
and Galvaquinone (13c) - + -

nrps-7 tripeptide (Orn-Orn-Orn) + + +
pks/nrps-2 * unknown (x, mal, Pro) + - +

t2pks-2 spore pigment + + +
nrps-8 * x-y-Gly-Phe - + -
t1pks-4 * Butyrolactol-like, partial (14) + - +

pks/nrps-3 Rimosamide-like, partial (15) + + +

t3pks-1 Flaviolin (16a) and
1,3,6,8-tetrahydroxynaphthalene (16b) + + +

t3pks-2 Germicidins (such as 4 in Figure 1) + + +
pks/nrps-4 Totopotensamides (17a, 17b) + + +

t1pks-5 Lobophorins (such as 1 in Figure 1) + + +

Total 17 19 18
+, present; -, absent; mal, moiety derived from malonyl-CoA; pks/nrps, hybrid PKS/NRPS; t1pks, type-I PKS; t2pks,
type-II PKS; t3pks, type-III PKS; nrps, NRPS; x, unpredicted amino acid residue; y, unknown residue. *, Specific
clusters are asterisked. The gene clusters in this list are sorted in the same order as those in Figure 4. Chemical
structures of 5 to 17 are shown in Figure 3.

In an analysis by antiSMASH, nrps-1, t3pks-1, and t3pks-2 showed 100% similarities
to BGCs of coelichelin, flaviolin and 1,3,6,8-tetrahydroxynaphthalene, and germicidin,
respectively, as their ‘Most similar known cluster’ (Tables S1 and S2). Even if simi-
larities are not high like the others, we should not annotate the clusters to be novel
because the antiSMASH database does not include information on all reported BGCs.
Additionally, since similarities of domain organizations are not mainly considered in
antiSMASH under the algorism of ClusterBlast, similar gene clusters, which synthesize
similar polyketide- and/or peptide-chains, could not be searched in many cases, as ex-
emplified in Tables S1 and S2. Thus, we searched known biosynthetic enzymes, whose
product is already identified, corresponding to the PKSs and/or NRPSs of the gene clusters
in strains N11-26 and DC10-5 by Protein BLAST (protein-protein BLAST, blastp) on the
NCBI website (Tables S3 and S4). If the sequence similarities are high and domain organi-
zations match well, then we annotated the clusters to be responsible for the compounds
shown in the column of ‘Product’ in Tables S3 and S4. The products and their chemical
structures are shown in Table 3 and Figure 3, respectively, which include predicted struc-
tures. Gene clusters named t1pks-2, t3pks-2 and t1pks-5 were biosynthetic gene clusters
(BGCs) for divergolides [6,15], germicidins [16] and lobophorins [17], respectively. They
were present in the genome of strain N11-26, which is a producer of these compounds, as
expected, and also in the other strains, including the type strain NRRL B-3009T. Gene clus-
ters named nrps-1, nrps-3, nrps-4, nrps-6, t1pks-3, pks/nrps-1, t2pks-1, t3pks-1 and pks/nrps-4
were BGCs for known compounds, such as coelichelin [18], mirubactin [19], coelibactin [18],
SF2768 [20], arsono-polyketides [21,22], pactamide [23], rishirilides etc. [24,25], flaviolin
and 1,3,6,8-tetrahydroxynaphthalene [26] and totopotensamides [27], respectively. The
NRPS in nrps-3 showed a high sequence similarity to SpnA, which is responsible for
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streptopeptolin synthesis [28], but it lacked the first module present in SpnA (Table S4).
Hence, the product was predicted to be a streptopeptolin congener derived from the
partial structure of streptopeptolin (7, Figure 3). The other gene clusters were orphans.
The domain organization of t1pks-1 (KSQ-ATm-ACP-KS-ATm-DH-KR-ACP-KS-ATmm-KR-
ACP, KS-ATm-ACP-KS-ATmm-DH-KR-ACP-KS-ATm-DH-KR-ACP-KS-ATmm-KR-ACP, KS-
ATm-DH-ER-ACP-KS-ATmm-DH-KR-ACP and KS-ATm-(DH)-ACP-TE) suggested that the
product is derived from a decaketide with the structure shown as 5 in Figure 3. As the
domain organization not completely but partly resembles those of BGCs for E-837 and
E-492/E-975 [29], the putative product of t1pks may be alkenyl-furanone as described
in Table 3. Recently a non-natural furan anticancer compound was discovered from a
marine Streptomyces strain [30]. Although this may be the product of t1pks-1, lengths of
the carbon chains appear different between the furan compound and 5. Domain organi-
zation of t1pks-4 is KSQ-ATmm-ACP-KS-ATmm-DH-ER-KR-ACP, KS-ATmm-DH-KR-ACP,
KS-ATmm-DH-ER-KR-ACP-KS-KR-ACP, KS-ATm-KR-ACP-KS-ATm-KR-ACP, and KS-
DH-KR-ACP. This partly resembles to that of the butyrolactol-BGC (AT-ACP-KS-ATm-DH-
ER-KR-ACP-KS-ATm-KR-ACP-KS-ATm-DH-KR-ACP, KS-ATm-DH-ER-KR-ACP, KS-ATm-
DH-KR-ACP-KS-ATm-DH-KR-ACP, KS-ATmm-DH-ER-KR-ACP-KS-KR-ACP, KS-AT-KR-
ACP-KS-AT-KR-ACP, and KS-KR-ACP) [31] as underlined, except for KSQ in the first
module, the DH in the last module and substrates of some AT domains. The presence of
two AT-less modules composed of KS-KR-ACP is one of the characters in butyrolactol-BGC,
which was also observed in t1pks-4. Thus, the product may be a butyrolactol congener
derived from 14, which is shorter than butyrolactol due to less modules. Pks/nrps-3 partially
resembled rimosamide-BGC [32]. However, pks/nrps-3 encoded one NRPS (C-Aval-PCP-TE)
and one hybrid PKS/NRPS (Aile-T-C-Apro-PCP-KS-KR-ACP-TE) whereas rimosamide-
BGC encoded two NRPSs (RmoG: C-Agly-PCP, RmoH: C-Aval-PCP-TE) and one hybrid
PKS/NRPS (RmoI: A-T-C-Apro-PCP-KS-KR-ACP-TE). Considering the biosynthetic path-
way of rimosamide and difference between these module organizations, we predicted the
putative product to be 15 in Figure 3. Very recently, diketopiperazines cyclo-L-proline-L-
tyrosine was reported from a marine-derived Streptomyces sp. VN1 [30]. This might be
the final product of pks/nrps-3, but the relationship between the compound and 15 is still
unclear. The remaining orphan clusters, nrps-5, nrps-7, pks/nrps-2 and nrps-8, did not show
high similarities to BGCs of identified products (Tables S3 and S4). Their domain numbers
were one, three, three and four. The product of nrps-7 was predicted to be a tripeptide
composed of three ornithine residues. However, as amino acid substrates were unclear for
many A domains of NRPSs in the other three clusters, we could not show their chemical
structures in Figure 3.

Among the 21 gene clusters, fifteen were conserved between the two strains, N11-
26 and DC10-5 (not asterisked in Table 3). On the other hand, nrps-2 (a streptopeptolin
congener), t1pks-3 (arsono-polyketide), t2pks-1 (rishirilides etc.) and nrps-8 were specific
to DC10-5, whereas pks/nrps-2 and t1pks-4 were specific to N11-26. All the discovered 17
clusters from N11-26 were conserved in NRRL B-3009T (type strain of S. olivaceus), although
NRRL B-3009T possessed nrps-2, which was found from DC10-5. Except for nrps-2, N11-
26 and NRRL B-3009T shared the same set of PKS and NRPS gene clusters. Thus, not
in comparison between N11-26 and DC10-5 but among the three strains and expecting
15 conserved clusters among all strains, two clusters (pks/nrps-2 and t1pks-4) are shared
between N11-26 and NRRL B-3009T. One cluster (nrps-2) is shared between DC10-5 and
NRRL B-3009T, and three (t1pks-3, t2pks-1, nrps-8) are specific in DC10-5.
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Figure 3. Chemical structures of 5 to 17 shown in Table 3. X1 to X3, derived from unidentified
amino acid residues; 5, predicted decaketide according to the domain organization of t1pks-1; 6,
coelichelin [18]; 7, putative streptopeptolin congener inferred from the domain organization of nrps-2;
8, mirubactin [19]; 9, coelibactin (R1 = CH3 or H) [18]; 10, SF2768 [20]; 11, arsono-polyketides [21,22];
12, pactamide [23]; 13a, rishirilides B and C (B, R2 = H; C, R2 = OH); 13b, lupinacidin A; 13c,
galvaquinone B [24,25]; 14, putative polyketide chain deduced from the domain organization of t1pks-
4 and considering the butyrolactol-biosynthetic pathway, but where the lactone ring forms is unclear;
15, presumed putative peptide chain from the domain organization of pks/nrps-3 and considering
the biosynthesis of rimosamide C; 16a, flaviolon; 16b, 1,3,6,8-tetrahydroxynaphthalene [26]; 17a,
totopotensamide B; 17b, totopotensamides A and C (A, R2 = H; C, R2 = SO3H) [27].
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Although the whole-genome sequences determined in this study are not complete but
are a draft, the positions of the PKS and NRPS gene clusters in the putative chromosomal
DNAs are shown in Figure 4. S. olivaceus NRRL B-3009T is not included in this figure
because its draft genome sequence is composed of 188 contigs, and most sequences are too
short to be compared. Gene clusters conserved between strains N11-26 and DC10-5 are
located at similar positions, which are in the left or right arms of the putative chromosomes.
Specific clusters did not gather in a specific region that can be considered an island.
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Figure 4. Positions of PKS and NRPS gene clusters in the putative chromosomal DNAs of S. olivaceus
N11-26 and DC10-5. Contig sequences encoding these gene clusters are shown in bold black lines. Red
circle, PKS gene cluster; blue circle, NRPS gene cluster; green circle, hybrid PKS/NRPS gene cluster. The
same gene clusters are connected by lightly colored lines. Gene clusters specific to one of the strains
are filled by pink (PKS gene cluster), light blue (NRPS gene cluster) or light green (hybrid PKS/NRPS
gene cluster). Although known compounds that were predicted by our bioinformatic analysis are
indicated here, putative products of orphan clusters are not shown since their compound names are
unclear, as shown in Table 3. The ‘rishirilides’ in DC10-5 includes rishirilides B and C, lupinacidin A and
galvaquinone B [25]. The ‘flaviolin’ includes flaviolin and 1,3,6,8-tetrahydroxynaphthalene.

3. Discussion

According to the Dictionary of Natural Products, seven marine-derived Streptomyces
strains are recorded as lobophorin producers. Among them, only the strain FXJ7.023 [17]
was identified as S. olivaceus; the others, such as strains MS100061 [33], 1053U.I.1a.3b [34],
12A35 [34], SCSIO 01127 [35], 7790-N4 [36] and M-207 [37], have not been classified at the
species level. Very recently, S. olivaceus JB1 was isolated as an endophyte of Maesa japonica
and produced lobophorins [10]. Although its isolation source is not marine, the strain is
tolerant to saline. In the present study, all the strains belonging to S. olivaceus harbored
a lobophorin-BGC. Therefore, most lobophorin producers may be S. olivaceus, although
the six unclassified lobophorin-producing Streptomyces strains need to be classified at the
species level. As divergolide producers, Streptomyces strains KFD18 [38], HKI0576 [8],
W112 [6] and S. olivaceus SCSIO T05 [39] are reported. Although the isolation source of
strain W112 is unclear, strains KFD18 and HKI0576 are derived from mangroves. S. olivaceus
SCSIO T05 was isolated from marine sediment. Although the unidentified Streptomyces
strains need to be classified at the species level, divergolide producers may also belong
to S. olivaceus because all the genomes that we sequenced in this study also encode the
divergolide-BGC and, consequently, it seems that lobophorin- and divergolide-BGCs are
ubiquitously distributed in members of S. olivaceus. If antibiotic producers were not
classified at the species level, it would be hard to elucidate the relationship between a
product and the species of its producer. Thus, antibiotic producers without species names
should be appropriately and taxonomically classified more to deepen our knowledge of
the relationship, as shown in this study.

Although strains N11-26 and DC10-5 were classified as S. olivaceus, their 16S rRNA
gene sequences differed in 1 bp. Strain N11-26 was closer to the type strain than strain
DC10-5 by DNA–DNA relatedness as well as 16S rRNA gene sequence similarity. Almost
the same set of PKS and NRPS gene clusters were conserved between the S. olivaceus
strains N11-26 and NRRL B-3009T. In contrast, the sets were not the same between strain
DC10-5 and N11-26: DC10-5 possesses four specific clusters that were not present in
N11-26, whereas N11-26 harbors two specific clusters that DC10-5 lacks. The difference
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seems to be due to strain diversity in secondary metabolite-BGCs within a species. Strain
diversification is believed to be driven by geographic and ecological factors. Isolation
sources differ between strains N11-26 and DC10-5: N11-26 is derived from deep-sea water,
while DC10-5 is isolated from coral. Regions where we collected the isolation sources, the
Sea of Japan and the Pacific Ocean, are separated by the Japanese Archipelago. Such factors
may have played a role in yielding diversity. Wang et al. reported that isolates belonging
to S. olivaceus were phylogenetically divided into two clades, which can represent two
distinct species [40]. However, our isolates cannot be classified into different species due to
DNA–DNA relatedness of >80%, although strains N11-26 and DC10-5 may be included
in each of the lineages. Strain DC10-5 should not be discriminated as an independent
subspecies, a lower taxonomic rank than species, since the DNA–DNA relatedness value,
80.5%, is slightly higher than the threshold for subspecies delineation (79–80%) [41] and we
have not yet found essential characteristic features to propose a new subspecies.

4. Materials and Methods

Strains N11-26 and DC10-5 were isolated from deep-sea water collected in Toyama [4],
Japan and a non-photosynthetic stony coral collected in Mie, Japan, respectively. These
strains are preserved as TP-A0909 and TP-A0905 in Toyama Prefectural University and
have been deposited to the NBRC Culture Collection, whose strain numbers are NBRC
113676 and NBRC 113677, respectively. Their 16S rRNA genes were amplified using 9F
and 1541R primers, and the amplicons were sequenced following the previously described
method [42]. The EzBioCloud server was used for searching the closest species [43]. A
phylogenetic tree was reconstructed by the NJ method using ClustalX 2.1 [44]. Whole
genomes were sequenced by a single-molecule real-time (SMRT) sequencing technology us-
ing PacBio, as reported in [45], and the sequences have been deposited under the accession
numbers BNEG01000001-BNEG01000006 and BNEF01000001-BNEF01000006. DNA–DNA
relatedness was calculated by digital DNA–DNA hybridization using GGDC [46], and
DDH estimates by Formula 2 were employed. The PKS and NRPS gene clusters in the
whole genome were searched with antiSMASH [47]. Products of these gene clusters were
predicted according to similarities of gene sequences and syntenies of genes in BGCs of
known compounds and domain organizations of PKSs and NRPSs [48]. The presence of
gene clusters identified from strains N11-26 and/or DC10-5 in S. olivaceus NRRL B-3009T

was examined by BLAST search of their PKSs and/or NRPSs as the queries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/hydrobiology2010010/s1, Table S1: Most similar known cluster
searched with antiSMASH for the gene clusters in S. olivaceus N11-26; Table S2: Most similar known
cluster searched with antiSMASH for the gene clusters in S. olivaceus DC10-5; Table S3: Closest
biosynthetic enzymes to PKSs and/or NRPSs in the gene clusters of S. olivaceus N11-26; Table S4:
Closest biosynthetic enzymes to PKSs and/or NRPSs in the gene clusters of S. olivaceus DC10-5.
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